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Abstract. Atmospheric mercury (Hg) observations in the lower free troposphere (LFT) can give important
insights into Hg redox chemistry and can help constrain Hg background concentrations on a regional level.
Relatively continuous sampling of LFT air, inaccessible to most ground-based stations, can be achieved at high-
altitude observatories. However, such high-altitude observatories are rare, especially in the Southern Hemisphere
(SH), and atmospheric Hg in the SH LFT is unconstrained. To fill this gap, we continuously measured gaseous
elemental mercury (GEM; hourly) and reactive mercury (RM; integrated over ∼ 6–14 d) for 9 months at Maïdo
mountain observatory (2160 m a.s.l.) on remote Réunion Island (21.1◦ S, 55.5◦ E) in the tropical Indian Ocean.
GEM exhibits a marked diurnal variation characterized by a midday peak (mean: 0.95 ng m−3; SD: 0.08 ng m−3)
and a nighttime low (mean: 0.78 ng m−3; SD: 0.11 ng m−3). We find that this diurnal variation is likely driven
by the interplay of important GEM photo-reemission from the islands’ vegetated surfaces (i.e. vegetation+ soil)
during daylight hours (8–22 ng m−2 h−1), boundary layer influences during the day, and predominant LFT influ-
ences at night. We estimate GEM in the LFT based on nighttime observations in particularly dry air masses and
find a notable seasonal variation, with LFT GEM being lowest from December to March (mean 0.66 ng m−3;
SD: 0.07 ng m−3) and highest from September to November (mean: 0.79 ng m−3; SD: 0.09 ng m−3). Such a clear
GEM seasonality contrasts with the weak seasonal variation reported for the SH marine boundary layer but is
in line with modeling results, highlighting the added value of continuous Hg observations in the LFT. Maïdo
RM is 10.6 pg m−3 (SD: 5.9 pg m−3) on average, but RM in the cloud-free LFT might be about twice as high,
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as weekly–biweekly sampled RM observations are likely diluted by low-RM contributions from the boundary
layer and clouds.

Graphical abstract

1 Introduction

Atmospheric mercury (Hg) observations are unequally dis-
tributed over the globe in several ways. On the one hand,
many more sampling sites exist in the Northern Hemisphere
(NH) than in the Southern Hemisphere (SH) (Sprovieri et
al., 2016). On the other hand, most Hg observations in either
hemisphere are made at ground level and within the boundary
layer. In this lowermost layer of the atmosphere, Hg concen-
trations are importantly affected by atmosphere–surface in-
teractions such as local emissions and dry deposition. How-
ever, much of the long-range transport of Hg, which leads to
its global distribution, does not occur within the relatively
shallow boundary layer but in the free troposphere where
winds tend to be strongest and transport tends to be fastest
(Travnikov, 2011). The fate of Hg in the free troposphere,
detached from direct surface influences, depends strongly on
chemical transformations (Travnikov, 2011) because divalent
oxidized mercury (HgII), water-soluble and readily incorpo-
rated into water droplets and adsorbed onto particles, is re-
moved from the atmosphere much more quickly than poorly
soluble elemental mercury (Hg0) (Schroeder and Munthe,
1998; Ariya et al., 2015; Lindberg et al., 2007).

Hg redox chemistry in the atmosphere is still subject to
considerable uncertainties, and the debate on the dominant
Hg oxidants in the atmosphere has been ongoing for more
than 2 decades (Lin, 2011; Ariya et al., 2008; Lindberg et
al., 2007; Dibble et al., 2020; Calvert and Lindberg, 2005;
Lindqvist and Rodhe, 1985). In many studies, it was assumed
that atmospheric ozone (O3) and hydroxyl radicals (OH) act
as dominant Hg oxidants (Lin, 2011). However, thermody-
namic considerations and quantum chemistry calculations
showed that the homogeneous and direct oxidation of Hg0 to
HgII via either O3 or OH is likely insignificant in the real at-
mosphere (Calvert and Lindberg, 2005; Dibble et al., 2020).
Besides, the detection of Hg0 depletion events in polar re-

gions (Schroeder et al., 1998) led to the increasing consid-
eration of halogens, mainly bromine (Br) radicals, as impor-
tant Hg oxidants. Indeed, the widely used mercury simula-
tion of the GEOS-Chem chemical transport model (Selin et
al., 2007) employed in recent versions a two-step Br-initiated
pathway as the main Hg0 oxidation pathway (Horowitz et
al., 2017; Feinberg et al., 2022). This reaction scheme was
recently updated by Shah et al. (2021), who somewhat rec-
onciled earlier studies by introducing, among others, a two-
step OH-initiated oxidation pathway alongside the above-
mentioned Br-induced pathway and by introducing O3 as a
second-stage oxidant for both the Br- and OH-initiated oxi-
dation pathways.

Despite these important new developments, Hg redox
chemistry remains insufficiently constrained by observa-
tions. As Hg concentrations in the free troposphere are less
sensitive to direct surface–atmosphere interactions than in
the boundary layer, it could be argued that Hg observations in
the free troposphere are especially valuable for constraining
Hg redox chemistry. However, such observations are rare, es-
pecially in the SH. Apart from aircraft campaigns, mountain
observatories are currently the only practical way of mea-
suring Hg in the free troposphere (Travnikov, 2011). While
these observatories are still subject to surface influences and
often exhibit a complex variability in the origin of sampled
air masses due to orographic and thermal flows (Forrer et al.,
2000), they are usually able to sample air from the lower free
troposphere (LFT) with regularity, especially during stable
atmospheric conditions and at night (Reidmiller et al., 2010;
Kleissl et al., 2007; Hahn et al., 1992; Baray et al., 2013;
Collaud Coen et al., 2011). Atmospheric Hg observations
from NH mountain sites such as Pic du Midi in France (Fu et
al., 2016a, c; Marusczak et al., 2017), Mauna Loa in Hawaii
(Carbone et al., 2016; Luippold et al., 2020), Jungfraujoch in
Switzerland (Denzler et al., 2017), Mount Bachelor (Weis-
spenzias et al., 2007; Swartzendruber et al., 2006) in the US,
Storm Peak (Obrist et al., 2008; Faïn et al., 2009) in the US,
and Lulin in Taiwan (Nguyen et al., 2019, 2022; Sheu et al.,
2010), among others, have provided important insights into
the transport and chemistry of atmospheric Hg. Meanwhile,
to our best knowledge, mountain-top observations of atmo-
spheric Hg in the SH have until now only been reported from
the Chacaltaya observatory in the tropical Bolivian Andes
(Koenig et al., 2021).

To fill data gaps in the SH in general and the SH LFT
more specifically, we continuously measured from Septem-
ber 2017 to May 2018 (9 months) atmospheric Hg at Maïdo
mountain observatory (2160 m a.s.l.), a high-altitude regional
GAW station on Réunion Island (21.1◦ S, 55.4◦ E) in the
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tropical Indian Ocean (Baray et al., 2013). Atmospheric
Hg was sampled in the form of gaseous elemental mercury
(GEM; atmospheric Hg0) with a high time resolution (ev-
ery 15 min) and in the form of reactive mercury (RM; at-
mospheric HgII) with a lower time resolution (integrated
over ∼ 6–14 d). Our measurement period overlapped with
the OCTAVE project (“Oxygenated Compounds in the Trop-
ical Atmosphere: Variability and Exchanges”, http://octave.
aeronomie.be, last access: 18 January 2023), dedicated to the
study of oxygenated organic compounds in tropical regions
(Rocco et al., 2020). This is further complemented by regular
and continuous observations of atmospheric trace gases such
as carbon dioxide (CO2), methane (CH4), carbon monoxide
(CO), and ozone (O3) at the observatory (Baray et al., 2013;
Zhou et al., 2018; Duflot et al., 2019).

Here, we (1) give an overview of the 9 months of continu-
ous GEM and RM observations at Maïdo observatory in the
tropical Indian Ocean. We (2) derive and discuss a time se-
ries of GEM in the LFT and estimate RM in the LFT. Finally,
with the help of ancillary data and the FLEXPART-AROME
Lagrangian dispersion model, we (3) explore possible drivers
for remarkably pronounced GEM diurnal cycles at Maïdo
and address the potential role of GEM photo-reemission from
the island’s vegetated surface.

