



# Supplement of

## Mercury in the free troposphere and bidirectional atmosphere–vegetation exchanges – insights from Maïdo mountain observatory in the Southern Hemisphere tropics

Alkuin M. Koenig et al.

Correspondence to: Alkuin M. Koenig (alkuin-maximilian.koenig@univ-grenoble-alpes.fr)

The copyright of individual parts of the supplement might differ from the article licence.

#### Sect. S1 : Mesoscale and synoptic scale transport to Maïdo

- 10 We characterized mesoscale transport to Maïdo during our measurement period with FLEXPART-AROME. Note that no FLEXPART-AROME output (from Verreyken et al., 2021) is available before November 2017. Mesoscale transport to Maïdo was dominated by easterlies in all seasons (Figure S1), reflecting that Réunion is generally under a trade wind regime (Foucart et al., 2018). However, there were certain second-order seasonal differences: During November 2017, air mass origin was comparatively more mixed, with important westerly and north-
- 15
- buring November 2017, air mass origin was comparatively more mixed, with important westerly and northwesterly contributions. In DJFM (Dec. 2017 – Mar. 2018), there were next to no southerly, but some northerly contributions, while the opposite was the case for AMJ (Apr. 2017 – Jun. 2018), with next to no northerly but important southerly contributions.



Figure S1. Mesoscale transport to Maïdo as estimated with FLEXPART-AROME for the period of overlap between Hg observations and FLEXPART-AROME output. The green outline shows Réunion Island, the green point Maïdo observatory. Concentric circles give the distance to Maïdo observatory in km (see numbers). The colour scale is normalized so that "1" corresponds to the most influential cell within the respective ring (the normalization was done for each ring individually). Mesoscale transport to Maïdo is mostly dominated by easterlies, corresponding to trade winds.

25

We characterized synoptic scale transport with the help of HYSPLIT ("Hybrid Single-Particle Lagrangian Integrated Trajectory"; Stein et al., 2015) back trajectories and using GDAS1 ("Global Data Assimilation System" with 1° x 1° resolution) as meteorological input. Between 2017.08.01 and 2018.08.01, back trajectories

30

were launched hourly from coordinates of Maïdo (21.0792°S, 55.38°E) and a starting altitude of 2200 masl (~40 m above Maïdo). Trajectories were followed 10 days back in time.

The computed 10-day trajectories reveal that even though transport to Maïdo was dominated by easterlies in the mesoscale (Figure S1), most of these air masses appear to originate west of Maïdo in the synoptic scale, i.e. they took a turn before arrival at Maïdo. Only a few back-trajectories originated as far east as the Australian West

35

40

(a)

Coast, while some trajectories extend far westwards, even to South America and beyond (Figure S2a). Easterlies were mostly of low elevation and often boundary-layer influenced, while westerlies were of significantly higher elevation (Figure S2b). In the synoptic scale, the air mass origin for Maïdo was predominantly extratropical, especially for westerly air masses. Synoptic scale transport pathways appear similar for all seasons, with some exceptions for the wet season (Dec. 2017 – Mar. 2018), during which long-range westerlies were less influential and some air masses originated significantly north of Maïdo, reaching even into the Northern Hemisphere.



(b)

Figure S2. Seasonality of synoptic scale transport to Maïdo (white dot), as characterized by 10-day HYSPLIT back trajectories.

a) Estimated influence of source regions. The colour scale is normalized so that "1" corresponds to the most

45

influential cell, i.e. the cell with the maximum number of trajectory endpoints falling within. Cells influenced by less than 5 individual back trajectories are not shown.

b) Median elevation of air masses upon passage over source regions.

#### 50 Sect. S2 : Diurnal variation of GEM and specific humidity during cyclonic storms

Maïdo was affected by several cyclonic storms during our measurement period, the most noteworthy being: Ava (~13 days, 27.12.2017 – 09.01.2018), Berguitta (~11 days, 09.01.2018 – 20.01.2018), Dumazile (~6 days, 01.03.2018 - 06.03.2018), Eliakim (~7 days, 13.03.2018 – 20.03.2018) and Fakir (~5 days, 20.04.2018 – 25.04.2018) (http://www.meteo.fr/temps/domtom/La\_Reunion/webcmrs9.0/anglais/index.html, last access:

55 10/08/2022).

