Articles | Volume 23, issue 2
https://doi.org/10.5194/acp-23-1309-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-1309-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mercury in the free troposphere and bidirectional atmosphere–vegetation exchanges – insights from Maïdo mountain observatory in the Southern Hemisphere tropics
Alkuin M. Koenig
CORRESPONDING AUTHOR
Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, France
Olivier Magand
Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, France
Bert Verreyken
Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels,
Belgium
Department of Chemistry, Ghent University, Ghent, Belgium
Laboratoire de l'Atmosphère et des Cyclones, UMR 8105, CNRS,
Université de La Réunion, Météo France, 97744 Saint-Denis,
La Réunion, France
now at: NOAA Chemical Sciences Laboratory, Boulder, CO 80305,
USA
Jerome Brioude
Laboratoire de l'Atmosphère et des Cyclones, UMR 8105, CNRS,
Université de La Réunion, Météo France, 97744 Saint-Denis,
La Réunion, France
Crist Amelynck
Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels,
Belgium
Department of Chemistry, Ghent University, Ghent, Belgium
Niels Schoon
Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels,
Belgium
Aurélie Colomb
Laboratoire de Météorologie Physique, UMR6016, CNRS,
Université Clermont Auvergne, 63178 Aubière, France
Beatriz Ferreira Araujo
Géosciences Environnement Toulouse, CNRS/IRD/Université Paul
Sabatier Toulouse 3, Toulouse, France
Michel Ramonet
Laboratoire des Sciences du Climat et de l'Environnement,
Université Paris-Saclay, CEA-CNRS-UVSQ, UMR8212, Gif-sur-Yvette, France
Mahesh K. Sha
Laboratoire des Sciences du Climat et de l'Environnement,
Université Paris-Saclay, CEA-CNRS-UVSQ, UMR8212, Gif-sur-Yvette, France
Jean-Pierre Cammas
Observatoire des Sciences de l'Univers à La Réunion (OSU-R),
UAR 3365, CNRS, Université de La Réunion, Météo France,
97744 Saint-Denis, La Réunion, France
Jeroen E. Sonke
Géosciences Environnement Toulouse, CNRS/IRD/Université Paul
Sabatier Toulouse 3, Toulouse, France
Aurélien Dommergue
Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, France
Related authors
Qiaozhi Zha, Wei Huang, Diego Aliaga, Otso Peräkylä, Liine Heikkinen, Alkuin Maximilian Koenig, Cheng Wu, Joonas Enroth, Yvette Gramlich, Jing Cai, Samara Carbone, Armin Hansel, Tuukka Petäjä, Markku Kulmala, Douglas Worsnop, Victoria Sinclair, Radovan Krejci, Marcos Andrade, Claudia Mohr, and Federico Bianchi
Atmos. Chem. Phys., 23, 4559–4576, https://doi.org/10.5194/acp-23-4559-2023, https://doi.org/10.5194/acp-23-4559-2023, 2023
Short summary
Short summary
We investigate the chemical composition of atmospheric cluster ions from January to May 2018 at the high-altitude research station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes. With state-of-the-art mass spectrometers and air mass history analysis, the measured cluster ions exhibited distinct diurnal and seasonal patterns, some of which contributed to new particle formation. Our study will improve the understanding of atmospheric ions and their role in high-altitude new particle formation.
Alkuin Maximilian Koenig, Olivier Magand, Paolo Laj, Marcos Andrade, Isabel Moreno, Fernando Velarde, Grover Salvatierra, René Gutierrez, Luis Blacutt, Diego Aliaga, Thomas Reichler, Karine Sellegri, Olivier Laurent, Michel Ramonet, and Aurélien Dommergue
Atmos. Chem. Phys., 21, 3447–3472, https://doi.org/10.5194/acp-21-3447-2021, https://doi.org/10.5194/acp-21-3447-2021, 2021
Short summary
Short summary
The environmental cycling of atmospheric mercury, a harmful global contaminant, is still not sufficiently constrained, partly due to missing data in remote regions. Here, we address this issue by presenting 20 months of atmospheric mercury measurements, sampled in the Bolivian Andes. We observe a significant seasonal pattern, whose key features we explore. Moreover, we deduce ratios to constrain South American biomass burning mercury emissions and the mercury uptake by the Amazon rainforest.
Constantina Rousogenous, Christof Petri, Pierre-Yves Quehe, Thomas Laemmel, Joshua L. Laughner, Maximilien Desservettaz, Michael Pikridas, Michel Ramonet, Efstratios Bourtsoukidis, Matthias Buschmann, Justus Notholt, Thorsten Warneke, Jean-Daniel Paris, Jean Sciare, and Mihalis Vrekoussis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1442, https://doi.org/10.5194/egusphere-2025-1442, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The Eastern Mediterranean and Middle East is a greenhouse gas emission hotspot but lacks atmospheric monitoring. Our study introduces the first Total Carbon Column Observing Network site in this region, in Cyprus, providing high-precision columnar measurement of key greenhouse gases. This new dataset enhances global climate monitoring efforts, supports the validation of satellites, will help assess regional emission trends, filling a critical observational gap in this climate-sensitive region.
Aki Tsuruta, Akihiko Kuze, Kei Shiomi, Fumie Kataoka, Nobuhiro Kikuchi, Tuula Aalto, Leif Backman, Ella Kivimäki, Maria K. Tenkanen, Kathryn McKain, Omaira E. García, Frank Hase, Rigel Kivi, Isamu Morino, Hirofumi Ohyama, David F. Pollard, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, Minqiang Zhou, and Hiroshi Suto
Atmos. Chem. Phys., 25, 7829–7862, https://doi.org/10.5194/acp-25-7829-2025, https://doi.org/10.5194/acp-25-7829-2025, 2025
Short summary
Short summary
Satellite data bring invaluable information about greenhouse gas emissions globally. We found that a new type of data from the Greenhouse Gas Observing Satellite (GOSAT), which contains information about methane in the lowest layer of Earth's atmosphere, could provide reliable estimates of recent methane emissions when combined with atmospheric modelling. Therefore, the use of such data is encouraged to improve emission quantification methods and advance our understanding of methane cycles.
Alessandro Zanchetta, Steven van Heuven, Joram Hooghiem, Rigel Kivi, Thomas Laemmel, Michel Ramonet, Markus Leuenberger, Peter Nyfeler, Sophia Louise Baartman, Maarten Krol, and Huilin Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3079, https://doi.org/10.5194/egusphere-2025-3079, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Continuous vertical profiles and discrete stratospheric samples of carbonyl sulfide (COS) were collected deploying the balloon-borne AirCore, LISA and BigLISA samplers and measured on a Quantum Cascade Laser Spectrometer (QCLS). Our measurements show good accordance with previous COS observations. Moreover, laboratory tests of ozone (O3) scrubbers proved squalene to remove O3 very efficiently without biasing the measurements of other trace gases.
Catalina Poraicu, Jean-François Müller, Trissevgeni Stavrakou, Crist Amelynck, Bert W. D. Verreyken, Niels Schoon, Corinne Vigouroux, Nicolas Kumps, Jérôme Brioude, Pierre Tulet, and Camille Mouchel-Vallon
Atmos. Chem. Phys., 25, 6903–6941, https://doi.org/10.5194/acp-25-6903-2025, https://doi.org/10.5194/acp-25-6903-2025, 2025
Short summary
Short summary
We investigated the sources and impacts of nitrogen oxides and organic compounds over a remote tropical island. Simulations of the high-resolution Weather Research and Forecasting model coupled with chemistry (WRF-Chem) were evaluated using in situ Fourier transform infrared spectroscopy (FTIR) and satellite measurements. This work highlights gaps in current models, like missing sources of key organic compounds and inaccuracies in emission inventories, emphasizing the importance of improving chemical and dynamical processes in atmospheric modelling for budget estimates in tropical regions.
Bavo Langerock, Martine De Mazière, Filip Desmet, Pauli Heikkinen, Rigel Kivi, Mahesh Kumar Sha, Corinne Vigouroux, Minqiang Zhou, Gopala Krishna Darbha, and Mohmmed Talib
Atmos. Meas. Tech., 18, 2439–2446, https://doi.org/10.5194/amt-18-2439-2025, https://doi.org/10.5194/amt-18-2439-2025, 2025
Short summary
Short summary
Ground-based Fourier transform interferometer instruments have been used for many decades to measure direct solar light in the infrared to obtain high-resolution spectra from which atmospheric gas profile concentrations can be derived. It is shown that the typical processing chain used to derive atmospheric gas columns can be sensitive to relatively small shortenings of the recorded interferograms. Low-resolution recordings, used in more recent years, are more sensitive to such adaptations.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Excellent O. Eboigbe, Nimelan Veerasamy, Abiodun M. Odukoya, Nnamdi C. Anene, Jeroen E. Sonke, Sayuri Sakisaka Méndez, and David S. McLagan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1402, https://doi.org/10.5194/egusphere-2025-1402, 2025
Short summary
Short summary
Air, soil, and three common staple crops were assess at an ASGM processing site and Hg contamination observed at a farm ≈500 m from the processing site. Of the crop tissues examined, foliage had the highest concentrations. Mercury stable isotopes indicate uptake of mercury from the air to the foliage as is the dominant uptake pathway. Using typical dietary data for Nigerians, Hg intake from these crops were below reference dose levels and generally safe for consumption.
Frank Hase, Paolo Castracane, Angelika Dehn, Omaira Elena García, David W. T. Griffith, Lukas Heizmann, Nicholas B. Jones, Tomi Karppinen, Rigel Kivi, Martine de Mazière, Justus Notholt, and Mahesh Kumar Sha
Atmos. Meas. Tech., 18, 1257–1267, https://doi.org/10.5194/amt-18-1257-2025, https://doi.org/10.5194/amt-18-1257-2025, 2025
Short summary
Short summary
The primary measurement result delivered by a Fourier transform spectrometer is an interferogram, and the spectrum required for further analysis needs to be calculated from the interferogram by Fourier analysis. The paper deals with technical aspects of this process and shows how the reconstruction of the spectrum can be optimized.
Sebastien Conil, Gilles Bergametti, Laurent Langrene, Morgan Lopez, Olivier Masson, Cyril Pallares, and Michel Ramonet
EGUsphere, https://doi.org/10.5194/egusphere-2025-148, https://doi.org/10.5194/egusphere-2025-148, 2025
Short summary
Short summary
From 2012 to 2023, hourly surface ozone, trace gases, meteorological parameters, and weekly beryllium-7 and sodium-22 activity were monitored at the OPE station in eastern France. While mean afternoon ozone concentrations showed no significant trend, baseline ozone increased by 0.7 µg·m⁻³ per year. Ozone anomalies were linked to pollutants (CO, NOx, CH4) from November to February, and to Stratosphere-to-Troposphere Transport proxies from April to September.
Chelsea E. Stockwell, Matthew M. Coggon, Rebecca H. Schwantes, Colin Harkins, Bert Verreyken, Congmeng Lyu, Qindan Zhu, Lu Xu, Jessica B. Gilman, Aaron Lamplugh, Jeff Peischl, Michael A. Robinson, Patrick R. Veres, Meng Li, Andrew W. Rollins, Kristen Zuraski, Sunil Baidar, Shang Liu, Toshihiro Kuwayama, Steven S. Brown, Brian C. McDonald, and Carsten Warneke
Atmos. Chem. Phys., 25, 1121–1143, https://doi.org/10.5194/acp-25-1121-2025, https://doi.org/10.5194/acp-25-1121-2025, 2025
Short summary
Short summary
In urban areas, emissions from everyday products like paints, cleaners, and personal care products, along with non-traditional sources such as cooking, are increasingly important and impact air quality. This study uses a box model to evaluate how these emissions impact ozone in the Los Angeles Basin and quantifies the impact of gaseous cooking emissions. Accurate representation of these and other anthropogenic sources in inventories is crucial for informing effective air quality policies.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
Biogeosciences, 22, 213–242, https://doi.org/10.5194/bg-22-213-2025, https://doi.org/10.5194/bg-22-213-2025, 2025
Short summary
Short summary
The 2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 Mteq CO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of France's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Meredith Dournaux, Pierre Tulet, Joris Pianezze, Jérome Brioude, Jean-Marc Metzger, and Melilotus Thyssen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3747, https://doi.org/10.5194/egusphere-2024-3747, 2025
Short summary
Short summary
Aerosol measurements collected during six oceanographic campaigns carried out in 2021 and 2023 in the southwest Indian Ocean are presented and analyzed in this paper. The results highlight a large variability in the aerosol concentration, size and water vapor affinity depending on in-situ conditions and air mass transport over the ocean. Marine aerosol chemical composition is highly variable over this region, and should be considered to better study their impacts on regional weather and climate.
Koketso Michelle Molepo, Johannes Bieser, Alkuin Maximilian Koenig, Ian Michael Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand
EGUsphere, https://doi.org/10.5194/egusphere-2024-3722, https://doi.org/10.5194/egusphere-2024-3722, 2024
Short summary
Short summary
Mercury exchange between the ocean and atmosphere is poorly understood due to limited in situ data. Here, using atmospheric mercury observations from ground-based monitoring stations along with air mass trajectories, we found that atmospheric Hg levels increase with air mass ocean exposure time, matching predictions for ocean mercury emissions. This finding indicates that ocean emissions directly influence atmospheric mercury levels and enables us to estimate these emissions on a global scale.
Théo Segur and Jeroen E. Sonke
EGUsphere, https://doi.org/10.5194/egusphere-2024-3031, https://doi.org/10.5194/egusphere-2024-3031, 2024
Short summary
Short summary
Our paper provides a quantification of plastic pollution in the Mediterranean region, and several policy scenario projections based on OECD data toward 2100. We estimate a 4-fold increase of Mediterranean marine plastic stock by 2060 and that the implementation of terrestrial plastic cleanup can significantly help to reduce plastic pollution transfer from land to sea. Our results provide insight for policy makers, which is needed at the regional scale in a context of the UNEP plastic treaty.