2 Methods

2.1 Site description

Maïdo observatory (21.0792◦ S, 55.38◦ E) lies at an altitude
of 2160 m a.s.l. on the remote Réunion Island in the trop-
ical Indian Ocean, about 700 km east of Madagascar (see
Fig. 1a). Réunion is a relatively small island (∼ 2512 km2)
with a complex orography due to its volcanic origin (Gillot
and Nativel, 1989). The volcano “Piton de la Fournaise” in
the east of the island is still very active, with on average one
eruption every 7–10 months (Stieltjes and Moutou, 1989;
Villeneuve and Bachèlery, 2006). The island, especially its
mountain slopes, is densely covered by evergreen forest,
while its beach strips are highly populated (population den-
sity for 2022: 358 inhabitants per square kilometer). Maïdo
observatory is directly surrounded by shrublands, while lush
tropical vegetation is found further to the north-east, in the
Cirque de Mafate (a densely vegetated volcanic caldera). To
the west of Maïdo lies a high tamarisk forest, which also
dominates the coastal region where the closest urban areas
of Saint Paul and Le Port (105 000 and 40 000 inhabitants,
13 and 15 km from the observatory, respectively) are located
(Rose et al., 2019).

The local atmospheric circulation of Réunion Island is
complex and a result of both orographic and thermal flows
(Lesouëf et al., 2011; Foucart et al., 2018). Orographic flows
are induced by the island’s rugged relief, which represents
an environmental obstacle to the trade winds (east–south-
easterlies on average). Upon encountering Réunion Island,

these air masses can either rise (orographic lifting regime) or
they can flow around the island, in which case an overturning
loop can be observed in the north-west of the island (Fou-
cart et al., 2018). Thermal flows, which are driven by differ-
ential heating and cooling of the island’s surface, follow an
important diurnal cyclicity (see Fig. 1b). Nocturnal radiative
surface cooling creates a cold downwash (or katabatic wind)
along the slopes of the island (Baray et al., 2013), which usu-
ally leads to cloudless nights in the mountain regions. After
sunrise, radiative heating typically generates a sea breeze cir-
culation and upslope winds (or anabatic winds), which are
accompanied by cumulus clouds (Lesouëf et al., 2011).

Maïdo observatory samples mostly air from the LFT dur-
ing nighttime due to the abovementioned katabatic winds
that develop after sunset and mostly manifest as easterlies
(Fig. 1). During the daytime, the observatory is importantly
influenced by the planetary boundary layer (PBL) of the is-
land as well as the marine boundary layer (MBL) of the sur-
rounding ocean, brought to the observatory by a sea breeze
circulation and anabatic winds, which usually manifest as
westerlies (Lesouëf et al., 2011). When the daytime sea
breeze weakens on the western coast, moist air masses can
also originate from the nearby Cirque de Mafate to the north-
east or get advected from the windward (eastern) side of the
island by strong south-easterly trade winds (Lesouëf et al.,
2011, 2013; Tulet et al., 2017).

While atmospheric transport to Réunion Island on the
mesoscale is dominated by south-easterly trade winds (Fou-
cart et al., 2018; see also Supplement Sect. S1), trans-
port pathways can change under the influence of trop-
ical cyclones developing over the south-western Indian
Ocean (Tulet et al., 2021; Pohl et al., 2016), mostly
from November to April (the cyclonic season). Several
cyclonic storms affected Réunion Island during our mea-
surement period (September 2017–May 2018), with the
most noteworthy storms being Ava (∼ 13 d, 27 Decem-
ber 2017–9 January 2018), Berguitta (∼ 11 d, 9–20 Jan-
uary 2018), Dumazile (∼ 6 d, 1–6 March 2018), Eli-
akim (∼ 7 d, 13–20 March 2018), and Fakir (∼ 5 d, 20–
25 April 2018) (http://www.meteo.fr/temps/domtom/La_
Reunion/webcmrs9.0/anglais/index.html, last access: 10 Au-
gust 2022).

2.2 GEM and RM observations

Between September 2017 and June 2018, GEM was contin-
uously measured from the instrumented platform at Maïdo
observatory using two Tekran® 2537 Model 2537A analyzers
(Tekran Inc., Toronto, Canada) operating under Global Mer-
cury Observation System (GMOS) standard operating proce-
dures (Munthe et al., 2011; D’Amore et al., 2015). The 1/4
inch (6.35 mm) unheated perfluoroalkoxy (PFA) sampling
line was protected from UV radiation with a white opaque
tube (polyvinyl chloride) to avoid photochemical reactions
inside the line. The inlet, installed 2 m high on the stationary
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Figure 1. Site overview. (a) The location of Réunion Island in the tropical Indian Ocean and the location of Maïdo observatory (star) on
Réunion Island (zoomed-in image). The rugged orography of the island was represented by overlaying a digital elevation model (Jarvis
et al., 2008) over an aerial image (obtained from ESRI). (b) Schema of simplified mesoscale circulation patterns affecting Maïdo (star),
characterized by katabatic winds and mostly lower free tropospheric influences during the night (top) and by anabatic winds and boundary
layer influences during the day (bottom). (c) Wind speed and wind direction at Maïdo (observations from July 2017 to July 2018) show
important day–night differences (compare to b), with mostly fast easterly katabatic winds during nighttime (top) and a competition between
easterlies and westerlies during daytime (bottom). The radial axis gives the wind speed (see dashed circles). The numbers give wind speed
(m s−1). The color scale is normalized, so that “1” corresponds to the most frequent combination of wind direction and wind speed.

instrumented platform (6 m a.g.l.), was connected to a sin-
gle polytetrafluoroethylene (PTFE) filter holder, composed
of one 0.45 µm PES (polyethersulfone) filter (47 mm diame-
ter). This analytical configuration has been set up to measure
GEM instead of total gaseous mercury (TGM) as well as to
collect RM compounds for further analysis.

GEM then passed through the 9.5 m-long sampling line
and a second single PTFE filter holder, composed of one
0.45 µm PTFE filter (47 mm diameter), into the Tekran®

2537, where it was collected on gold traps before thermal
desorption and quantification by cold vapor atomic fluores-
cence spectroscopy (CV-AFS). GEM was analyzed every
15 min at a flow rate of 1.3 L min−1 under standard condi-
tions of 273.14 K and 1013.25 hPa (STP). The instrument
detection limit is 0.1 ng m−3. GEM concentrations are ex-
pressed (ng m−3) under STP. Calibration of the Tekran®

2537 was performed using both the internal Hg permeation
sources (every week) and manual injections of saturated Hg
vapor (every 3 months). The flow rate in the Tekran® 2537
as well as the internal mass-flow meter itself was also fre-
quently checked by an external and calibrated mass-flow me-
ter. The Tekran® 2537 deployed at Maïdo observatory ex-
perienced less than 5 % and 1 % shifts in the manual injec-
tion checking and mass-flow meter calibration, respectively.
The room in which the instrument was placed was perma-
nently air-conditioned to 22–23 ◦C, thus allowing it to be per-
manently 2–3 ◦C above the outside temperatures, whatever
the season, to avoid condensation in the sampling line. Raw
GEM time series were quality controlled according to the
guidelines proposed within the GMOS network, using ded-
icated software developed at the Institute of Environmental

Geosciences in 2012 (see https://gmos.aeris-data.fr/, last ac-
cess: 25 May 2022). During this automated procedure, the
raw dataset is compared against potential flags corresponding
to more than 40 criteria that specifically refer to all operation
phases related to the calculation of Hg concentrations and
calibration (D’Amore et al., 2015), thus marking GEM read-
ings as “valid”, “warning”, or “invalid”. The quality-assured
and quality-controlled dataset was then generated from the
site manager under consideration of the previously flagged
dataset, field notes, logbooks, and site characteristics (Mag-
and and Dommergue, 2022).