60

To investigate the impact of cyclonic storms on GEM dynamics at Maïdo, we compared, for three storms for which continuous GEM data were available (Ava, Dumazile, Eliakim), the diurnal variation of GEM and specific humidity during the storm with the respective diurnal variation 5 days before and after the storm (Figure S3). We found that diurnal variation of GEM and specific humidity were largely suppressed during each of these three cyclonic storms. In all cases, both GEM and specific humidity remained particularly high during the nighttime. This suggests that, during cyclonic storms, nighttime data is not representative of the lower free troposphere (LFT), and that GEM in the LFT is lower than in the marine boundary layer.



65

Figure S3. Median diurnal cycles of (a) GEM and (b) specific humidity during the cyclonic storms Ava, Dumazile, and Eliakim. The median diurnal cycle 5 days before and after each storm is shown in black. The shaded area encloses the 25<sup>th</sup> to 75<sup>th</sup> percentiles. Diurnal cycles of GEM and specific humidity were notably suppressed during cyclonic storms.

### Sect. S3 : ERA5 specific humidity threshold

We assigned to the lower free troposphere (LFT) nighttime air masses with a specific humidity lower than a seasonally variable threshold (see main text). To define this threshold, we used the monthly median of the nighttime (00:00 UTC, 04:00 local time) specific humidity from the ERA5 reanalysis (hourly data on pressure levels, between 2017.01.01 and 2018.12.31), at coordinates of Maïdo observatory (21.0792°S, 55.38°E) and 800 hPa. The resulting seasonality of the specific humidity threshold is shown in Figure S4.



75 Figure S4. ERA5-based specific humidity threshold and its seasonality.

### Sect. S4 : Data table for gaseous elemental mercury (GEM) at Maïdo

80

Monthly averaged GEM at Maïdo for different data selections is given in Table S1 below. Nighttime data corresponds to all data taken between 23:00 and 5:59 local time. LFT selection corresponds to nighttime data in dry air masses (specific humidity < ERA5 median monthly specific humidity at Maïdo coordinates and 800 hPa; see Sect. S3).

Table S1. GEM at Maïdo for different data selections (all data, nighttime, LFT). Monthly averages correspond to all data taken between the first and last day of the respective month.

| month   | data selection | mean<br>[ng m <sup>-3</sup> STP] | standard deviation<br>[ng m <sup>-3</sup> STP] | # hourly<br>averages | standard error<br>[ng m <sup>-3</sup> STP] |
|---------|----------------|----------------------------------|------------------------------------------------|----------------------|--------------------------------------------|
| 2017-09 | all data       | 0.859                            | 0.12                                           | 633                  | 0.005                                      |
| 2017-10 | all data       | 0.922                            | 0.12                                           | 665                  | 0.004                                      |
| 2017-11 | all data       | 0.933                            | 0.11                                           | 694                  | 0.004                                      |
| 2017-12 | all data       | 0.786                            | 0.1                                            | 738                  | 0.004                                      |
| 2018-01 | all data       | 0.879                            | 0.11                                           | 391                  | 0.006                                      |
| 2018-02 | all data       | 0.781                            | 0.096                                          | 581                  | 0.004                                      |
| 2018-03 | all data       | 0.827                            | 0.12                                           | 708                  | 0.004                                      |
| 2018-04 | all data       | 0.798                            | 0.079                                          | 624                  | 0.003                                      |
| 2018-05 | all data       | 0.869                            | 0.072                                          | 531                  | 0.003                                      |
| 2017.00 |                | 0.702                            | 0.000                                          | 102                  | 0.007                                      |
| 2017-09 | nighttime      | 0.793                            | 0.099                                          | 193                  | 0.007                                      |
| 2017-10 | nighttime      | 0.837                            | 0.09                                           | 197                  | 0.006                                      |
| 2017-11 | nighttime      | 0.872                            | 0.12                                           | 210                  | 0.008                                      |
| 2017-12 | nighttime      | 0.687                            | 0.076                                          | 217                  | 0.005                                      |
| 2018-01 | nighttime      | 0.824                            | 0.11                                           | 112                  | 0.01                                       |
| 2018-02 | nighttime      | 0.707                            | 0.086                                          | 172                  | 0.007                                      |
| 2018-03 | nighttime      | 0.761                            | 0.12                                           | 213                  | 0.008                                      |
| 2018-04 | nighttime      | 0.758                            | 0.062                                          | 181                  | 0.005                                      |
| 2018-05 | nighttime      | 0.827                            | 0.054                                          | 157                  | 0.004                                      |
|         |                |                                  |                                                |                      |                                            |
| 2017-09 | LFT            | 0.74                             | 0.076                                          | 103                  | 0.007                                      |
| 2017-10 | LFT            | 0.818                            | 0.088                                          | 137                  | 0.008                                      |
| 2017-11 | LFT            | 0.819                            | 0.083                                          | 94                   | 0.009                                      |
| 2017-12 | LFT            | 0.651                            | 0.054                                          | 122                  | 0.005                                      |
| 2018-01 | LFT            | 0.628                            | 0.025                                          | 9                    | 0.008                                      |
| 2018-02 | LFT            | 0.649                            | 0.1                                            | 54                   | 0.01                                       |
| 2018-03 | LFT            | 0.679                            | 0.064                                          | 121                  | 0.006                                      |
| 2018-04 | LFT            | 0.732                            | 0.053                                          | 92                   | 0.006                                      |
| 2018-05 | LFT            | 0.79                             | 0.043                                          | 71                   | 0.005                                      |