Pedro Henrique Herig Coimbra, Benjamin Loubet, Olivier Laurent, Laura Bignotti, Mathis Lozano, and Michel Ramonet
Atmos. Meas. Tech., 17, 6625–6645, https://doi.org/10.5194/amt-17-6625-2024, https://doi.org/10.5194/amt-17-6625-2024, 2024
Short summary
Short summary
This study presents direct flux measurements in tall towers using existing slow-response analysers and adding 3D sonic anemometers. This way, we can significantly improve greenhouse gas monitoring with little extra instrumental effort. Slow-response analysers may be used here as the relevant frequency ranges depend on measuring height. Tall towers offer a large footprint, amplifying spatial coverage. The presented concept is a valuable bridge between atmospheric and ecosystem communities.
Camille Yver-Kwok, Michel Ramonet, Léonard Rivier, Jinghui Lian, Claudia Grossi, Roger Curcoll, Dafina Kikaj, Edward Chung, and Ute Karstens
EGUsphere, https://doi.org/10.5194/egusphere-2024-3107, https://doi.org/10.5194/egusphere-2024-3107, 2024
Short summary
Short summary
Here, we use greenhouse gas and radon data from a tall tower in France to estimate their fluxes within the station footprint from January 2017 to December 2022 using the Radon Tracer Method. Using the latest radon exhalation maps and standardized radon measurements, we found the greenhouse gas fluxes to be in agreement with the literature. Compared to inventories, there is a general agreement except for carbon dioxide where we show that the biogenic fluxes are not well represented in the model.
Marie Lothon, François Gheusi, Fabienne Lohou, Véronique Pont, Serge Soula, Corinne Jambert, Solène Derrien, Yannick Bezombes, Emmanuel Leclerc, Gilles Athier, Antoine Vial, Alban Philibert, Bernard Campistron, Frédérique Saïd, Jeroen Sonke, Julien Amestoy, Erwan Bargain, Pierre Bosser, Damien Boulanger, Guillaume Bret, Renaud Bodichon, Laurent Cabanas, Guylaine Canut, Jean-Bernard Estrampes, Eric Gardrat, Zaida Gomez Kuri, Jérémy Gueffier, Fabienne Guesdon, Morgan Lopez, Olivier Masson, Pierre-Yves Meslin, Yves Meyerfeld, Nicolas Pascal, Eric Pique, Michel Ramonet, Felix Starck, and Romain Vidal
Atmos. Meas. Tech., 17, 6265–6300, https://doi.org/10.5194/amt-17-6265-2024, https://doi.org/10.5194/amt-17-6265-2024, 2024
Short summary
Short summary
The Pyrenean Platform for Observation of the Atmosphere (P2OA) is a coupled plain–mountain instrumented platform in southwestern France for the monitoring of climate variables and the study of meteorological processes in a mountainous region. A comprehensive description of this platform is presented for the first time: its instrumentation, the associated dataset, and a meteorological characterization the site. The potential of the P2OA is illustrated through several examples of process studies.
Harish Shivraj Gadhavi, Akanksha Arora, Chaithanya Jain, Mahesh Kumar Sha, Frank Hase, Matthias Frey, Srikanthan Ramachandran, and Achuthan Jayaraman
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-167, https://doi.org/10.5194/amt-2024-167, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
We used a ground-based Fourier Transform Spectrometer to measure columnar greenhouse gas mixing ratios and validate methane observations from the GOSAT satellite and carbon dioxide observations from GOSAT and OCO-2 over India. Both satellites provide high precision and accuracy, making them suitable for emission flux estimates. Simulations using a Lagrangian dispersion model showed that background mixing ratio variations play a larger role than local source changes.
Noémie Taquet, Wolfgang Stremme, María Eugenia González del Castillo, Victor Almanza, Alejandro Bezanilla, Olivier Laurent, Carlos Alberti, Frank Hase, Michel Ramonet, Thomas Lauvaux, Ke Che, and Michel Grutter
Atmos. Chem. Phys., 24, 11823–11848, https://doi.org/10.5194/acp-24-11823-2024, https://doi.org/10.5194/acp-24-11823-2024, 2024
Short summary
Short summary
We characterize the variability in CO and CO2 emissions over Mexico City from long-term time-resolved Fourier transform infrared spectroscopy solar absorption and surface measurements from 2013 to 2021. Using the average intraday CO growth rate from total columns, the average CO / CO2 ratio and TROPOMI data, we estimate the interannual variability in the CO and CO2 anthropogenic emissions of Mexico City, highlighting the effect of an unprecedented drop in activity due to the COVID-19 lockdown.
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024, https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Short summary
A combination of data analysis techniques is introduced to separate local and regional influences on observed levels of carbon dioxide, carbon monoxide, and methane from an established ground-based remote sensing network. We take advantage of the covariations in these trace gases to identify the dominant type of sources driving these levels. Applying these methods in conjunction with existing approaches to other datasets can better address uncertainties in identifying sources and sinks.
Jinghui Lian, Olivier Laurent, Mali Chariot, Luc Lienhardt, Michel Ramonet, Hervé Utard, Thomas Lauvaux, François-Marie Bréon, Grégoire Broquet, Karina Cucchi, Laurent Millair, and Philippe Ciais
Atmos. Meas. Tech., 17, 5821–5839, https://doi.org/10.5194/amt-17-5821-2024, https://doi.org/10.5194/amt-17-5821-2024, 2024
Short summary
Short summary
We have designed and deployed a mid-cost medium-precision CO2 sensor monitoring network in Paris since July 2020. The data are automatically calibrated by a newly implemented data processing system. The accuracies of the mid-cost instruments vary from 1.0 to 2.4 ppm for hourly afternoon measurements. Our model–data analyses highlight prospects for integrating mid-cost instrument data with high-precision measurements to improve fine-scale CO2 emission quantification in urban areas.
Josselin Doc, Michel Ramonet, François-Marie Bréon, Delphine Combaz, Mali Chariot, Morgan Lopez, Marc Delmotte, Cristelle Cailteau-Fischbach, Guillaume Nief, Nathanaël Laporte, Thomas Lauvaux, and Philippe Ciais
EGUsphere, https://doi.org/10.5194/egusphere-2024-2826, https://doi.org/10.5194/egusphere-2024-2826, 2024
Short summary
Short summary
Description of the network for measuring greenhouse gas concentrations in the Paris region and analysis of eight years of continuous monitoring.
Pierre Tulet, Joel Van Baelen, Pierre Bosser, Jérome Brioude, Aurélie Colomb, Philippe Goloub, Andrea Pazmino, Thierry Portafaix, Michel Ramonet, Karine Sellegri, Melilotus Thyssen, Léa Gest, Nicolas Marquestaut, Dominique Mékiès, Jean-Marc Metzger, Gilles Athier, Luc Blarel, Marc Delmotte, Guillaume Desprairies, Mérédith Dournaux, Gaël Dubois, Valentin Duflot, Kevin Lamy, Lionel Gardes, Jean-François Guillemot, Valérie Gros, Joanna Kolasinski, Morgan Lopez, Olivier Magand, Erwan Noury, Manuel Nunes-Pinharanda, Guillaume Payen, Joris Pianezze, David Picard, Olivier Picard, Sandrine Prunier, François Rigaud-Louise, Michael Sicard, and Benjamin Torres
Earth Syst. Sci. Data, 16, 3821–3849, https://doi.org/10.5194/essd-16-3821-2024, https://doi.org/10.5194/essd-16-3821-2024, 2024
Short summary
Short summary
The MAP-IO program aims to compensate for the lack of atmospheric and oceanographic observations in the Southern Ocean by equipping the ship Marion Dufresne with a set of 17 scientific instruments. This program collected 700 d of measurements under different latitudes, seasons, sea states, and weather conditions. These new data will support the calibration and validation of numerical models and the understanding of the atmospheric composition of this region of Earth.
Rodrigo Rivera-Martinez, Pramod Kumar, Olivier Laurent, Gregoire Broquet, Christopher Caldow, Ford Cropley, Diego Santaren, Adil Shah, Cécile Mallet, Michel Ramonet, Leonard Rivier, Catherine Juery, Olivier Duclaux, Caroline Bouchet, Elisa Allegrini, Hervé Utard, and Philippe Ciais
Atmos. Meas. Tech., 17, 4257–4290, https://doi.org/10.5194/amt-17-4257-2024, https://doi.org/10.5194/amt-17-4257-2024, 2024
Short summary
Short summary
We explore the use of metal oxide semiconductors (MOSs) as a low-cost alternative for detecting and measuring CH4 emissions from industrial facilities. MOSs were exposed to several controlled releases to test their accuracy in detecting and quantifying emissions. Two reconstruction models were compared, and emission estimates were computed using a Gaussian dispersion model. Findings show that MOSs can provide accurate emission estimates with a 25 % emission rate error and a 9.5 m location error.
Nelson Bègue, Alexandre Baron, Gisèle Krysztofiak, Gwenaël Berthet, Corinna Kloss, Fabrice Jégou, Sergey Khaykin, Marion Ranaivombola, Tristan Millet, Thierry Portafaix, Valentin Duflot, Philippe Keckhut, Hélène Vérèmes, Guillaume Payen, Mahesh Kumar Sha, Pierre-François Coheur, Cathy Clerbaux, Michaël Sicard, Tetsu Sakai, Richard Querel, Ben Liley, Dan Smale, Isamu Morino, Osamu Uchino, Tomohiro Nagai, Penny Smale, John Robinson, and Hassan Bencherif
Atmos. Chem. Phys., 24, 8031–8048, https://doi.org/10.5194/acp-24-8031-2024, https://doi.org/10.5194/acp-24-8031-2024, 2024
Short summary
Short summary
During the 2020 austral summer, the pristine atmosphere of the southwest Indian Ocean basin experienced significant perturbations. Numerical models indicated that the lower-stratospheric aerosol content was influenced by the intense and persistent stratospheric aerosol layer generated during the 2019–2020 extreme Australian bushfire events. Ground-based observations at Réunion confirmed the simultaneous presence of African and Australian aerosol layers.
Jayanarayanan Kuttippurath, Gopalakrishna Pillai Gopikrishnan, Rolf Müller, Sophie Godin-Beekmann, and Jerome Brioude
Atmos. Chem. Phys., 24, 6743–6756, https://doi.org/10.5194/acp-24-6743-2024, https://doi.org/10.5194/acp-24-6743-2024, 2024
Short summary
Short summary
The current understanding and observational evidence do not provide any support for the possibility of an ozone hole occurring outside Antarctica today with respect to the present-day stratospheric halogen levels.
Joshua L. Laughner, Geoffrey C. Toon, Joseph Mendonca, Christof Petri, Sébastien Roche, Debra Wunch, Jean-Francois Blavier, David W. T. Griffith, Pauli Heikkinen, Ralph F. Keeling, Matthäus Kiel, Rigel Kivi, Coleen M. Roehl, Britton B. Stephens, Bianca C. Baier, Huilin Chen, Yonghoon Choi, Nicholas M. Deutscher, Joshua P. DiGangi, Jochen Gross, Benedikt Herkommer, Pascal Jeseck, Thomas Laemmel, Xin Lan, Erin McGee, Kathryn McKain, John Miller, Isamu Morino, Justus Notholt, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Haris Riris, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Steven C. Wofsy, Minqiang Zhou, and Paul O. Wennberg
Earth Syst. Sci. Data, 16, 2197–2260, https://doi.org/10.5194/essd-16-2197-2024, https://doi.org/10.5194/essd-16-2197-2024, 2024
Short summary
Short summary
This paper describes a new version, called GGG2020, of a data set containing column-integrated observations of greenhouse and related gases (including CO2, CH4, CO, and N2O) made by ground stations located around the world. Compared to the previous version (GGG2014), improvements have been made toward site-to-site consistency. This data set plays a key role in validating space-based greenhouse gas observations and in understanding the carbon cycle.
Amaelle Landais, Cécile Agosta, Françoise Vimeux, Olivier Magand, Cyrielle Solis, Alexandre Cauquoin, Niels Dutrievoz, Camille Risi, Christophe Leroy-Dos Santos, Elise Fourré, Olivier Cattani, Olivier Jossoud, Bénédicte Minster, Frédéric Prié, Mathieu Casado, Aurélien Dommergue, Yann Bertrand, and Martin Werner
Atmos. Chem. Phys., 24, 4611–4634, https://doi.org/10.5194/acp-24-4611-2024, https://doi.org/10.5194/acp-24-4611-2024, 2024
Short summary
Short summary
We have monitored water vapor isotopes since January 2020 on Amsterdam Island in the Indian Ocean. We show 11 periods associated with abrupt negative excursions of water vapor δ18Ο. Six of these events show a decrease in gaseous elemental mercury, suggesting subsidence of air from a higher altitude. Accurately representing the water isotopic signal during these cold fronts is a real challenge for the atmospheric components of Earth system models equipped with water isotopes.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Yang Liu, Raluca Ciuraru, Letizia Abis, Crist Amelynck, Pauline Buysse, Alex Guenther, Bernard Heinesch, Florence Lafouge, Florent Levavasseur, Benjamin Loubet, Auriane Voyard, and Raia-Silvia Massad
EGUsphere, https://doi.org/10.5194/egusphere-2024-530, https://doi.org/10.5194/egusphere-2024-530, 2024
Preprint archived
Short summary
Short summary
This paper reviews the emission and emission processes of biogenic volatile organic compounds (BVOCs) from various crops and soil under different management practices, highlighting challenges in modeling the emissions and proposing a conceptual model for estimation. The aim of this paper is to present agricultural BVOC data and related mechanistic processes to enhance model accuracy and reduce uncertainties in estimating BVOC emissions from agriculture.
Esther S. Breuninger, Julie Tolu, Iris Thurnherr, Franziska Aemisegger, Aryeh Feinberg, Sylvain Bouchet, Jeroen E. Sonke, Véronique Pont, Heini Wernli, and Lenny H. E. Winkel
Atmos. Chem. Phys., 24, 2491–2510, https://doi.org/10.5194/acp-24-2491-2024, https://doi.org/10.5194/acp-24-2491-2024, 2024
Short summary
Short summary
Atmospheric deposition is an important source of selenium (Se) and other health-relevant trace elements in surface environments. We found that the variability in elemental concentrations in atmospheric deposition reflects not only changes in emission sources but also weather conditions during atmospheric removal. Depending on the sources and if Se is derived more locally or from further away, the Se forms can be different, affecting the bioavailability of Se atmospherically supplied to soils.
