Articles | Volume 22, issue 13
https://doi.org/10.5194/acp-22-8725-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-8725-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement of light-absorbing particles in surface snow of central and western Himalayan glaciers: spatial variability, radiative impacts, and potential source regions
Chaman Gul
CORRESPONDING AUTHOR
State Key Laboratory of Cryosphere Sciences, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 73000,
China
International Centre for Integrated Mountain Development (ICIMOD),
G.P.O. Box 3226, Kathmandu, Nepal
Reading Academy, Nanjing University of Information Science and
Technology, 219 Ningliu Road, Nanjing, Jiangsu 210044, China
University of Chinese Academy of Sciences, Beijing, China
Shichang Kang
State Key Laboratory of Cryosphere Sciences, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 73000,
China
University of Chinese Academy of Sciences, Beijing, China
Siva Praveen Puppala
CORRESPONDING AUTHOR
International Centre for Integrated Mountain Development (ICIMOD),
G.P.O. Box 3226, Kathmandu, Nepal
Xiaokang Wu
Department of Atmospheric Sciences, Texas A&M University, College
Station, TX 77843, USA
Cenlin He
Research Applications Laboratory, National Center for Atmospheric
Research, Boulder, CO 80301, USA
Yangyang Xu
Department of Atmospheric Sciences, Texas A&M University, College
Station, TX 77843, USA
Inka Koch
International Centre for Integrated Mountain Development (ICIMOD),
G.P.O. Box 3226, Kathmandu, Nepal
Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94–96, 72076 Tübingen, Germany
Sher Muhammad
International Centre for Integrated Mountain Development (ICIMOD),
G.P.O. Box 3226, Kathmandu, Nepal
Rajesh Kumar
Research Applications Laboratory, National Center for Atmospheric
Research, Boulder, CO 80301, USA
Getachew Dubache
Reading Academy, Nanjing University of Information Science and
Technology, 219 Ningliu Road, Nanjing, Jiangsu 210044, China
Related authors
Abudurexiati Abulimiti, Yanlin Zhang, Mingyuan Yu, Yihang Hong, Yu-Chi Lin, Chaman Gul, and Fang Cao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2503, https://doi.org/10.5194/egusphere-2024-2503, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
To improve air quality, the Chinese government implemented strict clean air actions. We explored how black carbon (BC) responded to these actions and found that the reduction in liquid fuel use was the main factor driving the decrease in BC levels. Additionally, meteorological factors also played a significant role in the long-term trends of BC. These factors should be considered in future emission reduction policies to further enhance air quality improvements.
Chaman Gul, Shichang Kang, Yuanjian Yang, Xinlei Ge, and Dong Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1144, https://doi.org/10.5194/egusphere-2024-1144, 2024
Preprint archived
Short summary
Short summary
Long-term variations in upper atmospheric temperature and water vapor in the selected domains of time and space are presented. The temperature during the past two decades showed a cooling trend and water vapor showed an increasing trend and had an inverse relation with temperature in selected domains of space and time. Seasonal temperature variations are distinct, with a summer minimum and a winter maximum. Our results can be an early warning indication for future climate change.
Shichang Kang, Yulan Zhang, Pengfei Chen, Junming Guo, Qianggong Zhang, Zhiyuan Cong, Susan Kaspari, Lekhendra Tripathee, Tanguang Gao, Hewen Niu, Xinyue Zhong, Xintong Chen, Zhaofu Hu, Xiaofei Li, Yang Li, Bigyan Neupane, Fangping Yan, Dipesh Rupakheti, Chaman Gul, Wei Zhang, Guangming Wu, Ling Yang, Zhaoqing Wang, and Chaoliu Li
Earth Syst. Sci. Data, 14, 683–707, https://doi.org/10.5194/essd-14-683-2022, https://doi.org/10.5194/essd-14-683-2022, 2022
Short summary
Short summary
The Tibetan Plateau is important to the Earth’s climate. However, systematically observed data here are scarce. To perform more integrated and in-depth investigations of the origins and distributions of atmospheric pollutants and their impacts on cryospheric change, systematic data of black carbon and organic carbon from the atmosphere, glaciers, snow cover, precipitation, and lake sediment cores over the plateau based on the Atmospheric Pollution and Cryospheric Change program are provided.