#### Sect. S5 : Estimation of air mass mixing with FLEXPART-AROME

To estimate the fraction of sampled air masses corresponding to the LFT and the BL, respectively, we used the clustered output (trajectories.txt; Pisso et al., 2019) from FLEXPART-AROME (see methods) combined with ERA5 reanalysis data (Hersbach et al., 2020).

90

95

100

110

We first estimated, on an hourly basis, the fraction of air masses corresponding to the LFT and the boundary layer (BL) by the following criteria:

- The fraction of all FLEXPART particles outside the boundary layer (information contained in trajectories.txt) was assigned to the LFT (i.e. *Particles<sub>outside BL</sub>* = *fraction<sub>outside BL</sub>* \* *Particles<sub>all</sub>*)
- The remaining particles were assigned to the BL

BL particles were then additionally split into particles belonging to either the marine boundary layer (MBL) or the (mountain) planetary boundary layer (PBL) following the criteria below (compare to Figure S5):

- All BL particles over geographical cells with an underlying orography below the mean ERA5 boundary layer height of the surrounding ocean were assigned to the MBL. This means, effectively, that we assumed that the island is submerged into the MBL up to the mean boundary layer height of the surrounding ocean (as obtained from ERA5).
- All other BL particles were assigned to the mountain PBL.

Only when estimates on water-soluble reactive mercury (RM) were concerned, particles belonging to the LFT were additionally split into either particles coming from clouds or particles coming from the cloud-free LFT, as described below:

- LFT particles were assigned to clouds proportionally to the cloud coverage in the respective cell, as obtained from ERA5 (i.e. *Particles<sub>clouds</sub>* = *Particles<sub>LFT</sub>* \* *fraction<sub>clouds</sub>*). Low, middle, and high clouds were treated separately, for which the altitude of the FLEXPART particle cluster centroid was considered.

• All remaining LFT particles were assigned to the cloud-free LFT

Figure S5. Scheme describing the estimation of mixing between LFT, MBL, and (mountain) BL. (a) Definition of the
MBL, the LFT, and the (mountain) BL. We assumed that the island is submerged into the MBL up to the mean MBL of the surrounding ocean (dashed white line, as obtained from ERA5). (b) An example on the estimation of the fraction of air masses coming from the LFT (F<sub>LFT</sub>), the MBL (F<sub>MBL</sub>), and the (mountain) BL (F<sub>mountain</sub>) for a hypothetical dispersion run result.