RM was sampled with a significantly lower frequency than
GEM, with collection times varying from 5.8 to 14.1 d to al-
low for the concentration of enough RM mass on the dedi-
cated 0.45 µm PES filter. It has been shown that PES mem-
branes can collect RM (gaseous oxidized mercury+ particle-
bound mercury) quantitatively, similarly to cation exchange
membranes (Dunham-Cheatham et al., 2020; Gustin et al.,
2015). After collection in the field, PES filters were sepa-
rately stored in Petri dishes inside double-zipper bags and
kept frozen at −20 ◦C until analysis. After shipment to the
laboratory, each PES filter was placed in a PTFE beaker. PES
filters were digested in 16 mL of ERi 2.5 % inverse aqua regia
(a solution of 97.5 % vol H2O, 1.7 % vol bi-distilled HNO3
12.4N solution and 0.8 % vol bi-distilled HCl 7.5N solution.
The bi-distilled HNO3 and HCl solutions correspond to 78 %
vol HNO3 and 83 % vol HCl, respectively). The beakers were
closed and placed on a heating plate (120 ◦C) for 12 h be-
fore analysis, which was done with a Brooks Rand Model III
CV-AFS detector. The method detection limit was 5 pg Hg
(Marusczak et al., 2017) and the average LOD was around
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35 pg for the entire sampling and analytical process. The
standard reference material was NIST 3133 and ORMC-5
from NRC. The standard measurement procedure included
the CV-AFS calibration (0–50 pg; NIST 3133) and a qual-
ity control sequence for 12 samples. The performance of the
CV-AFS was assessed based on ORMC-5, showing concen-
trations between 89 % and 120 % of the expected value. The
volume of air collected on PES filters was calculated from the
Tekran® 2537 flow rate at the inlet. RM concentrations are
expressed (pg m−3) under standard conditions of 273.14 K
and 1013.25 hPa.

2.3 Volatile organic compound (VOC) observations

We make use of VOC observations to characterize the ori-
gin of sampled air masses and the extent to which they
were impacted by surface influences. These data were gener-
ated in the framework of the OCTAVE project (http://octave.
aeronomie.be; last access: 25 May 2022), which aimed to
better understand the transport and role of VOCs in tropi-
cal regions (Verreyken et al., 2019, 2020, 2021; Rocco et al.,
2020).

VOCs were measured by two highly sensitive proton-
transfer-reaction quadrupole mass spectrometers (hs PTR-
Quad-MS; Ionicon Analytik GmbH, Innsbruck, Austria) be-
longing to the Royal Belgian Institute for Space Aeronomy
(BIRA-IASB) and the Laboratoire des Sciences du Climat
et de l’Environnement (LSCE). The BIRA PTR-MS was de-
ployed at Maïdo in multiple ion detection mode to gener-
ate a near-continuous 2-year dataset of VOCs (from 19 Oc-
tober 2017 to 26 November 2019) (Verreyken et al., 2021).
The LSCE PTR-MS measurements were recorded during the
intensive field OCTAVE campaign at three different loca-
tions (Maïdo observatory, Le Port coastal urban city, and
the tropical Bélouve forest) (Rocco et al., 2020). Princi-
pal recorded VOCs were acetaldehyde (CH3CHO), acetone
(CH3COCH3), methanol (CH3OH), formic acid (HCOOH),
acetic acid (CH3COOH), acetonitrile (CH3CN), benzene
(C6H6), toluene (C7H8), isoprene (C5H8), monoterpenes
(C10H16), methyl vinyl ketone (MVK), methyl ethyl ketone
(MEK) and dimethyl sulfide (DMS), a volatile organic sul-
fur compound. More technical and analytical information
can be found in Verreyken et al. (2021, 2020) and Rocco et
al. (2020).

2.4 Meteorological observations

We use observations on meteorological parameters (temper-
ature, relative humidity, wind speed, wind direction, and in-
coming solar radiation) as continuously taken at the Piton–
Maïdo meteorological station, at ∼ 2150 m a.s.l. and around
∼ 1 km from Maïdo observatory. This meteorological station
is permanently checked and validated by the French national
meteorological service (Météo-France) and consists of a py-
rocontrol probe, a Vaisala HMP110 humidity probe, an ultra-

sonic GILL WS2 sensor, and a K&Z CM5 pyranometer. Spe-
cific humidity was calculated from temperature and relative
humidity observations but assuming a constant atmospheric
pressure (780 hPa) corresponding approximately to the sam-
pling altitude (2150 m a.s.l.).

2.5 Other ancillary data

Maïdo observatory is registered as an ICOS (Integrated Car-
bon Observation System), NDACC (Network for the De-
tection of Atmospheric Composition Change), and ACTRIS
(Aerosols, Clouds and Trace gases Research Infrastructure)
atmospheric measurement site and a regional GAW (Global
Atmospheric Watch) station (WMO region I, Africa). In
this framework, the atmospheric observatory continuously
houses a suite of both in situ and remote sensing instru-
ments from which a list of continuous measurements can
be found online (https://osur.univ-reunion.fr/observations/
osu-r-stations/opar/, last access: 26 May 2022). Among
them, greenhouse gases (CO, CO2, CH4) were specifically
useful in the context of the present study.

Greenhouse gas measurements were performed with a PI-
CARRO G2401 analyzer and following standardized ICOS
protocols for measurement, processing, calibration, and qual-
ity control, described in detail elsewhere (Hazan et al., 2016;
Laurent, 2017; Heiskanen et al., 2022; Yver-Kwok et al.,
2021). The analyzer was calibrated once a month with four
cylinders of reference gases prepared and calibrated by the
Flask and Calibration Laboratory (FCL) of ICOS in accor-
dance with the WMO reference scales (CO2-X2019, CH4-
X2004A, CO-X2014A). Two other reference gases were
used for the quality control of the measurements at a rate of a
daily injection for the short-term target gas and one injection
per month for the long-term target gas.

Ozone (O3) was measured with a UV photometric Thermo
Scientific 49i analyzer with a detection limit of 1 ppb and
a time resolution of 1 min. This instrument operates on the
principle that O3 molecules absorb UV light at a wavelength
of 254 nm and that the degree to which the UV light is ab-
sorbed is directly related to the O3 concentration as described
by the Beer–Lambert law (Swinehart, 1962). Calibration was
carried out every 3 months with an O3 generator, validated by
the French air quality monitoring agency.

2.6 FLEXPART-AROME transport modeling and
source–receptor relationships (SRRs)

Here we use the model results obtained by Verreyken et
al. (2021) concerning mesoscale air mass transport to Maïdo.
Briefly, mesoscale transport to Maïdo was estimated with
the help of FLEXPART-AROME (Verreyken et al., 2019;
Brioude et al., 2013), which feeds the FLEXPART La-
grangian particle dispersion model (Stohl et al., 2005; Pisso
et al., 2019) with meteorological input from the high-
resolution (horizontal: 2.5× 2.5 km2) AROME regional cli-
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matological model (Seity et al., 2011). AROME is used
by Météo-France as the operational mesoscale numerical
weather prediction model for the Indian Ocean.

From 3 November 2017 to 26 November 2019, 20 000
initial air particles were launched every hour (on the hour:
08:00, 09:00, etc.) from Maïdo observatory (more specif-
ically, homogeneously from a 20 m-deep layer above the
station) and followed for 24 h into the past. Residence
times of air parcels were calculated on a 0.025◦× 0.025◦

grid (∼ 2.5 km horizontal resolution) within a domain span-
ning 19.5–22.5◦ S and 53.0–58.0◦ E. The grid contained
15 vertical layers, 10 layers between 0 and 500 m a.g.l.
(50 m thickness), 3 layers between 500 and 2000 m a.g.l.
(500 m thickness), and 2 additional layers above (10 000 and
24 000 m a.g.l.). More detailed information on this model run
can be found in Verreyken et al. (2021).

SRRs describe the sensitivity of observed concentrations
to surface emissions from regions of interest and are thus a
practical tool to estimate quantitatively to what degree ob-
served concentrations at Maïdo observatory are impacted by
emissions from the island’s surface. We calculated SRRs
by dividing FLEXPART-AROME-derived air mass residence
times by a constant minimal boundary layer height, as de-
scribed in Seibert and Frank (2004). More details can be
found in Supplement Sect. S6.

2.7 Data treatment and statistical tools

All data analysis was performed with R 3.6.0 (R Core Team,
2019) and using the “tidyverse” collection of R packages
(Wickham et al., 2019). Most visualizations were done with
the R package “ggplot2” (Wickham, 2016), while the site
overview map (Fig. 1) was generated with QGIS (QGIS De-
velopment Team, 2022), and the graphical abstract was cre-
ated with Inkscape (Inkscape Project, 2022). Digitization of
figures was done with WebPlotDigitizer (Rohatgi, 2021).