Paolo Cristofanelli, Cosimo Fratticioli, Lynn Hazan, Mali Chariot, Cedric Couret, Orestis Gazetas, Dagmar Kubistin, Antti Laitinen, Ari Leskinen, Tuomas Laurila, Matthias Lindauer, Giovanni Manca, Michel Ramonet, Pamela Trisolino, and Martin Steinbacher
Atmos. Meas. Tech., 16, 5977–5994, https://doi.org/10.5194/amt-16-5977-2023, https://doi.org/10.5194/amt-16-5977-2023, 2023
Short summary
Short summary
We investigated the application of two automatic methods for detecting spikes due to local emissions in greenhouse gas (GHG) observations at a subset of sites from the ICOS Atmosphere network. We analysed the sensitivity to the spike frequency of using different methods and settings. We documented the impact of the de-spiking on different temporal aggregations (i.e. hourly, monthly and seasonal averages) of CO2, CH4 and CO 1 min time series.
Douglas E. J. Worthy, Michele K. Rauh, Lin Huang, Felix R. Vogel, Alina Chivulescu, Kenneth A. Masarie, Ray L. Langenfelds, Paul B. Krummel, Colin E. Allison, Andrew M. Crotwell, Monica Madronich, Gabrielle Pétron, Ingeborg Levin, Samuel Hammer, Sylvia Michel, Michel Ramonet, Martina Schmidt, Armin Jordan, Heiko Moossen, Michael Rothe, Ralph Keeling, and Eric J. Morgan
Atmos. Meas. Tech., 16, 5909–5935, https://doi.org/10.5194/amt-16-5909-2023, https://doi.org/10.5194/amt-16-5909-2023, 2023
Short summary
Short summary
Network compatibility is important for inferring greenhouse gas fluxes at global or regional scales. This study is the first assessment of the measurement agreement among seven individual programs within the World Meteorological Organization community. It compares co-located flask air measurements at the Alert Observatory in Canada over a 17-year period. The results provide stronger confidence in the uncertainty estimation while using those datasets in various data interpretation applications.
Minqiang Zhou, Bavo Langerock, Mahesh Kumar Sha, Christian Hermans, Nicolas Kumps, Rigel Kivi, Pauli Heikkinen, Christof Petri, Justus Notholt, Huilin Chen, and Martine De Mazière
Atmos. Meas. Tech., 16, 5593–5608, https://doi.org/10.5194/amt-16-5593-2023, https://doi.org/10.5194/amt-16-5593-2023, 2023
Short summary
Short summary
Atmospheric N2O and CH4 columns are successfully retrieved from low-resolution FTIR spectra recorded by a Bruker VERTEX 70. The 1-year measurements at Sodankylä show that the N2O total columns retrieved from 125HR and VERTEX 70 spectra are −0.3 ± 0.7 % with an R value of 0.93. The relative differences between the CH4 total columns retrieved from the 125HR and VERTEX spectra are 0.0 ± 0.8 % with an R value of 0.87. Such a technique can help to fill the gap in NDACC N2O and CH4 measurements.
Jinghui Lian, Thomas Lauvaux, Hervé Utard, François-Marie Bréon, Grégoire Broquet, Michel Ramonet, Olivier Laurent, Ivonne Albarus, Mali Chariot, Simone Kotthaus, Martial Haeffelin, Olivier Sanchez, Olivier Perrussel, Hugo Anne Denier van der Gon, Stijn Nicolaas Camiel Dellaert, and Philippe Ciais
Atmos. Chem. Phys., 23, 8823–8835, https://doi.org/10.5194/acp-23-8823-2023, https://doi.org/10.5194/acp-23-8823-2023, 2023
Short summary
Short summary
This study quantifies urban CO2 emissions via an atmospheric inversion for the Paris metropolitan area over a 6-year period from 2016 to 2021. Results show a long-term decreasing trend of about 2 % ± 0.6 % per year in the annual CO2 emissions over Paris. We conclude that our current capacity can deliver near-real-time CO2 emission estimates at the city scale in under a month, and the results agree within 10 % with independent estimates from multiple city-scale inventories.
Manon Rocco, Erin Dunne, Alexia Saint-Macary, Maija Peltola, Theresa Barthelmeß, Neill Barr, Karl Safi, Andrew Marriner, Stacy Deppeler, James Harnwell, Anja Engel, Aurélie Colomb, Alfonso Saiz-Lopez, Mike Harvey, Cliff S. Law, and Karine Sellegri
EGUsphere, https://doi.org/10.5194/egusphere-2023-516, https://doi.org/10.5194/egusphere-2023-516, 2023
Preprint archived
Short summary
Short summary
During the Sea2cloud campaign in the Southern Pacific Ocean, we measured air-sea emissions from phytopankton of two key atmospheric compounds: DMS and MeSH. These compounds are well-known to play a great role in atmospheric chemistry and climate. We see in this paper that these compounds are most emited by the nanophytoplankton population. We provide here parameters for climate models to predict future trends of the emissions of these compounds and their roles and impacts on the global warming.
Rodrigo Andres Rivera Martinez, Diego Santaren, Olivier Laurent, Gregoire Broquet, Ford Cropley, Cécile Mallet, Michel Ramonet, Adil Shah, Leonard Rivier, Caroline Bouchet, Catherine Juery, Olivier Duclaux, and Philippe Ciais
Atmos. Meas. Tech., 16, 2209–2235, https://doi.org/10.5194/amt-16-2209-2023, https://doi.org/10.5194/amt-16-2209-2023, 2023
Short summary
Short summary
A network of low-cost sensors is a good alternative to improve the detection of fugitive CH4 emissions. We present the results of four tests conducted with two types of Figaro sensors that were assembled on four chambers in a laboratory experiment: a comparison of five models to reconstruct the CH4 signal, a strategy to reduce the training set size, a detection of age effects in the sensors and a test of the capability to transfer a model between chambers for the same type of sensor.
Qiaozhi Zha, Wei Huang, Diego Aliaga, Otso Peräkylä, Liine Heikkinen, Alkuin Maximilian Koenig, Cheng Wu, Joonas Enroth, Yvette Gramlich, Jing Cai, Samara Carbone, Armin Hansel, Tuukka Petäjä, Markku Kulmala, Douglas Worsnop, Victoria Sinclair, Radovan Krejci, Marcos Andrade, Claudia Mohr, and Federico Bianchi
Atmos. Chem. Phys., 23, 4559–4576, https://doi.org/10.5194/acp-23-4559-2023, https://doi.org/10.5194/acp-23-4559-2023, 2023
Short summary
Short summary
We investigate the chemical composition of atmospheric cluster ions from January to May 2018 at the high-altitude research station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes. With state-of-the-art mass spectrometers and air mass history analysis, the measured cluster ions exhibited distinct diurnal and seasonal patterns, some of which contributed to new particle formation. Our study will improve the understanding of atmospheric ions and their role in high-altitude new particle formation.
Anna Agustí-Panareda, Jérôme Barré, Sébastien Massart, Antje Inness, Ilse Aben, Melanie Ades, Bianca C. Baier, Gianpaolo Balsamo, Tobias Borsdorff, Nicolas Bousserez, Souhail Boussetta, Michael Buchwitz, Luca Cantarello, Cyril Crevoisier, Richard Engelen, Henk Eskes, Johannes Flemming, Sébastien Garrigues, Otto Hasekamp, Vincent Huijnen, Luke Jones, Zak Kipling, Bavo Langerock, Joe McNorton, Nicolas Meilhac, Stefan Noël, Mark Parrington, Vincent-Henri Peuch, Michel Ramonet, Miha Razinger, Maximilian Reuter, Roberto Ribas, Martin Suttie, Colm Sweeney, Jérôme Tarniewicz, and Lianghai Wu
Atmos. Chem. Phys., 23, 3829–3859, https://doi.org/10.5194/acp-23-3829-2023, https://doi.org/10.5194/acp-23-3829-2023, 2023
Short summary
Short summary
We present a global dataset of atmospheric CO2 and CH4, the two most important human-made greenhouse gases, which covers almost 2 decades (2003–2020). It is produced by combining satellite data of CO2 and CH4 with a weather and air composition prediction model, and it has been carefully evaluated against independent observations to ensure validity and point out deficiencies to the user. This dataset can be used for scientific studies in the field of climate change and the global carbon cycle.
Yu Someya, Yukio Yoshida, Hirofumi Ohyama, Shohei Nomura, Akihide Kamei, Isamu Morino, Hitoshi Mukai, Tsuneo Matsunaga, Joshua L. Laughner, Voltaire A. Velazco, Benedikt Herkommer, Yao Té, Mahesh Kumar Sha, Rigel Kivi, Minqiang Zhou, Young Suk Oh, Nicholas M. Deutscher, and David W. T. Griffith
Atmos. Meas. Tech., 16, 1477–1501, https://doi.org/10.5194/amt-16-1477-2023, https://doi.org/10.5194/amt-16-1477-2023, 2023
Short summary
Short summary
The updated retrieval algorithm for the Greenhouse gases Observing SATellite level 2 product is presented. The main changes in the algorithm from the previous one are the treatment of cirrus clouds, the degradation model of the sensor, solar irradiance, and gas absorption coefficient tables. The retrieval results showed improvements in fitting accuracy and an increase in the data amount over land. On the other hand, there are still large biases of XCO2 which should be corrected over the ocean.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023, https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Short summary
Aeolus is the first spaceborne wind lidar providing global wind measurements since 2018. This study offers a comprehensive analysis of Aeolus instrument performance, using ground-based wind lidars and meteorological radiosondes, at tropical and mid-latitudes sites. The analysis allows assessing the long-term evolution of the satellite's performance for more than 3 years. The results will help further elaborate the understanding of the error sources and the behavior of the Doppler wind lidar.
David F. Pollard, Frank Hase, Mahesh Kumar Sha, Darko Dubravica, Carlos Alberti, and Dan Smale
Earth Syst. Sci. Data, 14, 5427–5437, https://doi.org/10.5194/essd-14-5427-2022, https://doi.org/10.5194/essd-14-5427-2022, 2022
Short summary
Short summary
We describe measurements made in Antarctica using an EM27/SUN, a near-infrared, portable, low-resolution spectrometer from which we can retrieve the average atmospheric concentration of several greenhouse gases. We show that these measurements are reliable and comparable to other, similar ground-based measurements. Comparisons to the ESA's Sentinel-5 precursor (S5P) satellite demonstrate the usefulness of these data for satellite validation.
Pete D. Akers, Joël Savarino, Nicolas Caillon, Olivier Magand, and Emmanuel Le Meur
Atmos. Chem. Phys., 22, 15637–15657, https://doi.org/10.5194/acp-22-15637-2022, https://doi.org/10.5194/acp-22-15637-2022, 2022
Short summary
Short summary
Nitrate isotopes in Antarctic ice do not preserve the seasonal isotopic cycles of the atmosphere, which limits their use to study the past. We studied nitrate along an 850 km Antarctic transect to learn how these cycles are changed by sunlight-driven chemistry in the snow. Our findings suggest that the snow accumulation rate and other environmental signals can be extracted from nitrate with the right sampling and analytical approaches.
Peter Bergamaschi, Arjo Segers, Dominik Brunner, Jean-Matthieu Haussaire, Stephan Henne, Michel Ramonet, Tim Arnold, Tobias Biermann, Huilin Chen, Sebastien Conil, Marc Delmotte, Grant Forster, Arnoud Frumau, Dagmar Kubistin, Xin Lan, Markus Leuenberger, Matthias Lindauer, Morgan Lopez, Giovanni Manca, Jennifer Müller-Williams, Simon O'Doherty, Bert Scheeren, Martin Steinbacher, Pamela Trisolino, Gabriela Vítková, and Camille Yver Kwok
Atmos. Chem. Phys., 22, 13243–13268, https://doi.org/10.5194/acp-22-13243-2022, https://doi.org/10.5194/acp-22-13243-2022, 2022
Short summary
Short summary
We present a novel high-resolution inverse modelling system, "FLEXVAR", and its application for the inverse modelling of European CH4 emissions in 2018. The new system combines a high spatial resolution of 7 km x 7 km with a variational data assimilation technique, which allows CH4 emissions to be optimized from individual model grid cells. The high resolution allows the observations to be better reproduced, while the derived emissions show overall good consistency with two existing models.
Matthias Schneider, Benjamin Ertl, Qiansi Tu, Christopher J. Diekmann, Farahnaz Khosrawi, Amelie N. Röhling, Frank Hase, Darko Dubravica, Omaira E. García, Eliezer Sepúlveda, Tobias Borsdorff, Jochen Landgraf, Alba Lorente, André Butz, Huilin Chen, Rigel Kivi, Thomas Laemmel, Michel Ramonet, Cyril Crevoisier, Jérome Pernin, Martin Steinbacher, Frank Meinhardt, Kimberly Strong, Debra Wunch, Thorsten Warneke, Coleen Roehl, Paul O. Wennberg, Isamu Morino, Laura T. Iraci, Kei Shiomi, Nicholas M. Deutscher, David W. T. Griffith, Voltaire A. Velazco, and David F. Pollard
Atmos. Meas. Tech., 15, 4339–4371, https://doi.org/10.5194/amt-15-4339-2022, https://doi.org/10.5194/amt-15-4339-2022, 2022
Short summary
Short summary
We present a computationally very efficient method for the synergetic use of level 2 remote-sensing data products. We apply the method to IASI vertical profile and TROPOMI total column space-borne methane observations and thus gain sensitivity for the tropospheric methane partial columns, which is not achievable by the individual use of TROPOMI and IASI. These synergetic effects are evaluated theoretically and empirically by inter-comparisons to independent references of TCCON, AirCore, and GAW.
Sieglinde Callewaert, Jérôme Brioude, Bavo Langerock, Valentin Duflot, Dominique Fonteyn, Jean-François Müller, Jean-Marc Metzger, Christian Hermans, Nicolas Kumps, Michel Ramonet, Morgan Lopez, Emmanuel Mahieu, and Martine De Mazière
Atmos. Chem. Phys., 22, 7763–7792, https://doi.org/10.5194/acp-22-7763-2022, https://doi.org/10.5194/acp-22-7763-2022, 2022
Short summary
Short summary
A regional atmospheric transport model is used to analyze the factors contributing to CO2, CH4, and CO observations at Réunion Island. We show that the surface observations are dominated by local fluxes and dynamical processes, while the column data are influenced by larger-scale mechanisms such as biomass burning plumes. The model is able to capture the measured time series well; however, the results are highly dependent on accurate boundary conditions and high-resolution emission inventories.