Finally, for each FLEXPART-AROME dispersion run, we only considered the last 8 hours before arrival at

- 120 Maïdo to estimate air mass mixing. In addition, we applied a weighting function of inverse proportionality to the time until arrival. This means, for example, that the position of FLEXPART particles 1 hour before arrival is twice (four times) as influential on the estimated air mass mixing between MBL and LFT as the position of FLEXPART particles 2 hours (4 hours) before arrival. We find that the resulting modeled fraction of air coming from the MBL agrees well with the observed diurnal variability of DMS (Figure S6).
- While our general results on the role of mixing processes and the potential importance of photo-reemission are 125 not sensitive to choices for cutoff time and weighting, the most likely surface reemission flux obtained from inverse modeling is. To address uncertainties associated with these choices, three different values for the cutoff time (6 hours, 8 hours, and 10 hours), and three different weighting functions (no weighting, inverse proportionality to time until arrival, inverse proportionality to the square of time until arrival) have been considered to estimate the confidence interval for the Hg reemission flux in a Monte Carlo approach (Sect. S7).



Figure S6. Comparison between observed DMS diurnal cycle and modeled diurnal cycle of MBL influences. (a) Observed mean DMS diurnal cycle for days characterized by a marked GEM diurnal variation (Group 1 days, see section 3.3.1 of the main text).

135 (b) Modelled mean diurnal cycle of the fraction of air masses coming from the MBL, for the same days as in (a) (Group 1 days). Scheme 1 corresponds directly to FMBL in Figure S5b. For Scheme 2 it was assumed that mixing proportions between MBL and LFT are identical for the entirety of the mountain BL, and that, without surface influences, mountain BL air itself is ultimately a mix of LFT and MBL air, yielding:

 $F_{MBL}$ (Scheme 2) =  $F_{MBL}$ (Scheme 1)/(1 -  $F_{mountain}$ ) (Scheme 2 was used for modeling of GEM diurnal cycles, see Sect. S6).

130

#### Sect. S6 : Models of GEM diurnal variation

#### Sect. S6.1 : Two box miding model between LFT and MBL

To estimate the expected GEM diurnal variation if only mixing processes are considered we started with

145 Equation S1 below.

$$GEM_{maido} = F_{MBL} \cdot GEM_{MBL} + F_{LFT} \cdot GEM_{LFT} + F_{mountain BL} \cdot GEM_{mountain BL}$$
 Equation S1

Where  $F_{MBL}$ ,  $F_{LFT}$ , and  $F_{mountain BL}$  are the fraction of air masses coming from the MBL, the LFT, and the mountain BL, respectively (see Sect. S5).  $GEM_{maido}$ ,  $GEM_{MBL}$ ,  $GEM_{LFT}$ , and  $GEM_{mountain BL}$  are GEM concentrations at Maïdo (observed), in the MBL surrounding Réunion Island, in the LFT, and in the mountain BL, respectively.

150 B

We then assumed that, if only mixing between LFT and MBL is considered, GEM concentrations observed at Maïdo are representative of GEM concentrations in the entire mountain BL (i.e.  $GEM_{maido} = GEM_{mountain BL}$ ). This means, effectively, that we assumed that the mixing status (between LFT and MBL air) is, on average, the same for the entire mountain BL. This assumption yields Equation S2 (note that  $F_{MBL} + F_{LFT} + F_{mountain BL} = 1$ ).

$$GEM_{maido} = GEM_{mountain} = \frac{F_{MBl}}{F_{MBL} + F_{LFT}} GEM_{MBL} + \frac{F_{LFT}}{F_{MBL} + F_{LFT}} GEM_{FT}$$
Equation S2

Finally, for our results in section 3.3.2, Equation S2 was integrated over the last 8 hours before trajectory arrival, i.e.:

$$GEM_{maido}(t) = \sum_{k=0h}^{8h} \left( \frac{F_{MBL}(t-k)}{F_{MBL}(t-k) + F_{LFT}(t-k)} GEM_{MBL}(t) + \frac{F_{LFT}(t-k)}{F_{MBL}(t-k) + F_{LFT}(t-k)} GEM_{FT}(t) \right)$$
Equation S3