We worked with hourly averages whenever possible.
Hourly averages were defined as follows. For GEM, CO,
CO2, CH4, O3, and VOCs, the hourly average at hour “h”
corresponds to all data taken between “h” and “h+ 1”; for
example, the hourly average for 09:00 corresponds to all ob-
servations between 09:00 and 09:59.

Relative humidity (RH) and temperature (T ) measure-
ments as obtained from Météo-France are reported at the
round hour only. To make this as congruent as possible
with the abovementioned hourly averaging of trace gases and
VOCs, we assigned the average of the two reported values at
“h” and “h+ 1” to measurements taken at hour “h”. Contin-
uing with the above example, the hourly average of RH (or
T ) for 09:00 corresponds to the average of the two RH (or T )
observations reported at 09:00 and 10:00.

The used FLEXPART dispersion runs (see Sect. 2.6) were
launched instantaneously at every hour on the hour (e.g.
08:00, 09:00, 10:00). Here, we assigned to in situ measure-
ments taken between “h” and “h+ 1” the FLEXPART disper-

sion run arriving at “h+ 1”; for example, we assigned to the
hourly average of 09:00, which represents all data taken be-
tween 09:00:00 and 09:59:59, the backward dispersion run
launched at 10:00. The same applies for all FLEXPART-
derived SRRs.

3 Results and discussion

3.1 Overview: Hg observations at Maïdo

3.1.1 GEM

For the 9 months of available observations (September
2017–May 2018), mean GEM at Maïdo (see Fig. 2a) was
0.85 ng m−3 (SD: 0.12 ng m−3). This is quite low in com-
parison to reported atmospheric Hg concentrations at low-
altitude SH background sites such as Amsterdam Island
in the southern Indian Ocean (55 m a.s.l.; GEM mean:
∼ 1.05 ng m−3; Angot et al., 2014; Slemr et al., 2015, 2020),
Cape Point in South Africa (230 m a.s.l.; ∼ 1.0 ng m−3;
Slemr et al., 2015, 2020) and Darwin in northern Aus-
tralia (25 m a.s.l.; ∼ 0.95 ng m−3; Howard et al., 2017) but
comparable to reported GEM concentrations from the more
elevated Bariloche Argentina (800 m a.s.l.; ∼ 0.86 ng m−3,
Diéguez et al., 2019) and the high-altitude Chacaltaya ob-
servatory in Bolivia (5240 m a.s.l.; total gaseous mercury:
∼ 0.89 ng m−3 during the ENSO-neutral year 2014–2015,
Koenig et al., 2021). Based on all data taken, no clear sea-
sonality emerges in GEM at Maïdo, apart from somewhat
increased concentrations between September and November
(SON mean: 0.91 ng m−3, SD: 0.12 ng m−3). Higher GEM
in SON might be related to the increased occurrence of
biomass burning events in the SH from August to Novem-
ber (Edwards et al., 2006). In fact, it has been shown that
biomass-burning-influenced air masses can get transported to
Maïdo observatory, especially those originating from Africa
and Madagascar (Verreyken et al., 2020).

GEM showed a marked diurnal variation, with a minimum
at night (23:00–05:59 local time (LT); mean: 0.78 ng m−3;
SD: 0.11 ng m−3), rising concentrations after dawn, and
a peak around noon (from 12:00 to 13:59 LT; mean:
0.95 ng m−3; SD: 0.08 ng m−3), after which concentrations
decrease again (Fig. 2b). This contrasts with the relatively
weak diurnal variation (diurnal range < 0.05 ng m−3) at ma-
rine or coastal sites in the SH such as Amsterdam Island and
Cape Point (Slemr et al., 2020; Angot et al., 2014; Slemr et
al., 2015). On the other hand, Maïdo GEM diurnal variation
with its midday peak is comparable to the summertime diur-
nal GEM variation at Dumont d’Urville and Concordia Sta-
tion in Antarctica, where diurnal GEM variability has been
attributed to photo-reemission of GEM from the snowpack
(Song et al., 2018; Angot et al., 2016a, b). The possible re-
lationship between diurnal GEM cycles at Maïdo and photo-
reemission is explored in Sect. 3.3.
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3.1.2 RM

Mean RM at Maïdo is quite low (10.6 pg m−3; SD: 5.9;
35 samples in total) compared to reported mean RM con-
centrations at other mountain observatories (range: ∼ 20–
133 pg m−3; Fu et al., 2016a; Marusczak et al., 2016; Nguyen
et al., 2021; Swartzendruber et al., 2006; Luippold et al.,
2020; Faïn et al., 2009). It must be noted that all these other
observatories lie in the NH, and most of them measured RM
(in the form of GOM and PBM separately) with a Tekran®

speciation unit. The potassium chloride (KCl) denuder used
in the Tekran® speciation unit has been proven to not col-
lect all RM species quantitatively, causing RM measure-
ments in ambient air to be biased low (Gustin et al., 2019,
2021; McClure et al., 2014; Lyman et al., 2010). Denuder-
based RM observations at Pic du Midi mountain observa-
tory in France were later corrected upwards by 30 % (mean
from 40 to 52 pg m−3) after comparison to a PES-membrane-
based measurement protocol nearly identical to ours (Mar-
usczak et al., 2017), which has been shown to sample RM
more quantitatively (Gustin et al., 2021; Dunham-Cheatham
et al., 2020). The difference between RM concentrations at
Maïdo and these other mountain observatories may thus be
even larger if the likely low bias of the earlier denuder-based
measurements is accounted for.

RM at Maïdo showed a more significant seasonal varia-
tion than GEM, with 14.9 pg m−3 (SD: 6.5) for September–
November (SON), 8.2 pg m−3 (SD: 5.0) for December–
March (DJFM), and 8.8 pg m−3 (SD: 3.1) for April–June
(AMJ) (Fig. 2c, d). These seasonal differences are statisti-
cally significant between SON and DJFM and between SON
and AMJ (p < 0.05, Mann–Whitney U test) but statistically
insignificant (p = 0.3) between DJFM and AMJ. Individual
low RM observations (< 5 pg m−3) may relate to elevated
RM wet deposition, especially in DJFM, the wet season,
which is characterized by elevated rainfall (Fig. 2c) and in-
creased relative humidity at Maïdo (mean: 86 % in DJFM vs.
70 % for the rest of the year).

3.2 Hg in the LFT of the SH tropical Indian Ocean

3.2.1 LFT GEM time series

A major goal of measuring Hg at Maïdo was getting insight
into Hg in the LFT of the SH tropical Indian Ocean. While
Maïdo is influenced by the boundary layer (BL) during the
daytime, the observatory samples mostly air from the LFT
during nighttime (see the site description in Sect. 2.1).

That said, we observed that nighttime observations at
Maïdo are not always representative of the LFT, which
is consistent with previous research at Maïdo observatory
(Guilpart et al., 2017). Specifically, when humidity re-
mained high at night (specific humidity >∼ 10 g kg−1, RH
>∼ 90 %), nighttime observations at Maïdo most likely re-
mained importantly BL influenced. This appears to occur no-
tably during cyclonic storms, during which the diurnal vari-

ability of GEM and specific humidity nearly disappears (see
Supplement Sect. S2).

To estimate GEM in the LFT, we thus selected nighttime
data and additionally removed all GEM observations sam-
pled in air masses with a specific humidity higher than a
seasonally variable threshold. As a threshold, we used the
monthly median nighttime specific humidity at coordinates
for Maïdo and 800 hPa (∼ 1950 m a.s.l.) as obtained from the
ERA5 global reanalysis (Hersbach et al., 2020) (see Supple-
ment Sect. S3).