Saheba Bhatnagar, Mahesh Kumar Sha, Laurence Gill, Bavo Langerock, and Bidisha Ghosh
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-88, https://doi.org/10.5194/bg-2022-88, 2022
Revised manuscript not accepted
Short summary
Short summary
Different land types emit a different quantity of methane, with wetlands being one of the largest sources of methane emissions, contributing to climate change. This study finds variations in land types using the methane total column data from Sentinel 5-precursor satellite with a machine learning algorithm. The variations in land types were identified with high confidence, demonstrating that the methane emissions from the wetland and other land types substantially affect the total column.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Oliver Schneising, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Robert J. Parker, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Markus Rettinger, Coleen Roehl, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, and Thorsten Warneke
Atmos. Meas. Tech., 15, 3401–3437, https://doi.org/10.5194/amt-15-3401-2022, https://doi.org/10.5194/amt-15-3401-2022, 2022
Short summary
Short summary
We present a new version (v3) of the GOSAT and GOSAT-2 FOCAL products.
In addition to an increased number of XCO2 data, v3 also includes products for XCH4 (full-physics and proxy), XH2O and the relative ratio of HDO to H2O (δD). For GOSAT-2, we also present first XCO and XN2O results. All FOCAL data products show reasonable spatial distribution and temporal variations and agree well with TCCON. Global XN2O maps show a gradient from the tropics to higher latitudes on the order of 15 ppb.
Carlos Alberti, Frank Hase, Matthias Frey, Darko Dubravica, Thomas Blumenstock, Angelika Dehn, Paolo Castracane, Gregor Surawicz, Roland Harig, Bianca C. Baier, Caroline Bès, Jianrong Bi, Hartmut Boesch, André Butz, Zhaonan Cai, Jia Chen, Sean M. Crowell, Nicholas M. Deutscher, Dragos Ene, Jonathan E. Franklin, Omaira García, David Griffith, Bruno Grouiez, Michel Grutter, Abdelhamid Hamdouni, Sander Houweling, Neil Humpage, Nicole Jacobs, Sujong Jeong, Lilian Joly, Nicholas B. Jones, Denis Jouglet, Rigel Kivi, Ralph Kleinschek, Morgan Lopez, Diogo J. Medeiros, Isamu Morino, Nasrin Mostafavipak, Astrid Müller, Hirofumi Ohyama, Paul I. Palmer, Mahesh Pathakoti, David F. Pollard, Uwe Raffalski, Michel Ramonet, Robbie Ramsay, Mahesh Kumar Sha, Kei Shiomi, William Simpson, Wolfgang Stremme, Youwen Sun, Hiroshi Tanimoto, Yao Té, Gizaw Mengistu Tsidu, Voltaire A. Velazco, Felix Vogel, Masataka Watanabe, Chong Wei, Debra Wunch, Marcia Yamasoe, Lu Zhang, and Johannes Orphal
Atmos. Meas. Tech., 15, 2433–2463, https://doi.org/10.5194/amt-15-2433-2022, https://doi.org/10.5194/amt-15-2433-2022, 2022
Short summary
Short summary
Space-borne greenhouse gas missions require ground-based validation networks capable of providing fiducial reference measurements. Here, considerable refinements of the calibration procedures for the COllaborative Carbon Column Observing Network (COCCON) are presented. Laboratory and solar side-by-side procedures for the characterization of the spectrometers have been refined and extended. Revised calibration factors for XCO2, XCO and XCH4 are provided, incorporating 47 new spectrometers.
Andrew O. Langford, Christoph J. Senff, Raul J. Alvarez II, Ken C. Aikin, Sunil Baidar, Timothy A. Bonin, W. Alan Brewer, Jerome Brioude, Steven S. Brown, Joel D. Burley, Dani J. Caputi, Stephen A. Conley, Patrick D. Cullis, Zachary C. J. Decker, Stéphanie Evan, Guillaume Kirgis, Meiyun Lin, Mariusz Pagowski, Jeff Peischl, Irina Petropavlovskikh, R. Bradley Pierce, Thomas B. Ryerson, Scott P. Sandberg, Chance W. Sterling, Ann M. Weickmann, and Li Zhang
Atmos. Chem. Phys., 22, 1707–1737, https://doi.org/10.5194/acp-22-1707-2022, https://doi.org/10.5194/acp-22-1707-2022, 2022
Short summary
Short summary
The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS) combined lidar, aircraft, and in situ measurements with global models to investigate the contributions of stratospheric intrusions, regional and Asian pollution, and wildfires to background ozone in the southwestern US during May and June 2017 and demonstrated that these processes contributed to background ozone levels that exceeded 70 % of the US National Ambient Air Quality Standard during the 6-week campaign.
Thomas E. Taylor, Christopher W. O'Dell, David Crisp, Akhiko Kuze, Hannakaisa Lindqvist, Paul O. Wennberg, Abhishek Chatterjee, Michael Gunson, Annmarie Eldering, Brendan Fisher, Matthäus Kiel, Robert R. Nelson, Aronne Merrelli, Greg Osterman, Frédéric Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Cheng Liu, Martine De Mazière, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Matthias Schneider, Coleen M. Roehl, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, and Debra Wunch
Earth Syst. Sci. Data, 14, 325–360, https://doi.org/10.5194/essd-14-325-2022, https://doi.org/10.5194/essd-14-325-2022, 2022
Short summary
Short summary
We provide an analysis of an 11-year record of atmospheric carbon dioxide (CO2) concentrations derived using an optimal estimation retrieval algorithm on measurements made by the GOSAT satellite. The new product (version 9) shows improvement over the previous version (v7.3) as evaluated against independent estimates of CO2 from ground-based sensors and atmospheric inversion systems. We also compare the new GOSAT CO2 values to collocated estimates from NASA's Orbiting Carbon Observatory-2.
Sharmine Akter Simu, Yuzo Miyazaki, Eri Tachibana, Henning Finkenzeller, Jérôme Brioude, Aurélie Colomb, Olivier Magand, Bert Verreyken, Stephanie Evan, Rainer Volkamer, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 21, 17017–17029, https://doi.org/10.5194/acp-21-17017-2021, https://doi.org/10.5194/acp-21-17017-2021, 2021
Short summary
Short summary
The tropical Indian Ocean (IO) is expected to be a significant source of water-soluble organic carbon (WSOC), which is relevant to cloud formation. Our study showed that marine secondary organic formation dominantly contributed to the aerosol WSOC mass at the high-altitude observatory in the southwest IO in the wet season in both marine boundary layer and free troposphere (FT). This suggests that the effect of marine secondary sources is important up to FT, a process missing in climate models.
Victor Lannuque, Bastien Sauvage, Brice Barret, Hannah Clark, Gilles Athier, Damien Boulanger, Jean-Pierre Cammas, Jean-Marc Cousin, Alain Fontaine, Eric Le Flochmoën, Philippe Nédélec, Hervé Petetin, Isabelle Pfaffenzeller, Susanne Rohs, Herman G. J. Smit, Pawel Wolff, and Valérie Thouret
Atmos. Chem. Phys., 21, 14535–14555, https://doi.org/10.5194/acp-21-14535-2021, https://doi.org/10.5194/acp-21-14535-2021, 2021
Short summary
Short summary
The African intertropical troposphere is one of the world areas where the increase in ozone mixing ratio has been most pronounced since 1980 and where high carbon monoxide mixing ratios are found in altitude. In this article, IAGOS aircraft measurements, IASI satellite instrument observations, and SOFT-IO model products are used to explore the seasonal distribution variations and the origin of ozone and carbon monoxide over the African upper troposphere.
Mahesh Kumar Sha, Bavo Langerock, Jean-François L. Blavier, Thomas Blumenstock, Tobias Borsdorff, Matthias Buschmann, Angelika Dehn, Martine De Mazière, Nicholas M. Deutscher, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Michel Grutter, James W. Hannigan, Frank Hase, Pauli Heikkinen, Christian Hermans, Laura T. Iraci, Pascal Jeseck, Nicholas Jones, Rigel Kivi, Nicolas Kumps, Jochen Landgraf, Alba Lorente, Emmanuel Mahieu, Maria V. Makarova, Johan Mellqvist, Jean-Marc Metzger, Isamu Morino, Tomoo Nagahama, Justus Notholt, Hirofumi Ohyama, Ivan Ortega, Mathias Palm, Christof Petri, David F. Pollard, Markus Rettinger, John Robinson, Sébastien Roche, Coleen M. Roehl, Amelie N. Röhling, Constantina Rousogenous, Matthias Schneider, Kei Shiomi, Dan Smale, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, Osamu Uchino, Voltaire A. Velazco, Corinne Vigouroux, Mihalis Vrekoussis, Pucai Wang, Thorsten Warneke, Tyler Wizenberg, Debra Wunch, Shoma Yamanouchi, Yang Yang, and Minqiang Zhou
Atmos. Meas. Tech., 14, 6249–6304, https://doi.org/10.5194/amt-14-6249-2021, https://doi.org/10.5194/amt-14-6249-2021, 2021
Short summary
Short summary
This paper presents, for the first time, Sentinel-5 Precursor methane and carbon monoxide validation results covering a period from November 2017 to September 2020. For this study, we used global TCCON and NDACC-IRWG network data covering a wide range of atmospheric and surface conditions across different terrains. We also show the influence of a priori alignment, smoothing uncertainties and the sensitivity of the validation results towards the application of advanced co-location criteria.
Alex Resovsky, Michel Ramonet, Leonard Rivier, Jerome Tarniewicz, Philippe Ciais, Martin Steinbacher, Ivan Mammarella, Meelis Mölder, Michal Heliasz, Dagmar Kubistin, Matthias Lindauer, Jennifer Müller-Williams, Sebastien Conil, and Richard Engelen
Atmos. Meas. Tech., 14, 6119–6135, https://doi.org/10.5194/amt-14-6119-2021, https://doi.org/10.5194/amt-14-6119-2021, 2021
Short summary
Short summary
We present a technical description of a statistical methodology for extracting synoptic- and seasonal-length anomalies from greenhouse gas time series. The definition of what represents an anomalous signal is somewhat subjective, which we touch on throughout the paper. We show, however, that the method performs reasonably well in extracting portions of time series influenced by significant North Atlantic Oscillation weather episodes and continent-wide terrestrial biospheric aberrations.
Pramod Kumar, Grégoire Broquet, Camille Yver-Kwok, Olivier Laurent, Susan Gichuki, Christopher Caldow, Ford Cropley, Thomas Lauvaux, Michel Ramonet, Guillaume Berthe, Frédéric Martin, Olivier Duclaux, Catherine Juery, Caroline Bouchet, and Philippe Ciais
Atmos. Meas. Tech., 14, 5987–6003, https://doi.org/10.5194/amt-14-5987-2021, https://doi.org/10.5194/amt-14-5987-2021, 2021
Short summary
Short summary
This study presents a simple atmospheric inversion modeling framework for the localization and quantification of unknown CH4 and CO2 emissions from point sources based on near-surface mobile concentration measurements and a Gaussian plume dispersion model. It is applied for the estimate of a series of brief controlled releases of CH4 and CO2 with a wide range of rates during the TOTAL TADI-2018 experiment. Results indicate a ~10 %–40 % average error on the estimate of the release rates.
Bert Verreyken, Crist Amelynck, Niels Schoon, Jean-François Müller, Jérôme Brioude, Nicolas Kumps, Christian Hermans, Jean-Marc Metzger, Aurélie Colomb, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 21, 12965–12988, https://doi.org/10.5194/acp-21-12965-2021, https://doi.org/10.5194/acp-21-12965-2021, 2021
Short summary
Short summary
We present a 2-year dataset of trace gas concentrations, specifically an array of volatile organic compounds (VOCs), recorded at the Maïdo observatory, a remote tropical high-altitude site located on a small island in the southwest Indian Ocean. We found that island-scale transport is an important driver for the daily cycle of VOC concentrations. During the day, surface emissions from the island affect the atmospheric composition at Maïdo greatly, while at night this impact is strongly reduced.
Matthias M. Frey, Frank Hase, Thomas Blumenstock, Darko Dubravica, Jochen Groß, Frank Göttsche, Martin Handjaba, Petrus Amadhila, Roland Mushi, Isamu Morino, Kei Shiomi, Mahesh Kumar Sha, Martine de Mazière, and David F. Pollard
Atmos. Meas. Tech., 14, 5887–5911, https://doi.org/10.5194/amt-14-5887-2021, https://doi.org/10.5194/amt-14-5887-2021, 2021
Short summary
Short summary
In this study, we present measurements of carbon dioxide, methane and carbon monoxide from a recently established site in Gobabeb, Namibia. Gobabeb is the first site observing these gases on the African mainland and improves the global coverage of measurement sites. Gobabeb is a hyperarid desert site, offering unique characteristics. Measurements started 2015 as part of the COllaborative Carbon Column Observing Network. We compare our results with other datasets and find a good agreement.
Jinghui Lian, François-Marie Bréon, Grégoire Broquet, Thomas Lauvaux, Bo Zheng, Michel Ramonet, Irène Xueref-Remy, Simone Kotthaus, Martial Haeffelin, and Philippe Ciais
Atmos. Chem. Phys., 21, 10707–10726, https://doi.org/10.5194/acp-21-10707-2021, https://doi.org/10.5194/acp-21-10707-2021, 2021
Short summary
Short summary
Currently there is growing interest in monitoring city-scale CO2 emissions based on atmospheric CO2 measurements, atmospheric transport modeling, and inversion technique. We analyze the various sources of uncertainty that impact the atmospheric CO2 modeling and that may compromise the potential of this method for the monitoring of CO2 emission over Paris. Results suggest selection criteria for the assimilation of CO2 measurements into the inversion system that aims at retrieving city emissions.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, James R. Podolske, David F. Pollard, Mahesh Kumar Sha, Kei Shiomi, Ralf Sussmann, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech., 14, 3837–3869, https://doi.org/10.5194/amt-14-3837-2021, https://doi.org/10.5194/amt-14-3837-2021, 2021
Short summary
Short summary
We present the first GOSAT and GOSAT-2 XCO2 data derived with the FOCAL retrieval algorithm. Comparisons of the GOSAT-FOCAL product with other data reveal long-term agreement within about 1 ppm over 1 decade, differences in seasonal variations of about 0.5 ppm, and a mean regional bias to ground-based TCCON data of 0.56 ppm with a mean scatter of 1.89 ppm. GOSAT-2-FOCAL data are preliminary only, but first comparisons show that they compare well with the GOSAT-FOCAL results and TCCON.