160

165

155

#### Sect. S6.2 : Adding photo-reemission to the mixing model

To estimate the expected GEM diurnal variation if parametrized photo-reemission from the island is considered in addition to mixing processes, we added a photo-reemission term to the mixing model described with Equation S2 (see above), obtaining Equation S4.

$$GEM_{maido} = \frac{F_{MBl}}{F_{MBL} + F_{LFT}} GEM_{MBL} + \frac{F_{LFT}}{F_{MBL} + F_{LFT}} GEM_{FT} + c * SRR * RAD$$
Equation S4

Where RAD is solar radiation as measured at Maïdo (in W m<sup>-2</sup>) and c is an unknown scaling constant (in ng J<sup>-1</sup>) describing the relationship between solar radiation and Hg reemission, whose most likely value (under the hypothesis of surface reemission) was determined in an inverse modeling approach (see section 3.3.3 of the main text). SRR is the FLEXPART-AROME-derived source-receptor relationship between the islands surface and

170 Maïdo observatory (see methods), given in units of s m<sup>-1</sup> so that the term c \* SRR \* RAD has units of concentration (ng m<sup>-3</sup>).

SRRs were calculated, analogously to Verreyken et al. (2021), by dividing the FLEXPART-AROME-derived particle residence time by a constant minimal boundary layer height (Seibert and Frank, 2004). In contrast to Verreyken et al., 2021, which did not use the SRR to estimate emission fluxes and used a minimal boundary

175 layer height of 500 magl, here we used a minimal boundary layer height of 250 magl which, after performing a sensitivity analysis, we found to be more appropriate for the quantitative estimation of fluxes. While the choice

of the minimal boundary layer height does not affect our overall results and conclusions, it affects the most likely surface reemission flux obtained in the inverse modelling. To address uncertainties associated with the choice of the minimal boundary layer height, three different values (100 magl, 250 magl, 400 magl) have been considered to estimate the confidence interval for the Hg reemission flux (Sect. S7).

180

For our results in section 3.3.3, we integrated the mixing-related part of Equation S4 over the last 8 hours before arrival (i.e. we considered the position of FLEXPART-AROME particles up to 8 hours into the past), while we integrated the reemission-dependent part of Equation S4 over the last 3 hours before arrival (see Equation S5 below). We only considered the last 3 hours before arrival for photo-reemission as the vegetated surfaces responsible for the observed isoprene and  $CO_2$  diurnal cycles appear to lie relatively close to the station

185

190

(Verreyken et al., 2021; Callewaert et al., 2022), and because solar radiation observations at Maïdo become, with increasing distance to the observatory, less and less representative for the solar radiation on surfaces in question.

$$GEM_{maido}(t) = \sum_{k=0h}^{8h} \left( \frac{F_{MBL}(t-k)}{F_{MBL}(t-k) + F_{LFT}(t-k)} GEM_{MBL}(t) + \frac{F_{LFT}(t-k)}{F_{MBL}(t-k) + F_{LFT}(t-k)} GEM_{FT}(t) \right) + \sum_{k=0h}^{3h} c * SRR(t-k) * RAD(t-k)$$

Equation S5

#### Sect. S7 : Confidence interval for Hg reemission flux (Monte Carlo)

The inverse-modeled estimate of the most likely mean net daytime surface Hg photo-reemission flux (see section 3.3.3 of the main text) is sensitive to a variety of parameters, among them the assumed GEM concentrations in

195

the MBL, the parametrization used to estimate air mass mixing between MBL and LFT with FLEXPART-AROME (see Sect. S5), and the parametrization used to derive source-receptor relationships (SRRs) with FLEXPART-AROME (see Sect. S6).