Our estimate of GEM in the LFT (Fig. 3; see the data
table in Supplement Sect. S4) shows a significant seasonal
variation during the 9 months of observations, with remark-
ably low mean GEM concentrations of 0.66 ng m−3 (SD:
0.07 ng m−3) in DJFM, corresponding to the wet season or
austral summer. For each of the 9 months, monthly aver-
aged LFT GEM was considerably lower (0.11 ng m−3 lower
on average) than unfiltered Maïdo GEM (i.e. all data), with
the difference being most pronounced in DJFM (0.25 ng m−3

lower in the LFT), likely due to the increased occurrence
of cyclonic storms during that time of the year. Maïdo
LFT GEM seasonality is nearly inverse to the TGM sea-
sonality observed at the Chacaltaya mountain-top observa-
tory (5240 m a.s.l.) in the tropical Andes, to our knowledge
the only other observatory in the SH where strongly free
troposphere-influenced air is sampled with regularity (Aliaga
et al., 2021) and Hg observations are available (Koenig et
al., 2021). This difference suggests that the seasonal varia-
tion of Maïdo LFT GEM is likely driven by other processes
than TGM (GEM+RM) seasonality at Chacaltaya, which
has been mainly attributed to biomass burning, vegetation
uptake, and interhemispheric exchange in the upper tropo-
sphere (Koenig et al., 2021, 2022).

Based on the same filtering procedure as for LFT GEM,
we estimated LFT CO, CH4, and O3 (see Fig. 3), although no
O3 observations were available from September to Decem-
ber 2017. In contrast to GEM, the application of the LFT fil-
ter had little effect on CO and O3 concentrations, indicating
that concentration differences between BL and LFT are much
less pronounced for these compounds than for GEM. The
strong CO enhancement between September and November
is likely due to increased biomass burning in the SH during
that time of the year (Edwards et al., 2006; Callewaert et al.,
2022). While it is likely that LFT GEM concentrations in
SON are biomass burning influenced, the seasonal variations
of LFT GEM and LFT CO are clearly different, especially
after February 2018, when CO remains low while GEM in-
creases, again suggesting that the seasonal variation of Maïdo
LFT GEM is likely dominated by other drivers than biomass
burning. Seasonal variation in transport pathways and long-
range transport of anthropogenic emissions could conceiv-
ably impact Maïdo LFT GEM seasonality. While long-range
transport pathways were very similar for SON (September–
November 2017) and AMJ (April–June 2018), some differ-
ences could be seen in DJFM (December 2017–March 2018),
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Figure 2. Overview of Hg observations. (a) Overview of 9 months of hourly GEM measurements at Maïdo. Red dots show arithmetic
means. The notches show the 95 % confidence interval for the median. The gray horizontal line gives the arithmetic mean of the whole
dataset, which is nearly identical to the median (0.85 ng m−3 in both cases). (b) Diurnal GEM variation at Maïdo, characterized by a marked
nighttime (23:00–05:59 LT) minimum and a noon (12:00–13:59 LT) peak. (c) Overview of RM measurements at Maïdo (a total of 35 weekly
or biweekly samples). The length of each bar corresponds to the integration time of the respective RM observation. Total daily precipitation
at Maïdo is given as blue bars (see the right axis). Around 82 % of all precipitation during the 9-month measurement period fell between
1 December 2017 and 31 March 2018 (DJFM, corresponding to the wet season). (d) Seasonal variation in RM sampled at Maïdo. Red dots
show arithmetic means. The numbers indicate the number of available RM samples for the respective season.

during which a fraction of northerly air masses even origi-
nated north of the Equator (within the last 10 d before arrival
at Maïdo; see Supplement Sect. 1). However, given that Hg
concentrations tend to be significantly higher in the NH than
in the SH (Horowitz et al., 2017; Shah et al., 2021), it appears
unlikely that the low LFT GEM concentrations in DJFM are
linked to these northerly air masses. Intriguingly, the season-
ality of LFT GEM, with its minimum between December and
March, is similar to the seasonality of LFT CH4, which, in
the remote tropical Indian Ocean, is mainly driven by oxida-
tion loss through reaction with OH (Khalil and Rasmussen,
1983). This could indicate that OH-related Hg redox chem-
istry (see the introduction) plays an important role in driving
LFT GEM seasonality.

3.2.2 Maïdo LFT GEM seasonality in the context of
atmospheric Hg models

GEOS-Chem modeling results predict an important season-
ality of atmospheric Hg in both the NH and the SH (Horowitz
et al., 2017; Shah et al., 2021; Feinberg et al., 2022). In con-
trast, while such a Hg seasonality has been observed in the
NH, only a weak Hg seasonality has been observed at SH
background sites such as Amsterdam Island and Cape Point
(Slemr et al., 2015, 2020). It has been proposed that atmo-
spheric Hg seasonality is less pronounced at SH monitoring

stations as a consequence of the lower land cover in the SH
(19 %) compared to the NH (39 %) and consequently a lesser
importance of vegetation GEM uptake as a driver for Hg sea-
sonality (Feinberg et al., 2022; Jiskra et al., 2018; Zhang and
Zhang, 2022).

Adding another piece to this puzzle, we observed an im-
portant seasonal variation of GEM at Maïdo, but only after
isolating the LFT from BL influences (Fig. 3, Sect. 3.2.1).
This suggests that Hg seasonality, seemingly weak in the SH
BL, might be much more pronounced in the SH free tropo-
sphere.

To illustrate how this LFT seasonal variation compares to
modeled Hg seasonality in the SH and how it contrasts with
the reported lack of observed Hg seasonality in the BL at
other SH background sites, we digitized the GEOS-Chem
modeling results from Horowitz et al. (2017) and Shah et
al. (2021), which differ importantly in the used atmospheric
Hg redox chemistry schemes (see the introduction). As can
be seen in Fig. 4, Maïdo LFT GEM is lower than atmospheric
Hg observed at other SH background sites (Amsterdam Is-
land and Cape Point; note that at these sites TGM∼GEM),
which itself is notably lower than modeled Hg in Shah et
al. (2021). Maïdo LFT GEM is also somewhat lower than
modeled Hg in Horowitz et al. (2017). As for seasonality,
the minimum of Maïdo LFT GEM lies somewhere in be-
tween the modeled Hg minimum of Horowitz et al. (2017)
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Figure 3. Estimated concentrations of atmospheric GEM, CH4,
CO, and O3 in the lower free troposphere (LFT) of the SH tropical
Indian Ocean, as inferred from dry nighttime air masses arriving at
Maïdo. LFT time series (blue lines) were obtained by selecting only
nighttime data (23:00–05:59 LT, green lines) from all observations
(orange lines), followed by the application of a specific humidity
filter. The shaded area encloses the mean ± 2 times the standard
error.

and Shah et al. (2021), albeit somewhat closer to Horowitz et
al. (2017).

Important caveats to the comparison with GEOS-Chem re-
sults have to be mentioned. (1) Both Horowitz et al. (2017)
and Shah et al. (2021) evaluated Hg seasonality not for the
LFT but for the lowest model layer (∼ 0–60 m a.g.l.), which
lies entirely within the BL, (2) modeled Hg corresponds to
different time periods than Maïdo GEM observations, and
(3) the digitized modeled Hg seasonalities correspond to
model results evaluated for the geographical coordinates of
Amsterdam Island (37.8◦ S, 77.57◦ E), Cape Point (34.35◦ S,
18.48◦ E), and Bariloche (41.13◦ S, 71.42◦W; only in the
case of Shah et al., 2021), not Maïdo (∼ 21.08◦ S, 55.38◦ E).

The goal of this comparison is thus not to evaluate which
chemistry scheme performs better but to illustrate the added
benefit from relatively continuous Hg observations in the free
troposphere. Modeled seasonality of atmospheric Hg is ev-
idently sensitive to the used chemistry scheme (Fig. 4). In
consequence, if Hg seasonality is observed in the free tropo-
sphere, as in the case of Maïdo, it could be used to evaluate
and improve our understanding of atmospheric Hg chemistry.
Inversely, the observed discrepancies between modeled and

Figure 4. Comparison between observed and modeled Hg season-
alities in the SH. The abbreviations LFT and BL correspond to
“lower free troposphere” and “boundary layer”, respectively. Ob-
served TGM seasonality as digitized from Horowitz et al. (2017)
corresponds to observations from Amsterdam Island and Cape
Point. The shaded areas give the mean ± 1 standard deviation.

observed seasonalities in the SH MBL may indicate a model
misrepresentation of more BL-specific processes, such as
surface emissions, deposition velocities, or more BL-specific
Hg chemistry.

3.2.3 An upper bound on RM concentrations in the LFT

While LFT and BL influences on Maïdo vary diurnally (see
the site description in Sect. 2.1), our RM observations cor-
respond to integration times of ∼ 6–14 d. In consequence,
RM concentrations reported here correspond to a mix of air
masses from the LFT, the PBL, and the MBL. Given the low
time resolution of our RM observations, it was not possible to
isolate RM in the LFT by only considering dry nighttime air
masses, as we did for hourly sampled GEM (see Sect. 3.2.1).