Clémence Rose, Matti P. Rissanen, Siddharth Iyer, Jonathan Duplissy, Chao Yan, John B. Nowak, Aurélie Colomb, Régis Dupuy, Xu-Cheng He, Janne Lampilahti, Yee Jun Tham, Daniela Wimmer, Jean-Marc Metzger, Pierre Tulet, Jérôme Brioude, Céline Planche, Markku Kulmala, and Karine Sellegri
Atmos. Chem. Phys., 21, 4541–4560, https://doi.org/10.5194/acp-21-4541-2021, https://doi.org/10.5194/acp-21-4541-2021, 2021
Short summary
Short summary
Sulfuric acid (H2SO4) is commonly accepted as a key precursor for atmospheric new particle formation. However, direct measurements of [H2SO4] remain challenging, motivating the development of proxies. Using data collected in two different volcanic plumes, we show, under these specific conditions, the good performance of a proxy from the literature and also highlight the benefit of the newly developed proxies for the prediction of the highest [H2SO4] values.
Alkuin Maximilian Koenig, Olivier Magand, Paolo Laj, Marcos Andrade, Isabel Moreno, Fernando Velarde, Grover Salvatierra, René Gutierrez, Luis Blacutt, Diego Aliaga, Thomas Reichler, Karine Sellegri, Olivier Laurent, Michel Ramonet, and Aurélien Dommergue
Atmos. Chem. Phys., 21, 3447–3472, https://doi.org/10.5194/acp-21-3447-2021, https://doi.org/10.5194/acp-21-3447-2021, 2021
Short summary
Short summary
The environmental cycling of atmospheric mercury, a harmful global contaminant, is still not sufficiently constrained, partly due to missing data in remote regions. Here, we address this issue by presenting 20 months of atmospheric mercury measurements, sampled in the Bolivian Andes. We observe a significant seasonal pattern, whose key features we explore. Moreover, we deduce ratios to constrain South American biomass burning mercury emissions and the mercury uptake by the Amazon rainforest.
Shamil Maksyutov, Tomohiro Oda, Makoto Saito, Rajesh Janardanan, Dmitry Belikov, Johannes W. Kaiser, Ruslan Zhuravlev, Alexander Ganshin, Vinu K. Valsala, Arlyn Andrews, Lukasz Chmura, Edward Dlugokencky, László Haszpra, Ray L. Langenfelds, Toshinobu Machida, Takakiyo Nakazawa, Michel Ramonet, Colm Sweeney, and Douglas Worthy
Atmos. Chem. Phys., 21, 1245–1266, https://doi.org/10.5194/acp-21-1245-2021, https://doi.org/10.5194/acp-21-1245-2021, 2021
Short summary
Short summary
In order to improve the top-down estimation of the anthropogenic greenhouse gas emissions, a high-resolution inverse modelling technique was developed for applications to global transport modelling of carbon dioxide and other greenhouse gases. A coupled Eulerian–Lagrangian transport model and its adjoint are combined with surface fluxes at 0.1° resolution to provide high-resolution forward simulation and inverse modelling of surface fluxes accounting for signals from emission hot spots.
Camille Yver-Kwok, Carole Philippon, Peter Bergamaschi, Tobias Biermann, Francescopiero Calzolari, Huilin Chen, Sebastien Conil, Paolo Cristofanelli, Marc Delmotte, Juha Hatakka, Michal Heliasz, Ove Hermansen, Kateřina Komínková, Dagmar Kubistin, Nicolas Kumps, Olivier Laurent, Tuomas Laurila, Irene Lehner, Janne Levula, Matthias Lindauer, Morgan Lopez, Ivan Mammarella, Giovanni Manca, Per Marklund, Jean-Marc Metzger, Meelis Mölder, Stephen M. Platt, Michel Ramonet, Leonard Rivier, Bert Scheeren, Mahesh Kumar Sha, Paul Smith, Martin Steinbacher, Gabriela Vítková, and Simon Wyss
Atmos. Meas. Tech., 14, 89–116, https://doi.org/10.5194/amt-14-89-2021, https://doi.org/10.5194/amt-14-89-2021, 2021
Short summary
Short summary
The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas (GHG) budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmospheric network through the 23 stations that were labeled between November 2017 and November 2019.
Robert J. Parker, Alex Webb, Hartmut Boesch, Peter Somkuti, Rocio Barrio Guillo, Antonio Di Noia, Nikoleta Kalaitzi, Jasdeep S. Anand, Peter Bergamaschi, Frederic Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Coleen Roehl, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Thorsten Warneke, Paul O. Wennberg, and Debra Wunch
Earth Syst. Sci. Data, 12, 3383–3412, https://doi.org/10.5194/essd-12-3383-2020, https://doi.org/10.5194/essd-12-3383-2020, 2020
Short summary
Short summary
This work presents the latest release of the University of Leicester GOSAT methane data and acts as the definitive description of this dataset. We detail the processing, validation and evaluation involved in producing these data and highlight its many applications. With now over a decade of global atmospheric methane observations, this dataset has helped, and will continue to help, us better understand the global methane budget and investigate how it may respond to a future changing climate.
Romie Tignat-Perrier, Aurélien Dommergue, Alban Thollot, Olivier Magand, Timothy M. Vogel, and Catherine Larose
Biogeosciences, 17, 6081–6095, https://doi.org/10.5194/bg-17-6081-2020, https://doi.org/10.5194/bg-17-6081-2020, 2020
Short summary
Short summary
The adverse atmospheric environmental conditions do not appear suited for microbial life. We conducted the first global comparative metagenomic analysis to find out if airborne microbial communities might be selected by their ability to resist these adverse conditions. The relatively higher concentration of fungi led to the observation of higher proportions of stress-related functions in air. Fungi might likely resist and survive atmospheric physical stress better than bacteria.
Bert Verreyken, Crist Amelynck, Jérôme Brioude, Jean-François Müller, Niels Schoon, Nicolas Kumps, Aurélie Colomb, Jean-Marc Metzger, Christopher F. Lee, Theodore K. Koenig, Rainer Volkamer, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 20, 14821–14845, https://doi.org/10.5194/acp-20-14821-2020, https://doi.org/10.5194/acp-20-14821-2020, 2020
Short summary
Short summary
Biomass burning (BB) plumes arriving at the Maïdo observatory located in the south-west Indian Ocean during August 2018 and August 2019 are studied using trace gas measurements, Lagrangian transport models and the CAMS near-real-time atmospheric composition service. We investigate (i) secondary production of volatile organic compounds during transport, (ii) efficacy of the CAMS model to reproduce the chemical makeup of BB plumes and (iii) the impact of BB on the remote marine boundary layer.
Damien Héron, Stephanie Evan, Joris Pianezze, Thibaut Dauhut, Jerome Brioude, Karen Rosenlof, Vincent Noel, Soline Bielli, Christelle Barthe, and Jean-Pierre Cammas
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-870, https://doi.org/10.5194/acp-2020-870, 2020
Publication in ACP not foreseen
Short summary
Short summary
Upward transport within tropical cyclones of water vapor from the low troposphere into the colder upper troposphere/lower stratosphere can result in the moistening of this region. Balloon observations and model simulations of tropical cyclone Enawo in the less-observed Southwest Indian Ocean (the third most tropical cyclone active region on Earth) are used to show how convective overshoots within Enawo penetrate the tropopause directly, injecting water/ice into the stratosphere.
Ingeborg Levin, Ute Karstens, Markus Eritt, Fabian Maier, Sabrina Arnold, Daniel Rzesanke, Samuel Hammer, Michel Ramonet, Gabriela Vítková, Sebastien Conil, Michal Heliasz, Dagmar Kubistin, and Matthias Lindauer
Atmos. Chem. Phys., 20, 11161–11180, https://doi.org/10.5194/acp-20-11161-2020, https://doi.org/10.5194/acp-20-11161-2020, 2020
Short summary
Short summary
Based on observations and Stochastic Time-Inverted Lagrangian Transport (STILT) footprint modelling, a sampling strategy has been developed for tall tower stations of the Integrated Carbon Observation System (ICOS) research infrastructure atmospheric station network. This strategy allows independent quality control of in situ measurements, provides representative coverage of the influence area of the sites, and is capable of automated targeted sampling of fossil fuel CO2 emission hotspots.
Mahesh Kumar Sha, Martine De Mazière, Justus Notholt, Thomas Blumenstock, Huilin Chen, Angelika Dehn, David W. T. Griffith, Frank Hase, Pauli Heikkinen, Christian Hermans, Alex Hoffmann, Marko Huebner, Nicholas Jones, Rigel Kivi, Bavo Langerock, Christof Petri, Francis Scolas, Qiansi Tu, and Damien Weidmann
Atmos. Meas. Tech., 13, 4791–4839, https://doi.org/10.5194/amt-13-4791-2020, https://doi.org/10.5194/amt-13-4791-2020, 2020
Short summary
Short summary
We present the results of the 2017 FRM4GHG campaign at the Sodankylä TCCON site aimed at characterising the assessment of several low-cost portable instruments for precise solar absorption measurements of column-averaged dry-air mole fractions of CO2, CH4, and CO. The test instruments provided stable and precise measurements of these gases with quantified small biases. This qualifies the instruments to complement TCCON and expand the global coverage of ground-based measurements of these gases.
Stephanie Evan, Jerome Brioude, Karen Rosenlof, Sean M. Davis, Holger Vömel, Damien Héron, Françoise Posny, Jean-Marc Metzger, Valentin Duflot, Guillaume Payen, Hélène Vérèmes, Philippe Keckhut, and Jean-Pierre Cammas
Atmos. Chem. Phys., 20, 10565–10586, https://doi.org/10.5194/acp-20-10565-2020, https://doi.org/10.5194/acp-20-10565-2020, 2020
Short summary
Short summary
The role of deep convection in the southwest Indian Ocean (the 3rd most active tropical cyclone basin) on the composition of the tropical tropopause layer (TTL) and the climate system is less understood due to scarce observations. Balloon-borne lidar and satellite measurements in the southwest Indian Ocean were used to study tropical cyclones' influence on TTL composition. This study compares the impact of a tropical storm and cyclone on the humidification of the TTL over the SW Indian Ocean.
Qiansi Tu, Frank Hase, Thomas Blumenstock, Rigel Kivi, Pauli Heikkinen, Mahesh Kumar Sha, Uwe Raffalski, Jochen Landgraf, Alba Lorente, Tobias Borsdorff, Huilin Chen, Florian Dietrich, and Jia Chen
Atmos. Meas. Tech., 13, 4751–4771, https://doi.org/10.5194/amt-13-4751-2020, https://doi.org/10.5194/amt-13-4751-2020, 2020
Short summary
Short summary
Two COCCON instruments are used to observe multiyear greenhouse gases in boreal areas and are compared with the CAMS analysis and S5P satellite data. These three datasets predict greenhouse gas gradients with reasonable agreement. The results indicate that the COCCON instrument has the capability of measuring gradients on regional scales, and observations performed with the portable spectrometers can contribute to inferring sources and sinks and to validating spaceborne greenhouse gases.
Cited articles
Agnan, Y., Le Dantec, T., Moore, C. W., Edwards, G. C., and Obrist, D.: New
Constraints on Terrestrial Surface–Atmosphere Fluxes of Gaseous Elemental
Mercury Using a Global Database, Environ. Sci. Technol., 50, 507–524,
https://doi.org/10.1021/acs.est.5b04013, 2016.
Aliaga, D., Sinclair, V. A., Andrade, M., Artaxo, P., Carbone, S.,
Kadantsev, E., Laj, P., Wiedensohler, A., Krejci, R., and Bianchi, F.:
Identifying source regions of air masses sampled at the tropical
high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis,
Atmos. Chem. Phys., 21, 16453–16477,
https://doi.org/10.5194/acp-21-16453-2021, 2021.
Almeida, M. D., Marins, R. V., Paraquetti, H. H. M., Bastos, W. R., and
Lacerda, L. D.: Mercury degassing from forested and open field soils in
Rondônia, Western Amazon, Brazil, Chemosphere, 77, 60–66,
https://doi.org/10.1016/j.chemosphere.2009.05.018, 2009.
Amelynck, C., Schoon, N., and Verreyken, B.: Long-term in situ (O)VOC measurements at the Maïdo Observatory (Reunion Island), Royal Belgian Institute for Space Aeronomy (BIRA-IASB) [data set], https://doi.org/10.18758/71021061, 2021
Angot, H., Barret, M., Magand, O., Ramonet, M., and Dommergue, A.: A 2-year
record of atmospheric mercury species at a background Southern Hemisphere
station on Amsterdam Island, Atmos. Chem. Phys., 14, 11461–11473,
https://doi.org/10.5194/acp-14-11461-2014, 2014.
Angot, H., Dion, I., Vogel, N., Legrand, M., Magand, O., and Dommergue, A.:
Multi-year record of atmospheric mercury at Dumont d'Urville, East
Antarcticcoast: continental outflow and oceanic influences, Atmos. Chem.
Phys., 16, 8265–8279, https://doi.org/10.5194/acp-16-8265-2016, 2016a.
Angot, H., Magand, O., Helmig, D., Ricaud, P., Quennehen, B., Gallée,
H., Del Guasta, M., Sprovieri, F., Pirrone, N., Savarino, J., and Dommergue,
A.: New insights into the atmospheric mercury cycling in central Antarctica
and implications on a continental scale, Atmos. Chem. Phys., 16, 8249–8264,
https://doi.org/10.5194/acp-16-8249-2016, 2016b.
Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U.,
Caldeira, K., Matsumoto, K., Munhoven, G., Montenegro, A., and Tokos, K.:
Atmospheric Lifetime of Fossil Fuel Carbon Dioxide, Annu. Rev. Earth Pl.
Sc., 37, 117–134, https://doi.org/10.1146/annurev.earth.031208.100206,
2009.