200

Variation in parameters:

To assess uncertainties and to construct a confidence interval, we used a Monte Carlo approach (see Figure S7). We first recalculated the most likely mean net daytime Hg photo-reemission flux for a wide range of different parameter values (1053 parameter combinations in total). We then verified that the median of the resulting distribution of Hg surface fluxes lies close to our most-likely estimate, and used the 2.5<sup>th</sup> to 97.5<sup>th</sup> percentiles of the distribution as our 95% confidence interval, obtaining 8 - 22 ng m<sup>-2</sup> h<sup>-1</sup>

#### Minimum boundary **Cut-off time for** Weighting function **Assumed MBL GEM** layer height for calculation of for calculation of concentration calculation of SRRs **MBL/LFT** mixing **MBL/LFT** mixing 39 values drawn at regular percentile Three values: Three values: Three options: intervals (every 2.5%) from a normal 100 magl, 250 magl, 400 magl 6 hours, 8 hours, 10 hours No weighting, distribution Inverse proportionality to (mean 1.0 ng m<sup>-3</sup>, SD = 0.05 ng m<sup>-3</sup>) time until arrival. Inverse proportionality to square of time until arrival 1053 parameter combinations in total $9\times 10^{-2}$ kernel density $6 \times 10^{-2}$ 2.5th, 50th, 97.5th **Resulting distribution** percentiles of inverse-modelled best estimate reemission flux 3×10 (main text) 0 6 8 10 12 14 16 18 20 22 24 mean net daytime surface emission [ng m-2 h-1]

Figure S7. Monte Carlo approach to estimate uncertainties in the derived Hg photo reemission flux. Inverse modeling of the most likely (net daytime) photo reemission flux was done for a variety of parameter combinations, constructing a distribution based on 1053 parameter combinations in total. The three red vertical dashed lines in the inset figure show the 2.5<sup>th</sup>, 50<sup>th</sup> (median), and 97.5<sup>th</sup> percentiles of the distribution. The blue vertical dotted line shows the most-likely photo-reemission flux derived in the main text, which lies very close to the median of the distribution.

### Sect. S8 : Data table for reactive mercury (RM) at Maïdo

Maïdo RM data is given in Table S2 below, methodological details are laid out in section 2.2 of the main text.

| Sample ID   | Sampling start [LT] | Sampling end [LT] | Sampled STP<br>volume [L] | Sampling<br>time [s] | RM [pg m <sup>-3</sup> ] |
|-------------|---------------------|-------------------|---------------------------|----------------------|--------------------------|
| <b>S</b> 1  | 2017/09/01 13:35    | 2017/09/07 09:05  | 8419                      | 502200               | 27.0                     |
| S2          | 2017/09/07 14:43    | 2017/09/13 09:00  | 8326                      | 497820               | 12.5                     |
| S3          | 2017/09/13 12:30    | 2017/09/20 07:05  | 10084                     | 585300               | 29.2                     |
| <b>S</b> 4  | 2017/09/20 12:40    | 2017/09/28 09:55  | 14864                     | 681300               | 11.2                     |
| S5          | 2017/09/28 12:25    | 2017/10/11 07:20  | 15226                     | 1104900              | 12.0                     |
| <b>S</b> 6  | 2017/10/11 16:00    | 2017/10/19 07:30  | 14413                     | 660600               | 16.0                     |
| <b>S</b> 7  | 2017/10/19 09:45    | 2017/10/27 07:45  | 14923                     | 684000               | 9.1                      |
| <b>S</b> 8  | 2017/10/27 09:30    | 2017/11/02 07:55  | 11158                     | 512700               | 13.4                     |
| S9          | 2017/11/02 10:35    | 2017/11/10 07:50  | 14864                     | 681300               | 14.7                     |
| S10         | 2017/11/10 09:40    | 2017/11/17 09:25  | 13178                     | 603900               | 8.8                      |
| S11         | 2017/11/17 11:30    | 2017/11/24 07:45  | 12903                     | 591300               | 10.6                     |
| S12         | 2017/11/24 09:25    | 2017/11/30 08:35  | 9700                      | 515400               | 14.0                     |
| S13         | 2017/11/30 10:05    | 2017/12/07 07:20  | 12982                     | 594900               | 13.8                     |
| S14         | 2017/12/07 10:05    | 2017/12/13 05:50  | 10982                     | 503100               | 19.8                     |
| S15         | 2017/12/13 07:35    | 2017/12/21 08:20  | 15146                     | 693900               | 4.4                      |
| S16         | 2017/12/21 09:55    | 2017/12/28 07:55  | 13047                     | 597600               | 6.6                      |
| S17         | 2017/12/28 10:25    | 2018/01/08 10:40  | 20757                     | 951300               | 4.2                      |
| S18         | 2018/01/08 12:20    | 2018/01/22 14:35  | 7828                      | 1217700              | 14.3                     |
| S19         | 2018/01/22 17:25    | 2018/02/05 08:50  | 16892                     | 1178700              | 7.6                      |
| S20         | 2018/02/05 09:25    | 2018/02/13 07:45  | 14931                     | 685200               | 4.4                      |
| S21         | 2018/02/13 10:30    | 2018/02/21 07:10  | 14715                     | 679200               | 3.9                      |
| S22         | 2018/02/21 08:30    | 2018/03/02 08:45  | 11909                     | 778500               | 3.4                      |
| S23         | 2018/03/02 10:00    | 2018/03/08 06:35  | 11026                     | 506100               | 4.0                      |
| S24         | 2018/03/08 08:20    | 2018/03/15 10:35  | 13377                     | 612900               | 12.1                     |
| S25         | 2018/03/15 12:15    | 2018/03/23 08:20  | 14753                     | 677100               | 9.8                      |
| S26         | 2018/03/23 10:25    | 2018/04/03 08:55  | 20620                     | 945000               | 7.0                      |
| S27         | 2018/04/03 11:05    | 2018/04/10 13:10  | 8278                      | 612300               | 14.6                     |
| S28         | 2018/04/10 15:15    | 2018/04/16 21:15  | 11803                     | 540000               | 9.9                      |
| S29         | 2018/04/17 17:10    | 2018/04/25 08:05  | 14296                     | 658500               | 4.4                      |
| <b>S</b> 30 | 2018/04/25 11:55    | 2018/05/02 08:40  | 12943                     | 593100               | 8.7                      |
| S31         | 2018/05/02 11:20    | 2018/05/14 08:05  | 22329                     | 1025100              | 11.1                     |
| S32         | 2018/05/14 09:40    | 2018/05/23 14:25  | 17335                     | 794700               | 8.0                      |
| S33         | 2018/05/23 16:00    | 2018/05/31 15:30  | 14949                     | 689400               | 9.5                      |
| <b>S</b> 34 | 2018/05/31 17:30    | 2018/06/11 08:20  | 19022                     | 917400               | 7.7                      |
| S35         | 2018/06/11 09:50    | 2018/06/22 08:20  | 20610                     | 945000               | 5.2                      |