We hence used a different approach to constrain RM in the
LFT: we combined FLEXPART-AROME results with ERA5
reanalysis data (Hersbach et al., 2020) to estimate, on a sea-
sonal basis, the fraction of sampled air masses coming from
the PBL, the MBL, the cloud-free LFT, and clouds (see Sup-
plement Sect. S5). We then estimated RM in the (cloud-free)
LFT with the mixing equation below (Eq. 1). Clouds were
addressed explicitly because of the elevated water solubility
of atmospheric RM, which can be efficiently scavenged into
cloud droplets and rain (Nair et al., 2013).

RMLFT(cloud-free) =

RMobserved− fMBL ·RMMBL
−fPBL ·RMPBL− fclouds ·RMclouds

fLFT(cloud-free)
, (1)

where fMBL, fPBL, fLFT(cloud-free), and fclouds are the esti-
mated fractions of air coming from the MBL, PBL, cloud-
free LFT, and clouds, respectively.

To estimate RM in the cloud-free LFT (RMLFT(cloud-free)),
assumptions about mean RM concentrations in the MBL
(RMMBL), the PBL (RMPBL), and clouds (RMclouds), all not
known from Maïdo observations alone, had to be made.
As for RMMBL, recent observations at Amsterdam Island
(∼ 2700 km south-east of Maïdo) with the same measure-
ment protocol as ours (see methods) revealed MBL RM con-
centrations of ∼ 4 pg m−3 (Jeroen Sonke, Beatriz F. Araujo,
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Olivier Magand, Aurelien Dommergue, personal communi-
cation, unpublished data). However, higher RM concentra-
tions of∼ 13 pg m−3 have recently been derived for MBL air
arriving at the Australian coast (∼ 9200 km east of Maïdo),
based on observations with cation exchange membranes
(Miller et al., 2021). Here, we only aim to estimate the up-
per bound of RM in the (cloud-free) LFT at Maïdo, which is
obtained when the lower bound of concentrations is assumed
for RMMBL, RMPBL, and RMclouds (see Eq. 1). With this goal
in mind, we used 0 pg m−3 for RMclouds, assuming complete
scavenging of RM in clouds, and we used 4 pg m−3 for both
RMPBL and RMMBL, based on observations at Amsterdam
Island.

Our results suggest that RM in the cloud-free LFT might
be about twice as high as the overall average at Maïdo, i.e.
up to 30 pg m−3 (SD: 7) in SON, 14 pg m−3 (SD: 10) in
DJFM, and 15 pg m−3 (SD: 6) in AMJ, with an average of
20 pg m−3 (SD: 13) over the whole measurement period. It is
notable that even this upper limit is still at the lower end of
RM concentrations reported from NH mountain sites (∼ 20–
133 pg m−3; see Sect. 3.1.2). This might be partly explained
by the difference in GEM concentrations between Maïdo
(mean 0.85 ng m−3) and these NH measurement sites (mean
∼ 1.5 ng m−3), considering that the chemical production rate
of RM in the atmosphere depends directly on GEM concen-
trations. However, any interpretation has to be approached
with care, as our estimate of RM in the LFT is subject to
important uncertainties arising from the low time resolution
of our RM observations, the use of FLEXPART-AROME to
estimate air mass mixing (see Supplement Sect. S5), and sev-
eral assumptions.

3.3 Exploring GEM diurnal variation

3.3.1 Conditions leading to marked GEM diurnal cycles

As described above, GEM at Maïdo exhibits a marked diur-
nal variation, with a minimum at night when the observatory
samples mostly air from the LFT, rising concentrations after
dawn, and a peak around noon, after which concentrations
decrease again (Fig. 2b).

To investigate possible drivers for this diurnal variation
and to determine which conditions affect the amplitude of
GEM diurnal cycles, we grouped days into (1) days with a
strong GEM diurnal variation (Group 1: difference between
noon and nighttime > 0.16 ng m−3; 55 d in total) and (2) days
with a weak diurnal GEM variation (Group 2: difference be-
tween noon and nighttime < 0.08 ng m−3; 21 d in total). Days
belonging to neither of these two groups were excluded from
this analysis.

As can be seen in Fig. 5, Group 1 diurnal cycles
are characterized by remarkably low mean GEM concen-
trations at night (arithmetic mean: 0.72 ng m−3 between
23:00 and 05:59 LT, SD: 0.09 ng m−3) and, by definition,
by a large GEM difference between nighttime and noon

(0.26 ng m−3 difference on average). On the other hand,
Group 2 diurnal cycles are characterized by comparatively
high GEM concentrations at night (on average 0.87 ng m−3,
SD: 0.11 ng m−3) and, by definition, by a low GEM differ-
ence between nighttime and noon (0.04 ng m−3 difference on
average).

We find large differences in meteorological conditions cor-
responding to the two groups. While marked GEM diurnal
cycles (Group 1) are associated with mostly sunny days and
dry nights, atypically weak diurnal cycles (Group 2) are as-
sociated with cloudy days and humid nights (Fig. 5). This
suggests that Maïdo receives predominantly LFT air at night
for days assigned to Group 1, while this is not the case for
days assigned to Group 2.

For data belonging to Group 1, mean diurnal GEM
variation anti-correlates significantly (Pearson: r =−0.98,
p� 0.01) with the diurnal variation of carbon dioxide (CO2;
see Fig. 5), a long-lived (Archer et al., 2009) greenhouse gas
importantly taken up by vegetation, especially during day-
time (Black and Clanton, 1973). Indeed, diurnal CO2 varia-
tion at Maïdo is mostly driven by vegetation–gas exchange
(Callewaert et al., 2022). Group 1 mean diurnal GEM vari-
ation also correlates significantly with the diurnal variation
of isoprene (r = 0.95, p� 0.01), a short-lived (∼ 1 h during
daytime) VOC mostly emitted by terrestrial vegetation un-
der sunlight and heat stress (Guenther et al., 1993; Pacifico
et al., 2009). At Maïdo, observed isoprene mainly originates
from the vegetated mountain slopes and the densely vege-
tated Cirque de Mafate (see the site description in Sect. 2.1)
relatively close to the observatory (Verreyken et al., 2021).
These strong relationships suggest that the diurnal cycles of
GEM, isoprene, and CO2 may be related to similar drivers
and regions of influence. In other words, GEM diurnal vari-
ation appears to be linked to the island’s vegetated surface
under sunlight.

Finally, Group 1 GEM diurnal variation correlates (r =
0.87, p� 0.01) with that of dimethyl sulfide (DMS), a rela-
tively short-lived (∼ 1–2 d; Chen et al., 2018; Kloster et al.,
2006) VOC that is mostly emitted by marine phytoplank-
ton (Stefels et al., 2007) and is frequently used as a tracer
for marine air masses. Even though DMS concentrations at
Maïdo are relatively low, the diurnal variation of Maïdo DMS
is most likely related to marine influences (Verreyken et al.,
2021). It is noteworthy that GEM concentrations increase im-
mediately after sunrise (∼ 06:00–07:00 LT) and quickly de-
crease in the afternoon, while DMS concentrations start ris-
ing later in the day (at around 09:00 LT) and do not decline
until the evening (∼ 18:00 LT, Fig. 5). This suggests that di-
urnal GEM variation is not in phase with the diurnal variation
of MBL influences.

3.3.2 Constraining the role of mixing processes

Above, we showed that very pronounced diurnal GEM cy-
cles (Group 1) are related to the sampling of LFT air at night
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Figure 5. Mean diurnal variation (arithmetic average) of GEM,
solar radiation, specific humidity, CO2, isoprene, and DMS. Days
have been grouped into two main groups as a function of the am-
plitude of diurnal GEM variation (the difference between nighttime
and noon). The left column corresponds to all data on days with an
especially marked GEM diurnal variation (Group 1), and the right
column corresponds to all data on days with no or only a weak diur-
nal GEM variation (Group 2). The thin gray line shows the average
diurnal cycle for all days (for which GEM observations are also
available). The shaded area corresponds to the mean ± 1 standard
deviation.

and to a strong diurnal variation of DMS, which suggests an
important diurnal variation in the fraction of air coming from
the MBL.