Ariya, P. A., Skov, H., Grage, M. M.-L., and Goodsite, M. E.: Gaseous
Elemental Mercury in the Ambient Atmosphere: Review of the Application of
Theoretical Calculations and Experimental Studies for Determination of
Reaction Coefficients and Mechanisms with Halogens and Other Reactants, in:
Advances in Quantum Chemistry, Vol. 55, Elsevier, 43–55,
https://doi.org/10.1016/S0065-3276(07)00204-3, 2008.
Ariya, P. A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G.,
Poulain, A., Ryjkov, A., Semeniuk, K., Subir, M., and Toyota, K.: Mercury
Physicochemical and Biogeochemical Transformation in the Atmosphere and at
Atmospheric Interfaces: A Review and Future Directions, Chem. Rev., 115,
3760–3802, https://doi.org/10.1021/cr500667e, 2015.
Baray, J.-L., Courcoux, Y., Keckhut, P., Portafaix, T., Tulet, P., Cammas,
J.-P., Hauchecorne, A., Godin Beekmann, S., De Mazière, M., Hermans, C.,
Desmet, F., Sellegri, K., Colomb, A., Ramonet, M., Sciare, J., Vuillemin,
C., Hoareau, C., Dionisi, D., Duflot, V., Vérèmes, H., Porteneuve,
J., Gabarrot, F., Gaudo, T., Metzger, J.-M., Payen, G., Leclair de Bellevue,
J., Barthe, C., Posny, F., Ricaud, P., Abchiche, A., and Delmas, R.:
Maïdo observatory: a new high-altitude station facility at Reunion
Island (21∘ S, 55∘ E) for long-term atmospheric remote
sensing and in situ measurements, Atmos. Meas. Tech., 6, 2865–2877,
https://doi.org/10.5194/amt-6-2865-2013, 2013.
Black Jr., C. C.: Photosynthetic carbon fixation in relation to
net CO2 uptake, Ann. Rev. Plant Physio., 24, 253–286, 1973.
Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P.,
Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I.,
Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model
FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889–1904,
https://doi.org/10.5194/gmd-6-1889-2013, 2013.
Callewaert, S., Brioude, J., Langerock, B., Duflot, V., Fonteyn, D.,
Müller, J.-F., Metzger, J.-M., Hermans, C., Kumps, N., Ramonet, M.,
Lopez, M., Mahieu, E., and De Mazière, M.: Analysis of CO2, CH4, and CO
surface and column concentrations observed at Réunion Island by
assessing WRF-Chem simulations, Atmos. Chem. Phys., 22, 7763–7792,
https://doi.org/10.5194/acp-22-7763-2022, 2022.
Calvert, J. and Lindberg, S.: Mechanisms of mercury removal by O and OH in
the atmosphere, Atmos. Environ., 39, 3355–3367,
https://doi.org/10.1016/j.atmosenv.2005.01.055, 2005.
Carbone, F., Landis, M. S., Gencarelli, C. N., Naccarato, A., Sprovieri, F.,
De Simone, F., Hedgecock, I. M., and Pirrone, N.: Sea surface temperature
variation linked to elemental mercury concentrations measured on Mauna Loa:
SST AND HG(0) CONCENTRATION ON MAUNA LOA, Geophys. Res. Lett., 43,
7751–7757, https://doi.org/10.1002/2016GL069252, 2016.
Chen, Q., Sherwen, T., Evans, M., and Alexander, B.: DMS oxidation and
sulfur aerosol formation in the marine troposphere: a focus on reactive
halogen and multiphase chemistry, Atmos. Chem. Phys., 18, 13617–13637,
https://doi.org/10.5194/acp-18-13617-2018, 2018.
Collaud Coen, M., Weingartner, E., Furger, M., Nyeki, S., Prévôt, A.
S. H., Steinbacher, M., and Baltensperger, U.: Aerosol climatology and
planetary boundary influence at the Jungfraujoch analyzed by synoptic
weather types, Atmos. Chem. Phys., 11, 5931–5944,
https://doi.org/10.5194/acp-11-5931-2011, 2011.
Converse, A. D., Riscassi, A. L., and Scanlon, T. M.: Seasonal variability
in gaseous mercury fluxes measured in a high-elevation meadow, Atmos.
Environ., 44, 2176–2185, https://doi.org/10.1016/j.atmosenv.2010.03.024,
2010.
D'Amore, F., Bencardino, M., Cinnirella, S., Sprovieri, F., and Pirrone, N.:
Data quality through a web-based QA/QC system: implementation for
atmospheric mercury data from the global mercury observation system,
Environ. Sci. Proc. Imp., 17, 1482–1491,
https://doi.org/10.1039/C5EM00205B, 2015.
De Mazière, M., Sha, M. K., Ramonet, M., and ICOS RI: ICOS Atmosphere
Level 2 data, La Réunion [data set],
https://doi.org/10.18160/10QG-6RP6, 2022.
Denzler, B., Bogdal, C., Henne, S., Obrist, D., Steinbacher, M., and
Hungerbühler, K.: Inversion Approach to Validate Mercury Emissions Based
on Background Air Monitoring at the High Altitude Research Station
Jungfraujoch (3580 m), Environ. Sci. Technol., 51, 2846–2853,
https://doi.org/10.1021/acs.est.6b05630, 2017.
Dibble, T. S., Tetu, H. L., Jiao, Y., Thackray, C. P., and Jacob, D. J.:
Modeling the OH-Initiated Oxidation of Mercury in the Global Atmosphere
without Violating Physical Laws, J. Phys. Chem. A, 124, 444–453,
https://doi.org/10.1021/acs.jpca.9b10121, 2020.
Diéguez, M. C., Bencardino, M., García, P. E., D'Amore, F.,
Castagna, J., De Simone, F., Soto Cárdenas, C., Ribeiro Guevara, S.,
Pirrone, N., and Sprovieri, F.: A multi-year record of atmospheric mercury
species at a background mountain station in Andean Patagonia (Argentina):
Temporal trends and meteorological influence, Atmos. Environ., 214,
116819, https://doi.org/10.1016/j.atmosenv.2019.116819, 2019.
Dœlsch, E., Van de Kerchove, V., and Saint Macary, H.: Heavy metal
content in soils of Réunion (Indian Ocean), Geoderma, 134, 119–134,
https://doi.org/10.1016/j.geoderma.2005.09.003, 2006.
Duflot, V., Tulet, P., Flores, O., Barthe, C., Colomb, A., Deguillaume, L.,
Vaïtilingom, M., Perring, A., Huffman, A., Hernandez, M. T., Sellegri,
K., Robinson, E., O'Connor, D. J., Gomez, O. M., Burnet, F., Bourrianne, T.,
Strasberg, D., Rocco, M., Bertram, A. K., Chazette, P., Totems, J., Fournel,
J., Stamenoff, P., Metzger, J.-M., Chabasset, M., Rousseau, C., Bourrianne,
E., Sancelme, M., Delort, A.-M., Wegener, R. E., Chou, C., and Elizondo, P.:
Preliminary results from the FARCE 2015 campaign: multidisciplinary study of
the forest–gas–aerosol–cloud system on the tropical island of La
Réunion, Atmos. Chem. Phys., 19, 10591–10618,
https://doi.org/10.5194/acp-19-10591-2019, 2019.
Dunham-Cheatham, S. M., Lyman, S., and Gustin, M. S.: Evaluation of sorption
surface materials for reactive mercury compounds, Atmos. Environ.,
242, 117836, https://doi.org/10.1016/j.atmosenv.2020.117836, 2020.
Edwards, D. P., Emmons, L. K., Gille, J. C., Chu, A., Attié, J.-L.,
Giglio, L., Wood, S. W., Haywood, J., Deeter, M. N., Massie, S. T., Ziskin,
D. C., and Drummond, J. R.: Satellite-observed pollution from Southern
Hemisphere biomass burning, J. Geophys. Res., 111, D14312,
https://doi.org/10.1029/2005JD006655, 2006.
Faïn, X., Obrist, D., Hallar, A. G., Mccubbin, I., and Rahn, T.: High
levels of reactive gaseous mercury observed at a high elevation research
laboratory in the Rocky Mountains, Atmos. Chem. Phys., 9, 8049–8060,
https://doi.org/10.5194/acp-9-8049-2009, 2009.
Feinberg, A., Dlamini, T., Jiskra, M., Shah, V., and Selin, N. E.:
Evaluating atmospheric mercury (Hg) uptake by vegetation in a
chemistry-transport model, Environ. Sci. Proc. Imp., 24, 1303–1318,
https://doi.org/10.1039/D2EM00032F, 2022.
Forrer, J., Rüttimann, R., Schneiter, D., Fischer, A., Buchmann, B., and
Hofer, P.: Variability of trace gases at the high-Alpine site Jungfraujoch
caused by meteorological transport processes, J. Geophys. Res., 105,
12241–12251, https://doi.org/10.1029/1999JD901178, 2000.
Foucart, B., Sellegri, K., Tulet, P., Rose, C., Metzger, J.-M., and Picard,
D.: High occurrence of new particle formation events at the Maïdo
high-altitude observatory (2150 m), Réunion (Indian Ocean), Atmos. Chem.
Phys., 18, 9243–9261, https://doi.org/10.5194/acp-18-9243-2018, 2018.
Fu, X., Feng, X., Zhang, H., Yu, B., and Chen, L.: Mercury emissions from
natural surfaces highly impacted by human activities in Guangzhou province,
South China, Atmos. Environ., 54, 185–193,
https://doi.org/10.1016/j.atmosenv.2012.02.008, 2012.
Fu, X., Marusczak, N., Heimbürger, L.-E., Sauvage, B., Gheusi, F.,
Prestbo, E. M., and Sonke, J. E.: Atmospheric mercury speciation dynamics at
the high-altitude Pic du Midi Observatory, southern France, Atmos. Chem.
Phys., 16, 5623–5639, https://doi.org/10.5194/acp-16-5623-2016, 2016a.
Fu, X., Zhu, W., Zhang, H., Sommar, J., Yu, B., Yang, X., Wang, X., Lin,
C.-J., and Feng, X.: Depletion of atmospheric gaseous elemental mercury by
plant uptake at Mt.Changbai, Northeast China, Atmos. Chem. Phys., 16,
12861–12873, https://doi.org/10.5194/acp-16-12861-2016, 2016b.
Fu, X., Marusczak, N., Wang, X., Gheusi, F., and Sonke, J. E.: Isotopic
Composition of Gaseous Elemental Mercury in the Free Troposphere of the Pic
du Midi Observatory, France, Environ. Sci. Technol., 50, 5641–5650,
https://doi.org/10.1021/acs.est.6b00033, 2016c.
Gillot, P.-Y. and Nativel, P.: Eruptive history of the Piton de la Fournaise
volcano, Reunion Island, Indian Ocean, J. Volcanol. Geoth.
Res., 36, 53–65, https://doi.org/10.1016/0377-0273(89)90005-X, 1989.
Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall,
R.: Isoprene and monoterpene emission rate variability: Model evaluations
and sensitivity analyses, J. Geophys. Res., 98, 12609,
https://doi.org/10.1029/93JD00527, 1993.
Guilpart, E., Vimeux, F., Evan, S., Brioude, J., Metzger, J.-M., Barthe, C.,
Risi, C., and Cattani, O.: The isotopic composition of near-surface water
vapor at the Maïdo observatory (Reunion Island, southwestern Indian
Ocean) documents the controls of the humidity of the subtropical
troposphere: Water Vapor Isotopes in Reunion Island, J. Geophys. Res.-Atmos., 122, 9628–9650, https://doi.org/10.1002/2017JD026791, 2017.
Gustin, M. S., Amos, H. M., Huang, J., Miller, M. B., and Heidecorn, K.:
Measuring and modeling mercury in the atmosphere: a critical review, Atmos.
Chem. Phys., 15, 5697–5713, https://doi.org/10.5194/acp-15-5697-2015, 2015.
Gustin, M. S., Dunham-Cheatham, S. M., and Zhang, L.: Comparison of 4
Methods for Measurement of Reactive, Gaseous Oxidized, and Particulate Bound
Mercury, Environ. Sci. Technol., 53, 14489–14495,
https://doi.org/10.1021/acs.est.9b04648, 2019.
Gustin, M. S., Dunham-Cheatham, S. M., Huang, J., Lindberg, S., and Lyman,
S. N.: Development of an Understanding of Reactive Mercury in Ambient Air: A
Review, Atmosphere, 12, 73, https://doi.org/10.3390/atmos12010073, 2021.
Hahn, C. J., Merrill, J. T., and Mendonca, B. G.: Meteorological influences
during MLOPEX, J. Geophys. Res., 97, 10291,
https://doi.org/10.1029/91JD02299, 1992.
Hazan, L., Tarniewicz, J., Ramonet, M., Laurent, O., and Abbaris, A.: Automatic processing of atmospheric CO2 and CH4 mole fractions at the ICOS Atmosphere Thematic Centre, Atmos. Meas. Tech., 9, 4719–4736, https://doi.org/10.5194/amt-9-4719-2016, 2016.
Heiskanen, J., Brümmer, C., Buchmann, N., Calfapietra, C., Chen, H.,
Gielen, B., Gkritzalis, T., Hammer, S., Hartman, S., Herbst, M., Janssens,
I. A., Jordan, A., Juurola, E., Karstens, U., Kasurinen, V., Kruijt, B.,
Lankreijer, H., Levin, I., Linderson, M.-L., Loustau, D., Merbold, L.,
Myhre, C. L., Papale, D., Pavelka, M., Pilegaard, K., Ramonet, M., Rebmann,
C., Rinne, J., Rivier, L., Saltikoff, E., Sanders, R., Steinbacher, M.,
Steinhoff, T., Watson, A., Vermeulen, A. T., Vesala, T., Vítková,
G., and Kutsch, W.: The Integrated Carbon Observation System in Europe,
Bulletin of the American Meteorological Society, 103, E855–E872,
https://doi.org/10.1175/BAMS-D-19-0364.1, 2022.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Horowitz, H. M., Jacob, D. J., Zhang, Y., Dibble, T. S., Slemr, F., Amos, H.
M., Schmidt, J. A., Corbitt, E. S., Marais, E. A., and Sunderland, E. M.: A
new mechanism for atmospheric mercury redox chemistry: implications for the
global mercury budget, Atmos. Chem. Phys., 17, 6353–6371,
https://doi.org/10.5194/acp-17-6353-2017, 2017.