| Table S2. Maïdo RM observations. All times in local time ( | LT). | <b>Concentrations are</b> | given at STP. |
|------------------------------------------------------------|------|---------------------------|---------------|
|------------------------------------------------------------|------|---------------------------|---------------|

#### References

Callewaert, S., Brioude, J., Langerock, B., Duflot, V., Fonteyn, D., Müller, J.-F., Metzger, J.-M., Hermans, C., Kumps, N.,
 Ramonet, M., Lopez, M., Mahieu, E., and De Mazière, M.: Analysis of CO2, CH4, and CO surface and column concentrations observed at Réunion Island by assessing WRF-Chem simulations, Atmos. Chem. Phys., 22, 7763–7792, https://doi.org/10.5194/acp-22-7763-2022, 2022.

Foucart, B., Sellegri, K., Tulet, P., Rose, C., Metzger, J.-M., and Picard, D.: High occurrence of new particle formation events at the Maïdo high-altitude observatory (2150 m), Réunion (Indian Ocean), Atmos. Chem. Phys., 18, 9243–9261, https://doi.org/10.5194/acp-18-9243-2018, 2018.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q.J.R. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.

Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, 2019.

Seibert, P. and Frank, A.: Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode, Atmos. Chem. Phys., 4, 51–63, https://doi.org/10.5194/acp-4-51-2004, 2004.

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System, Bull. Amer. Meteor. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.

240

225

230

235

Verreyken, B., Amelynck, C., Schoon, N., Müller, J.-F., Brioude, J., Kumps, N., Hermans, C., Metzger, J.-M., Colomb, A., and Stavrakou, T.: Measurement report: Source apportionment of volatile organic compounds at the remote high-altitude Maïdo observatory, Atmos. Chem. Phys., 21, 12965–12988, https://doi.org/10.5194/acp-21-12965-2021, 2021.