Considering the reported importance of mixing processes
at Maïdo (Lesouëf et al., 2013; Guilpart et al., 2017), we first
explore the hypothesis that GEM diurnal cycles are purely
driven by a diurnal variation in the sampled mix between
LFT and MBL air masses. In this baseline hypothesis, we
assume that there are no influences from the island’s surface,
even though the abovementioned similarities between GEM,

CO2, and isoprene diurnal variations suggest otherwise (see
Fig. 5).

To test this hypothesis, we built a two-box mixing model
where we assume that Maïdo GEM depends only on GEM
concentrations in the MBL, GEM concentrations in the LFT,
as well as the diurnal variation in the mixing between LFT
and MBL air (see Supplement Sect. S6). We estimated the
latter with the help of FLEXPART-AROME (see Supplement
Sect. S5). For simplicity, we only focus on those days that
show a strong diurnal GEM variation (Group 1 in Fig. 5; 55 d
in total, of which FLEXPART output is available for 40),
which generally correspond to sunny days with few clouds
and low nighttime humidity. This choice allows us to min-
imize the difficult-to-parameterize effect of clouds and pro-
vides confidence that air masses sampled at night come in-
deed predominantly from the LFT (see Sect. 3.2.1).

To represent LFT GEM concentrations in the two-box
mixing model, we use the LFT GEM time series derived in
Sect. 3.2.1 (see also Fig. 3). MBL GEM concentrations at
Réunion Island are more difficult to constrain from Maïdo
observations alone, as pure MBL air is rarely sampled. We
thus assumed MBL GEM concentrations to be within 0.9–
1.1 ng m−3 for the two-box mixing model, based on previ-
ously reported GEM concentrations in the SH MBL (Slemr
et al., 2015, 2020). Considering the reported absence of clear
GEM diurnal variation and the weak seasonality in the MBL
of the SH (Slemr et al., 2015), we also assumed MBL con-
centrations to be constant throughout the day and year.

While the two-box mixing model suggests an important
influence of mixing processes on GEM diurnal variation, we
find that the modeled and observed diurnal GEM variations
do not agree in timing (Fig. 6). A variation in mixing between
LFT and MBL air as the sole driver of GEM diurnal varia-
tion cannot explain the early morning rise in GEM and would
place the GEM peak in the afternoon, around 2–4 h later than
observed. It must be said that the modeled diurnal GEM vari-
ation in the two-box mixing model depends directly on the
FLEXPART-AROME-based estimate of the mixing between
LFT air and MBL air, which could conceivably be biased. To
exclude such a bias, we compared the estimated LFT/MBL
mixing to the observed diurnal DMS variation as a proxy for
marine influences, finding that diurnally varying MBL in-
fluences appear to be captured adequately (see Supplement
Sect. S5).

We thus consider that mixing processes between MBL and
LFT air, even though likely an important contributor, cannot
adequately explain GEM diurnal variability alone. In the fol-
lowing section, we explore the potential role of the island’s
vegetated surface under sunlight.

3.3.3 Radiation-driven surface emissions as a potential
driver for GEM diurnal variation

We found that diurnal GEM variation at Maïdo depends on
solar radiation and that marked diurnal cycles of GEM at
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Figure 6. Assessment of the role of mixing between LFT and MBL
as a driver for diurnal GEM cycles. The solid line shows the ob-
served mean diurnal GEM cycle for those days characterized by an
especially marked diurnal GEM variation (Group 1). The dashed
lines give the corresponding modeled diurnal GEM cycles if only
the diurnal variation in the sampled mix of LFT and MBL air is
considered, under the assumption of no surface influence from the
island. Modeled diurnal cycles based on three different MBL con-
centrations (1.1, 1.0, and 0.9 ng m−3) are shown. Shaded areas give
the arithmetic mean ± 2 times the standard error.

Maïdo relate importantly to the diurnal cycles of isoprene
and CO2, which have been attributed to the island’s vegetated
surface. This suggests that GEM diurnal cycles are related to
vegetated surfaces under sunlight.

Previous work has shown that solar radiation, especially
in the ultraviolet range, can cause photo-reemission of Hg
from surfaces, such as snow, and lead to diurnal GEM cycles
characterized by a midday peak (Song et al., 2018; Angot et
al., 2016a). While terrestrial vegetation is globally a net sink
of atmospheric mercury (Zhou and Obrist, 2021), fluxes be-
tween vegetation and the atmosphere are bidirectional (Ag-
nan et al., 2016; Luo et al., 2016), and reemission also occurs
from vegetated surfaces and soils (Yuan et al., 2019; Yu et al.,
2020; Converse et al., 2010; Osterwalder et al., 2017). Not
only RM deposited onto leaf surfaces can be photo-reduced
and reemitted as GEM, but also Hg from within the leaf tis-
sue (Yuan et al., 2019).

Considering all this, we propose the hypothesis that Maïdo
GEM diurnal variation is, in addition to mixing between
LFT and MBL air, driven by net daytime photo-reemission
of GEM from the island’s vegetated surfaces (i.e. vegeta-
tion+ soil), especially from the vegetated mountain slopes
close to the observatory.

We addressed this hypothesis by including a term ex-
pressing the (net) photo-reemission of GEM from vegetated
surfaces into the mixing model from the previous section.
We parametrize the impact of photo-reemission on observed
GEM as the product of (1) the FLEXPART-AROME-derived
SRRs between Maïdo observatory and vegetated surfaces,
(2) total solar radiation as measured at Maïdo, and (3) a con-
stant radiation-dependent surface emission term (see Supple-
ment Sect. S6 for details). As in the previous section con-
cerning the influence of mixing processes, and for the same
reasons, we only focus on those days that exhibit a strong di-

urnal cycle (Group 1 in Fig. 5). While we assume direct pro-
portionality between net GEM reemission and solar radiation
(see Supplement Sect. S6), the magnitude of this relationship
(in other words, the slope) is not known. We estimate this
slope in an inverse modeling approach, i.e. we determine the
most likely slope by computing the model for a wide range
of values and evaluating the root mean square error (RMSE)
between modeled and observed mean diurnal GEM variation.

We find that (Group 1) diurnal GEM cycles could be well
explained (RMSE= 0.022 ng m−3) by a net surface GEM
emission of 0.032 ng h−1 W−1 (Fig. 7), corresponding to a
net emission of 21 ng m−2 h−1 at the mean diurnal solar radi-
ation maximum at Maïdo (∼ 660 W m−2) and to an average
net emission flux of 13.5 ng m−2 h−1 during hours of day-
light. Extrapolated to the whole year, this flux would imply a
net daytime surface emission of ∼ 59 µg m−2 yr−1. Our flux
estimates depend on a variety of parameters used for the in-
verse modeling, such as the assumed MBL GEM concen-
tration and the used parametrizations to estimate air mass
mixing (see Supplement Sect. S5) and SRRs (see Supple-
ment Sect. S6). To assess uncertainties, we recalculated in a
Monte Carlo approach (Janssen, 2013; Metropolis and Ulam,
1949) the average net daytime emission flux for a wide range
of parameters, obtaining a 95 % confidence interval of 8–
22 ng m−2 h−1 (see Supplement Sect. S7). It should be noted
that our flux estimate corresponds to the full ecosystem, i.e.
the sum of vegetation and soil fluxes, with their relative con-
tributions being unknown. In addition, our estimate assumes
that GEM concentrations at Maïdo are not strongly affected
by anthropogenic emissions downslope, similar to what has
been reported for CO and CO2 (mean anthropogenic contri-
bution at noon < 7 ppbv and < 0.2 ppm, respectively; Calle-
waert et al., 2022).