Howard, D., Nelson, P. F., Edwards, G. C., Morrison, A. L., Fisher, J. A.,
Ward, J., Harnwell, J., van der Schoot, M., Atkinson, B., Chambers, S. D.,
Griffiths, A. D., Werczynski, S., and Williams, A. G.: Atmospheric mercury
in the Southern Hemisphere tropics: seasonal and diurnal variations and
influence of inter-hemispheric transport, Atmos. Chem. Phys., 17,
11623–11636, https://doi.org/10.5194/acp-17-11623-2017, 2017.
Inkscape Project: Inkscape, version 0.92.5 [software], https://inkscape.org (last access: 18 January 2023), 2022.
Janssen, H.: Monte-Carlo based uncertainty analysis: Sampling efficiency and
sampling convergence, Reliab. Eng. Syst. Safe., 109,
123–132, https://doi.org/10.1016/j.ress.2012.08.003, 2013.
Jarvis, A., Guevara, E., Reuter, H. I., and Nelson, A. D.: Hole-filled SRTM
for the globe: version 4: data grid, web publication/site, CGIAR
Consortium for Spatial Information [data set], https://research.utwente.nl/en/publications/hole-filled-srtm-for-the-globe-version-4-data-grid
(last access: 18 January 2023)
2008.
Jiskra, M., Sonke, J. E., Obrist, D., Bieser, J., Ebinghaus, R., Myhre, C.
L., Pfaffhuber, K. A., Wängberg, I., Kyllönen, K., Worthy, D.,
Martin, L. G., Labuschagne, C., Mkololo, T., Ramonet, M., Magand, O., and
Dommergue, A.: A vegetation control on seasonal variations in global
atmospheric mercury concentrations, Nat. Geosci., 11, 244–250,
https://doi.org/10.1038/s41561-018-0078-8, 2018.
Khalil, M. A. K. and Rasmussen, R. A.: Sources, sinks, and seasonal cycles
of atmospheric methane, J. Geophys. Res., 88, 5131–5144,
https://doi.org/10.1029/JC088iC09p05131, 1983.
Kleissl, J., Honrath, R. E., Dziobak, M. P., Tanner, D., Val Martín,
M., Owen, R. C., and Helmig, D.: Occurrence of upslope flows at the Pico
mountaintop observatory: A case study of orographic flows on a small,
volcanic island: upslope flow at the pico-nare station, J. Geophys. Res.,
112, D10S35, https://doi.org/10.1029/2006JD007565, 2007.
Kloster, S., Feichter, J., Maier-Reimer, E., Six, K. D., Stier, P., and
Wetzel, P.: DMS cycle in the marine ocean-atmosphere system – a global
model study, Biogeosciences, 3, 29–51,
https://doi.org/10.5194/bg-3-29-2006, 2006.
Koenig, A. M., Magand, O., Laj, P., Andrade, M., Moreno, I., Velarde, F.,
Salvatierra, G., Gutierrez, R., Blacutt, L., Aliaga, D., Reichler, T.,
Sellegri, K., Laurent, O., Ramonet, M., and Dommergue, A.: Seasonal patterns
of atmospheric mercury in tropical South America as inferred by a continuous
total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia,
Atmos. Chem. Phys., 21, 3447–3472,
https://doi.org/10.5194/acp-21-3447-2021, 2021.
Koenig, A. M., Sonke, J. E., Magand, O., Andrade, M., Moreno, I., Velarde,
F., Forno, R., Gutierrez, R., Blacutt, L., Laj, P., Ginot, P., Bieser, J.,
Zahn, A., Slemr, F., and Dommergue, A.: Evidence for Interhemispheric
Mercury Exchange in the Pacific Ocean Upper Troposphere, J. Geophys Res.-Atmos.,
127, e2021JD036283, https://doi.org/10.1029/2021JD036283, 2022.
Kurz, A. Y., Blum, J. D., Gratz, L. E., and Jaffe, D. A.: Contrasting
Controls on the Diel Isotopic Variation of Hg 0 at Two High Elevation
Sites in the Western United States, Environ. Sci. Technol., 54,
10502–10513, https://doi.org/10.1021/acs.est.0c01918, 2020.
Laurent, O.: ICOS Atmosphere Monitoring Station Assembly, ICOS
Atmosphere Thematic Centre (ATC), Report, ICOS Atmospheric Station Specifications v1.3, ICOS-ERIC, https://doi.org/10.18160/SDW6-BX90, 2017.
Lesouëf, D., Gheusi, F., Delmas, R., and Escobar, J.: Numerical simulations of local circulations and pollution transport over Reunion Island, Ann. Geophys., 29, 53–69, https://doi.org/10.5194/angeo-29-53-2011, 2011.
Lesouëf, D., Gheusi, F., Chazette, P., Delmas, R., and Sanak, J.: Low
Tropospheric Layers Over Reunion Island in Lidar-Derived Observations and a
High-Resolution Model, Bound.-Lay. Meteorol., 149, 425–453,
https://doi.org/10.1007/s10546-013-9851-9, 2013.
Lim, A. G., Jiskra, M., Sonke, J. E., Loiko, S. V., Kosykh, N., and
Pokrovsky, O. S.: A revised pan-Arctic permafrost soil Hg pool based on
Western Siberian peat Hg and carbon observations, Biogeosciences, 17,
3083–3097, https://doi.org/10.5194/bg-17-3083-2020, 2020.
Lin, C. J.: Atmospheric Chemistry of Mercury, in: Environmental Chemistry
and Toxicology of Mercury: Liu/Toxicology of Mercury, edited by: Liu, G.,
Cai, Y., and O'Driscoll, N., John Wiley & Sons, Inc., Hoboken, NJ, USA,
https://doi.org/10.1002/9781118146644, 2011.
Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X.,
Fitzgerald, W., Pirrone, N., Prestbo, E., and Seigneur, C.: A Synthesis of
Progress and Uncertainties in Attributing the Sources of Mercury in
Deposition, AMBIO, 36, 19–33,
https://doi.org/10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2, 2007.
Lindqvist, O. and Rodhe, H.: Atmospheric mercury-a review, Tellus B, 37,
136–159, https://doi.org/10.1111/j.1600-0889.1985.tb00062.x, 1985.
Luippold, A., Gustin, M. S., Dunham-Cheatham, S. M., Castro, M., Luke, W.,
Lyman, S., and Zhang, L.: Use of Multiple Lines of Evidence to Understand
Reactive Mercury Concentrations and Chemistry in Hawai'i, Nevada, Maryland,
and Utah, USA, Environ. Sci. Technol., 54, 7922–7931,
https://doi.org/10.1021/acs.est.0c02283, 2020.
Luo, Y., Duan, L., Driscoll, C. T., Xu, G., Shao, M., Taylor, M., Wang, S.,
and Hao, J.: Foliage/atmosphere exchange of mercury in a subtropical
coniferous forest in south China: Foliage Atmosphere Hg Exchange, J.
Geophys. Res.-Biogeo., 121, 2006–2016,
https://doi.org/10.1002/2016JG003388, 2016.
Lyman, S. N., Jaffe, D. A., and Gustin, M. S.: Release of mercury halides
from KCl denuders in the presence of ozone, Atmos. Chem. Phys., 10,
8197–8204, https://doi.org/10.5194/acp-10-8197-2010, 2010.
Magand, O. and Dommergue, A.: Continuous measurements of atmospheric mercury
at Maido Observatory (L2), Global Mercury Observation System [data set], https://doi.org/10.25326/352,
2022.
Marusczak, N., Sonke, J. E., Fu, X., and Jiskra, M.: Tropospheric GOM at the
Pic du Midi Observatory – Correcting Bias in Denuder Based Observations,
Environ. Sci. Technol., 51, 863–869,
https://doi.org/10.1021/acs.est.6b04999, 2017.
McClure, C. D., Jaffe, D. A., and Edgerton, E. S.: Evaluation of the KCl
Denuder Method for Gaseous Oxidized Mercury using HgBr 2 at an
In-Service AMNet Site, Environ. Sci. Technol., 48, 11437–11444,
https://doi.org/10.1021/es502545k, 2014.
Metropolis, N. and Ulam, S.: The Monte Carlo Method, J. Am.
Stat. Assoc., 44, 335–341,
https://doi.org/10.1080/01621459.1949.10483310, 1949.
Miller, M. B., Howard, D. A., Pierce, A. M., Cook, K. R., Keywood, M.,
Powell, J., Gustin, M. S., and Edwards, G. C.: Atmospheric reactive mercury
concentrations in coastal Australia and the Southern Ocean, Sci.
Total Environ., 751, 141681,
https://doi.org/10.1016/j.scitotenv.2020.141681, 2021.
Munthe, J., Sprovieri, F., Horvat, M., and Ebinghaus, R.: SOPs
and QA/QC protocols regarding measurements of TGM, GEM,
RGM, TPM and mercury in precipitation in cooperation with
WP3, WP4 and WP5, GMOS deliverable 6.1, CNR-IIA, IVL,
http://www.gmos.eu (last access: 18 January 2023),
2011.
Nair, U. S., Wu, Y., Holmes, C. D., Ter Schure, A., Kallos, G., and Walters,
J. T.: Cloud-resolving simulations of mercury scavenging and deposition in
thunderstorms, Atmos. Chem. Phys., 13, 10143–10157,
https://doi.org/10.5194/acp-13-10143-2013, 2013.
Nguyen, L. S. P., Sheu, G.-R., Lin, D.-W., and Lin, N.-H.: Temporal changes
in atmospheric mercury concentrations at a background mountain site downwind
of the East Asia continent in 2006–2016, Sci. Total Environ.,
686, 1049–1056, https://doi.org/10.1016/j.scitotenv.2019.05.425, 2019.
Nguyen, L. S. P., Sheu, G.-R., Chang, S.-C., and Lin, N.-H.: Effects of
temperature and relative humidity on the partitioning of atmospheric
oxidized mercury at a high-altitude mountain background site in Taiwan,
Atmos. Environ., 261, 118572,
https://doi.org/10.1016/j.atmosenv.2021.118572, 2021.
Nguyen, L. S. P., Nguyen, K. T., Griffith, S. M., Sheu, G.-R., Yen, M.-C.,
Chang, S.-C., and Lin, N.-H.: Multiscale Temporal Variations of Atmospheric
Mercury Distinguished by the Hilbert–Huang Transform Analysis Reveals
Multiple El Niño–Southern Oscillation Links, Environ. Sci. Technol.,
56, 1423–1432, https://doi.org/10.1021/acs.est.1c03819, 2022.
Obrist, D., Hallar, A. G., McCubbin, I., Stephens, B. B., and Rahn, T.:
Atmospheric mercury concentrations at Storm Peak Laboratory in the Rocky
Mountains: Evidence for long-range transport from Asia, boundary layer
contributions, and plant mercury uptake, Atmos. Environ., 42,
7579–7589, https://doi.org/10.1016/j.atmosenv.2008.06.051, 2008.
Osterwalder, S., Bishop, K., Alewell, C., Fritsche, J., Laudon, H.,
Åkerblom, S., and Nilsson, M. B.: Mercury evasion from a boreal peatland
shortens the timeline for recovery from legacy pollution, Sci. Rep., 7, 16022,
https://doi.org/10.1038/s41598-017-16141-7, 2017.
Pacifico, F., Harrison, S. P., Jones, C. D., and Sitch, S.: Isoprene
emissions and climate, Atmos. Environ., 43, 6121–6135,
https://doi.org/10.1016/j.atmosenv.2009.09.002, 2009.
Panagos, P., Jiskra, M., Borrelli, P., Liakos, L., and Ballabio, C.: Mercury
in European topsoils: Anthropogenic sources, stocks and fluxes,
Environ. Res., 201, 111556,
https://doi.org/10.1016/j.envres.2021.111556, 2021.
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M.,
Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C.
D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D.,
Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and
Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4,
Geosci. Model Dev., 12, 4955–4997,
https://doi.org/10.5194/gmd-12-4955-2019, 2019.
Pohl, B., Morel, B., Barthe, C., and Bousquet, O.: Regionalizing Rainfall at
Very High Resolution over La Réunion Island: A Case Study for Tropical
Cyclone Ando, Mon. Weather Rev., 144, 4081–4099,
https://doi.org/10.1175/MWR-D-15-0404.1, 2016.
QGIS Development Team: QGIS Geographic Information System, QGIS Association [software],
https://www.qgis.org (last access: 18 January 2023), 2022.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing [software], Vienna, Austria,
https://www.R-project.org/ (last access: 18 January 2023), 2019.
Reidmiller, D. R., Jaffe, D. A., Fischer, E. V., and Finley, B.: Nitrogen
oxides in the boundary layer and free troposphere at the Mt. Bachelor
Observatory, Atmos. Chem. Phys., 10, 6043–6062,
https://doi.org/10.5194/acp-10-6043-2010, 2010.
Rocco, M., Colomb, A., Baray, J.-L., Amelynck, C., Verreyken, B., Borbon,
A., Pichon, J.-M., Bouvier, L., Schoon, N., Gros, V., Sarda-Esteve, R.,
Tulet, P., Metzger, J.-M., Duflot, V., Guadagno, C., Peris, G., and Brioude,
J.: Analysis of Volatile Organic Compounds during the OCTAVE Campaign:
Sources and Distributions of Formaldehyde on Reunion Island, Atmosphere, 11,
140, https://doi.org/10.3390/atmos11020140, 2020.
Roelfsema, M. R. G. and Hedrich, R.: In the light of stomatal opening: new
insights into “the Watergate”, New Phytol., 167, 665–691,
https://doi.org/10.1111/j.1469-8137.2005.01460.x, 2005.
Rohatgi, A.: WebPlotDigitize, Version 4.5 [software],
https://automeris.io/WebPlotDigitizer (last access: 18 January 2023), 2021.
Rose, C., Foucart, B., Picard, D., Colomb, A., Metzger, J.-M., Tulet, P.,
and Sellegri, K.: New particle formation in the volcanic eruption plume of
the Piton de la Fournaise: specific features from a long-term dataset,
Atmos. Chem. Phys., 19, 13243–13265,
https://doi.org/10.5194/acp-19-13243-2019, 2019.