To our knowledge, no previous studies have derived dif-
ferentiated daytime and nighttime GEM fluxes for mostly
pristine tropical mountain forests or shrublands compara-
ble to those on Réunion Island. Observed daytime Hg
emission fluxes from background sites in other terres-
trial environments (i.e. predominantly low-altitude and
extra-tropical) were generally below ∼ 3.5 ng m−2 h−1 (me-
dian ∼ 0.8 ng m−2 h−1), significantly lower than found here
(Agnan et al., 2016). Mean daytime fluxes of up to
∼ 6 ng m−2 h−1 (depending on the season) have been re-
ported for temperate mountain meadows in the US (Con-
verse et al., 2010) and Tibet (Sun et al., 2020). Daytime
fluxes above ∼ 10 ng m−2 h−1, similar to what we derived
here, were observed in some tropical environments, e.g.
for an open field soil in Amazonia (Almeida et al., 2009)
and a naturally preserved but anthropogenically influenced
(TGM > 5 ng m−3) forest soil (soil Hg:∼ 0.13 mgHgkg−1

soil) in
tropical China (Fu et al., 2012). It is well reported that day-
time emissions from terrestrial surfaces correlate with soil
Hg concentrations and solar radiation (Agnan et al., 2016).
Soil Hg concentrations on Réunion Island are high (me-
dian: 0.16 mg kg−1; range: 0.03–0.81 mg kg−1; Dœlsch et
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al., 2006) compared to European and other tropical topsoils
(median ∼ 0.02 and ∼ 0.06 mg kg−1, respectively; Panagos
et al., 2021; Lim et al., 2020). This, alongside the strong inci-
dent solar radiation around Maïdo (see Fig. 5), might explain
the large daytime emission flux found here. In any case, given
that studies in directly comparable environments are scarce,
it is not yet possible to say whether a large daytime emis-
sion flux is specific to mountain forests and shrublands on
Réunion Island or characteristic of tropical mountain envi-
ronments in general.

Our results suggest that vegetated surfaces around and
downslope of Maïdo are a net source of GEM to the air
during hours of daylight but not necessarily during the en-
tire 24 h period. Maïdo observatory is mostly insensitive to
surface–atmosphere interactions during the night when sam-
pled air masses come predominantly from the LFT. Even
though little can be said about nighttime atmosphere–surface
fluxes based on Maïdo observations alone, it is likely that
net Hg deposition occurs at night onto vegetated surfaces
around and downslope of Maïdo to sustain net daytime GEM
emission. It is thought that vegetation GEM uptake hap-
pens mostly through plant stomata (Zhou and Obrist, 2021),
whose opening varies as a function of daytime, heat stress,
and evaporative loss (Roelfsema and Hedrich, 2005). While
stomata tend to open most widely during the day, they often
remain at least partly open during the night, especially in the
case of tropical vegetation (Wang et al., 2021). This could
allow for nighttime stomatal GEM uptake in addition to pos-
sible non-stomatal uptake pathways (Converse et al., 2010).
In fact, significant nighttime GEM uptake by vegetation has
been reported before (Kurz et al., 2020; Fu et al., 2016b;
Jiskra et al., 2018; Yu et al., 2018). Adding to GEM dry de-
position, katabatic winds could bring comparatively high RM
concentrations in the LFT (see Sect. 3.2.3) to the mountain
vegetation around and downslope of Maïdo and lead to ele-
vated nighttime RM deposition on leaf surfaces, which could
then be readily reduced and reemitted during daytime under
the strong tropical sun.

4 Conclusions and perspectives

We presented 9 months of observations of GEM (sampled
every 15 min) and RM (integrated over ∼ 6–14 d) at Maïdo
mountain observatory (2160 m a.s.l.) on Réunion Island in
the Southern Hemisphere (SH) tropical Indian Ocean. Due
to mesoscale circulation characteristics, Maïdo is influenced
by the boundary layer (BL) during the daytime but sam-
ples mostly air from the lower free troposphere (LFT) dur-
ing nighttime. Based on nighttime observations in especially
dry air masses, we estimated GEM in the LFT of the trop-
ical Indian Ocean to be, on average, significantly lower
than unfiltered Maïdo GEM observations (0.74 ng m−3 vs.
0.85 ng m−3, respectively). Maïdo LFT GEM showed an im-
portant seasonal variation, with the highest concentrations

Figure 7. Assessment of the potential role of surface GEM reemis-
sion as a driver for GEM diurnal cycles. The solid line shows the
observed mean diurnal GEM cycle for those days characterized by
an especially marked diurnal GEM variation (Group 1). The dashed
lines give the corresponding modeled mean diurnal GEM cycles if
(1) only mixing processes between MBL and LFT are considered
(dashed blue line; assumed MBL GEM= 1.0 ng m−3) and (2) pa-
rameterized photo-reemission from the island’s vegetated surface is
added to the mixing model (dashed red line; assumed surface flux
is a result of inverse modeling). Shaded areas show the arithmetic
mean ± 2 times the standard error.

from October to November 2017 and the lowest concentra-
tions from December 2017 to March 2018, corresponding to
austral summer. Such a marked seasonal variation stands in
contrast to the reported weak Hg seasonality at background
sites in the SH marine boundary layer (MBL) but is congru-
ent with the significant and photochemistry-dependent Hg
seasonality reported in modeling studies. This suggests that
Hg observations in the SH LFT may be particularly useful
for constraining Hg chemistry and that continuous Hg moni-
toring at SH mountain sites could prove highly beneficial for
the community.

Mean RM at Maïdo, sampled on polyethersulfone (PES)
membranes, was ∼ 10.6 pg m−3, significantly lower than re-
ported RM concentrations for mountain sites in the NH.
While we estimate that RM in the (cloud-free) LFT at Maïdo
may be about twice as high (∼ 20 pg m−3), we were limited
by the low time resolution of RM observations (sample in-
tegration time of ∼ 6–14 d). This limitation did not allow
us to capture the likely significant diurnal RM variation at
Maïdo and to rigorously separate the LFT from boundary
layer influences. In future studies on mountain observatories,
it would be advisable to measure RM with a higher time res-
olution that permits resolving of diurnal variations or at least
capturing of daytime and nighttime differences in RM con-
centrations.

GEM at Maïdo exhibits marked diurnal cycling, with a
nighttime minimum and a noon maximum. GEM diurnal cy-
cling is significantly more pronounced on sunny days than on
cloudy days and disappears altogether during large-scale cy-
clonic storms. Marked GEM diurnal cycles are significantly
correlated with isoprene, emitted from vegetation under sun-
light, and anti-correlated with CO2, which is taken up by veg-
etation during photosynthesis. This suggests net GEM emis-
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sion from the island’s mostly vegetated surface during the
day. GEM diurnal cycles at Maïdo could be well explained
by significant GEM photo-reemission from the island’s veg-
etated surfaces (i.e. vegetation+ soil) during daylight hours
combined with important MBL influences in the afternoon.
Through inverse modeling, we estimated that vegetated sur-
faces around and downslope of Maïdo could emit on average
13.5 ng m−2 h−1 (95 % CI: 8–22 ng m−2 h−1) of GEM dur-
ing daylight hours. To maintain this net daytime emission,
significant net nighttime Hg deposition from the atmosphere
to these vegetated surfaces is to be expected, likely through
deposition of both GEM and RM. While these results are
subject to considerable uncertainties, they suggest important
and diurnally variable bidirectional fluxes between vegetated
surfaces and the atmosphere, at least for tropical evergreen
mountain forests and shrublands such as those found on Réu-
nion Island. Future measurement campaigns on Réunion Is-
land could explore Hg concentrations and isotopic signatures
below the forest canopy, in soil, in rainfall, in litterfall, and
in throughfall to rigorously constrain these bidirectional Hg
fluxes and to further investigate the potentially important role
of nighttime GEM uptake by vegetation.

Data availability. Maïdo L2 GEM data
(https://doi.org/10.25326/352) are freely available (Magand
and Dommergue, 2022) at https://gmos.aeris-data.fr/ (last access:
11 August 2022) from the GMOS-FR data portal coordinated by
IGE (Institut des Géosciences de l’Environnement – Grenoble,
France; technical PI: Olivier Magand) and maintained by the
French national center for atmospheric data and services (AERIS).
Monthly averaged Maïdo L2 GEM data for different data selec-
tions (all data, nighttime only, LFT) are given in Supplement
Sect. S4. Maïdo RM data are given in Supplement Sect. S8. Maïdo
(O)VOC data as acquired with a hs-PTR-MS instrument in the
framework of the OCTAVE project are freely available under
https://doi.org/10.18758/71021061 (Amelynck et al., 2021). The
hourly means of CO2, CH4, and CO concentrations and a set
of meteorological parameters are available on the Carbon Portal
(https://www.icos-cp.eu/, last access: 18 January 2023) and under
https://doi.org/10.18160/10QG-6RP6 (De Mazière et al., 2022).
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