Schroeder, W. H. and Munthe, J.: Atmospheric mercury – An overview,
Atmos. Environ., 32, 809–822,
https://doi.org/10.1016/S1352-2310(97)00293-8, 1998.
Schroeder, W. H., Anlauf, K. G., Barrie, L. A., Lu, J. Y., Steffen, A.,
Schneeberger, D. R., and Berg, T.: Arctic springtime depletion of mercury,
Nature, 394, 331–332, https://doi.org/10.1038/28530, 1998.
Seibert, P. and Frank, A.: Source-receptor matrix calculation with a
Lagrangian particle dispersion model in backward mode, Atmos. Chem. Phys.,
4, 51–63, https://doi.org/10.5194/acp-4-51-2004, 2004.
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier,
F., Lac, C., and Masson, V.: The AROME-France Convective-Scale Operational
Model, Mon. Weather Rev., 139, 976–991,
https://doi.org/10.1175/2010MWR3425.1, 2011.
Selin, N. E., Jacob, D. J., Park, R. J., Yantosca, R. M., Strode, S.,
Jaeglé, L., and Jaffe, D.: Chemical cycling and deposition of
atmospheric mercury: Global constraints from observations, J. Geophys. Res.,
112, D02308, https://doi.org/10.1029/2006JD007450, 2007.
Shah, V., Jacob, D. J., Thackray, C. P., Wang, X., Sunderland, E. M.,
Dibble, T. S., Saiz-Lopez, A., Černušák, I., Kellö, V.,
Castro, P. J., Wu, R., and Wang, C.: Improved Mechanistic Model of the
Atmospheric Redox Chemistry of Mercury, Environ. Sci. Technol.,
55, 14445–14456, https://doi.org/10.1021/acs.est.1c03160, 2021.
Sheu, G.-R., Lin, N.-H., Wang, J.-L., Lee, C.-T., Ou Yang, C.-F., and Wang,
S.-H.: Temporal distribution and potential sources of atmospheric mercury
measured at a high-elevation background station in Taiwan, Atmos.
Environ., 44, 2393–2400, https://doi.org/10.1016/j.atmosenv.2010.04.009,
2010.
Slemr, F., Angot, H., Dommergue, A., Magand, O., Barret, M., Weigelt, A.,
Ebinghaus, R., Brunke, E.-G., Pfaffhuber, K. A., Edwards, G., Howard, D.,
Powell, J., Keywood, M., and Wang, F.: Comparison of mercury concentrations
measured at several sites in the Southern Hemisphere, Atmos. Chem. Phys.,
15, 3125–3133, https://doi.org/10.5194/acp-15-3125-2015, 2015.
Slemr, F., Martin, L., Labuschagne, C., Mkololo, T., Angot, H., Magand, O.,
Dommergue, A., Garat, P., Ramonet, M., and Bieser, J.: Atmospheric mercury
in the Southern Hemisphere – Part 1: Trend and inter-annual variations in
atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on
Amsterdam Island in 2012–2017, Atmos. Chem. Phys., 20, 7683–7692,
https://doi.org/10.5194/acp-20-7683-2020, 2020.
Song, S., Angot, H., Selin, N. E., Gallée, H., Sprovieri, F., Pirrone,
N., Helmig, D., Savarino, J., Magand, O., and Dommergue, A.: Understanding
mercury oxidation and air–snow exchange on the East Antarctic Plateau: a
modeling study, Atmos. Chem. Phys., 18, 15825–15840,
https://doi.org/10.5194/acp-18-15825-2018, 2018.
Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F.,
Carbone, F., Cinnirella, S., Mannarino, V., Landis, M., Ebinghaus, R.,
Weigelt, A., Brunke, E.-G., Labuschagne, C., Martin, L., Munthe, J.,
Wängberg, I., Artaxo, P., Morais, F., Barbosa, H. de M. J., Brito, J.,
Cairns, W., Barbante, C., Diéguez, M. del C., Garcia, P. E., Dommergue,
A., Angot, H., Magand, O., Skov, H., Horvat, M., Kotnik, J., Read, K. A.,
Neves, L. M., Gawlik, B. M., Sena, F., Mashyanov, N., Obolkin, V., Wip, D.,
Feng, X. B., Zhang, H., Fu, X., Ramachandran, R., Cossa, D., Knoery, J.,
Marusczak, N., Nerentorp, M., and Norstrom, C.: Atmospheric mercury
concentrations observed at ground-based monitoring sites globally
distributed in the framework of the GMOS network, Atmos. Chem. Phys., 16,
11915–11935, https://doi.org/10.5194/acp-16-11915-2016, 2016.
Stefels, J., Steinke, M., Turner, S., Malin, G., and Belviso, S.:
Environmental constraints on the production and removal of the climatically
active gas dimethylsulphide (DMS) and implications for ecosystem modelling,
Biogeochemistry, 83, 245–275, https://doi.org/10.1007/s10533-007-9091-5,
2007.
Stieltjes, L. and Moutou, P.: A statistical and probabilistic study of the
historic activity of Piton de la Fournaise, Reunion Island, Indian Ocean,
J. Volcanol. Geoth. Res., 36, 67–86,
https://doi.org/10.1016/0377-0273(89)90006-1, 1989.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical
note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos.
Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Sun, S., Ma, M., He, X., Obrist, D., Zhang, Q., Yin, X., Sun, T., Huang, J.,
Guo, J., Kang, S., and Qin, D.: Vegetation Mediated Mercury Flux and
Atmospheric Mercury in the Alpine Permafrost Region of the Central Tibetan
Plateau, Environ. Sci. Technol., 54, 6043–6052,
https://doi.org/10.1021/acs.est.9b06636, 2020.
Swartzendruber, P. C., Jaffe, D. A., Prestbo, E. M., Weiss-Penzias, P.,
Selin, N. E., Park, R., Jacob, D. J., Strode, S., and Jaeglé, L.:
Observations of reactive gaseous mercury in the free troposphere at the
Mount Bachelor Observatory, J. Geophys. Res., 111, D24301,
https://doi.org/10.1029/2006JD007415, 2006.
Swinehart, D. F.: The Beer-Lambert Law, J. Chem. Educ., 39, 333,
https://doi.org/10.1021/ed039p333, 1962.
Travnikov, O.: Atmospheric Transport of Mercury, in: Environmental Chemistry
and Toxicology of Mercury: Liu/Toxicology of Mercury, edited by: Liu, G.,
Cai, Y., and O'Driscoll, N., John Wiley & Sons, Inc., Hoboken, NJ, USA,
https://doi.org/10.1002/9781118146644, 2011.
Tulet, P., Di Muro, A., Colomb, A., Denjean, C., Duflot, V., Arellano, S.,
Foucart, B., Brioude, J., Sellegri, K., Peltier, A., Aiuppa, A., Barthe, C.,
Bhugwant, C., Bielli, S., Boissier, P., Boudoire, G., Bourrianne, T.,
Brunet, C., Burnet, F., Cammas, J.-P., Gabarrot, F., Galle, B., Giudice, G.,
Guadagno, C., Jeamblu, F., Kowalski, P., Leclair de Bellevue, J.,
Marquestaut, N., Mékies, D., Metzger, J.-M., Pianezze, J., Portafaix,
T., Sciare, J., Tournigand, A., and Villeneuve, N.: First results of the
Piton de la Fournaise STRAP 2015 experiment: multidisciplinary tracking of a
volcanic gas and aerosol plume, Atmos. Chem. Phys., 17, 5355–5378,
https://doi.org/10.5194/acp-17-5355-2017, 2017.
Tulet, P., Aunay, B., Barruol, G., Barthe, C., Belon, R., Bielli, S.,
Bonnardot, F., Bousquet, O., Cammas, J.-P., Cattiaux, J., Chauvin, F.,
Fontaine, I., Fontaine, F. R., Gabarrot, F., Garabedian, S., Gonzalez, A.,
Join, J.-L., Jouvenot, F., Nortes-Martinez, D., Mékiès, D., Mouquet,
P., Payen, G., Pennober, G., Pianezze, J., Rault, C., Revillion, C.,
Rindraharisaona, E. J., Samyn, K., Thompson, C., and Vérèmes, H.:
ReNovRisk: a multidisciplinary programme to study the cyclonic risks in the
South-West Indian Ocean, Nat. Hazards, 107, 1191–1223,
https://doi.org/10.1007/s11069-021-04624-w, 2021.
Verreyken, B., Brioude, J., and Evan, S.: Development of turbulent scheme in
the FLEXPART-AROME v1.2.1 Lagrangian particle dispersion model, Geosci.
Model Dev., 12, 4245–4259, https://doi.org/10.5194/gmd-12-4245-2019, 2019.
Verreyken, B., Amelynck, C., Brioude, J., Müller, J.-F., Schoon, N.,
Kumps, N., Colomb, A., Metzger, J.-M., Lee, C. F., Koenig, T. K., Volkamer,
R., and Stavrakou, T.: Characterisation of African biomass burning plumes
and impacts on the atmospheric composition over the south-west Indian Ocean,
Atmos. Chem. Phys., 20, 14821–14845,
https://doi.org/10.5194/acp-20-14821-2020, 2020.
Verreyken, B., Amelynck, C., Schoon, N., Müller, J.-F., Brioude, J.,
Kumps, N., Hermans, C., Metzger, J.-M., Colomb, A., and Stavrakou, T.:
Measurement report: Source apportionment of volatile organic compounds at
the remote high-altitude Maïdo observatory, Atmos. Chem. Phys., 21,
12965–12988, https://doi.org/10.5194/acp-21-12965-2021, 2021.
Villeneuve, N. and Bachèlery, P.: Revue de la typologie des
éruptions au Piton de La Fournaise, processus et risques volcaniques
associés, cybergeo, Europ. J. Geogr., https://doi.org/10.4000/cybergeo.2536, 2006.
Wang, Y., Anderegg, W. R. L., Venturas, M. D., Trugman, A. T., Yu, K., and
Frankenberg, C.: Optimization theory explains nighttime stomatal responses,
New Phytol., 230, 1550–1561, https://doi.org/10.1111/nph.17267, 2021.
Weisspenzias, P., Jaffe, D., Swartzendruber, P., Hafner, W., Chand, D., and
Prestbo, E.: Quantifying Asian and biomass burning sources of mercury using
the Hg CO ratio in pollution plumes observed at the Mount Bachelor
observatory, Atmos. Environ., 41, 4366–4379,
https://doi.org/10.1016/j.atmosenv.2007.01.058, 2007.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, 2nd Edn.,
Springer International Publishing, Imprint, Springer, Cham,
https://doi.org/10.1007/978-3-319-24277-4, 2016.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François,
R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.,
Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D.,
Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H.:
Welcome to the Tidyverse, J. Open Source Softw., 4, 1686,
https://doi.org/10.21105/joss.01686, 2019.
Yu, Q., Luo, Y., Wang, S., Wang, Z., Hao, J., and Duan, L.: Gaseous
elemental mercury (GEM) fluxes over canopy of two typical subtropical
forests in south China, Atmos. Chem. Phys., 18, 495–509,
https://doi.org/10.5194/acp-18-495-2018, 2018.
Yu, Q., Luo, Y., Xu, G., Wu, Q., Wang, S., Hao, J., and Duan, L.:
Subtropical Forests Act as Mercury Sinks but as Net Sources of Gaseous
Elemental Mercury in South China, Environ. Sci. Technol., 54, 2772–2779,
https://doi.org/10.1021/acs.est.9b06715, 2020.
Yuan, W., Sommar, J., Lin, C.-J., Wang, X., Li, K., Liu, Y., Zhang, H., Lu,
Z., Wu, C., and Feng, X.: Stable Isotope Evidence Shows Re-emission of
Elemental Mercury Vapor Occurring after Reductive Loss from Foliage,
Environ. Sci. Technol., 53, 651–660,
https://doi.org/10.1021/acs.est.8b04865, 2019.
Yver-Kwok, C., Philippon, C., Bergamaschi, P., Biermann, T., Calzolari, F.,
Chen, H., Conil, S., Cristofanelli, P., Delmotte, M., Hatakka, J., Heliasz,
M., Hermansen, O., Komínková, K., Kubistin, D., Kumps, N., Laurent,
O., Laurila, T., Lehner, I., Levula, J., Lindauer, M., Lopez, M.,
Mammarella, I., Manca, G., Marklund, P., Metzger, J.-M., Mölder, M.,
Platt, S. M., Ramonet, M., Rivier, L., Scheeren, B., Sha, M. K., Smith, P.,
Steinbacher, M., Vítková, G., and Wyss, S.: Evaluation and
optimization of ICOS atmosphere station data as part of the labeling
process, Atmos. Meas. Tech., 14, 89–116,
https://doi.org/10.5194/amt-14-89-2021, 2021.
Zhang, P. and Zhang, Y.: Earth system modeling of mercury using CESM2 – Part 1: Atmospheric model CAM6-Chem/Hg v1.0, Geosci. Model Dev., 15, 3587–3601, https://doi.org/10.5194/gmd-15-3587-2022, 2022.
Zhou, J. and Obrist, D.: Global Mercury Assimilation by Vegetation, Environ.
Sci. Technol., 55, 14245–14257, https://doi.org/10.1021/acs.est.1c03530,
2021.
Zhou, M., Langerock, B., Vigouroux, C., Sha, M. K., Ramonet, M., Delmotte,
M., Mahieu, E., Bader, W., Hermans, C., Kumps, N., Metzger, J.-M., Duflot,
V., Wang, Z., Palm, M., and De Mazière, M.: Atmospheric CO and CH4 time
series and seasonal variations on Reunion Island from ground-based in situ
and FTIR (NDACC and TCCON) measurements, Atmos. Chem. Phys., 18,
13881–13901, https://doi.org/10.5194/acp-18-13881-2018, 2018.
Short summary
The global distribution of mercury, a potent neurotoxin, depends on atmospheric transport, chemistry, and interactions between the Earth’s surface and the air. Our understanding of these processes is still hampered by insufficient observations. Here, we present new data from a mountain observatory in the Southern Hemisphere. We give insights into mercury concentrations in air masses coming from aloft, and we show that tropical mountain vegetation may be a daytime source of mercury to the air.
The global distribution of mercury, a potent neurotoxin, depends on atmospheric transport,...
Altmetrics
Final-revised paper
Preprint