Chaman Gul, Siva Praveen Puppala, Shichang Kang, Bhupesh Adhikary, Yulan Zhang, Shaukat Ali, Yang Li, and Xiaofei Li
Atmos. Chem. Phys., 18, 4981–5000, https://doi.org/10.5194/acp-18-4981-2018, https://doi.org/10.5194/acp-18-4981-2018, 2018
Short summary
Short summary
Snow and ice samples were collected from six glaciers and multiple mountain valleys from northern Pakistan. Samples were analyzed for black carbon and water-insoluble organic carbon. Relatively high concentrations of black carbon, organic carbon, and dust were reported. Snow albedo and radiative forcing were estimated for the snow samples. Possible source regions of pollutants were identified through various techniques.
Abudurexiati Abulimiti, Yanlin Zhang, Mingyuan Yu, Yihang Hong, Yu-Chi Lin, Chaman Gul, and Fang Cao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2503, https://doi.org/10.5194/egusphere-2024-2503, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
To improve air quality, the Chinese government implemented strict clean air actions. We explored how black carbon (BC) responded to these actions and found that the reduction in liquid fuel use was the main factor driving the decrease in BC levels. Additionally, meteorological factors also played a significant role in the long-term trends of BC. These factors should be considered in future emission reduction policies to further enhance air quality improvements.
Chayan Roychoudhury, Cenlin He, Rajesh Kumar, and Avelino F. Arellano Jr.
EGUsphere, https://doi.org/10.5194/egusphere-2024-2298, https://doi.org/10.5194/egusphere-2024-2298, 2024
Short summary
Short summary
We aim to understand the complexity of Earth's climate by proposing a novel, cost-effective approach to understand the web of interactions driving climate change. We focus on how pollution and weather processes interact and drive snowmelt in Asian glaciers. Our findings reveal significant yet overlooked processes across different climate models. Our approach can help in refining the development of these models for more reliable predictions in climate-vulnerable regions.
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
Atmos. Chem. Phys., 24, 10717–10740, https://doi.org/10.5194/acp-24-10717-2024, https://doi.org/10.5194/acp-24-10717-2024, 2024
Short summary
Short summary
We demonstrate that strong climate mitigation could improve air quality in Europe; however, less ambitious mitigation does not result in these co-benefits. We use a high-resolution atmospheric chemistry model. This allows us to demonstrate how this varies across European countries and analyse the underlying chemistry. This may help policy-facing researchers understand which sectors and regions need to be prioritised to achieve strong air quality co-benefits of climate mitigation.
Matthew S. Johnson, Sajeev Philip, Scott Meech, Rajesh Kumar, Meytar Sorek-Hamer, Yoichi P. Shiga, and Jia Jung
Atmos. Chem. Phys., 24, 10363–10384, https://doi.org/10.5194/acp-24-10363-2024, https://doi.org/10.5194/acp-24-10363-2024, 2024
Short summary
Short summary
Satellites, like the Ozone Monitoring Instrument (OMI), retrieve proxy species of ozone (O3) formation (formaldehyde and nitrogen dioxide) and the ratios (FNRs) which can define O3 production sensitivity regimes. Here we investigate trends of OMI FNRs from 2005 to 2021, and they have increased in major cities, suggesting a transition from radical- to NOx-limited regimes. OMI also observed the impact of reduced emissions during the 2020 COVID-19 lockdown that resulted in increased FNRs.
Andrew O. Langford, Raul J. Alvarez II, Kenneth C. Aikin, Sunil Baidar, W. Alan Brewer, Steven S. Brown, Matthew M. Coggan, Patrick D. Cullis, Jessica Gilman, Georgios I. Gkatzelis, Detlev Helmig, Bryan J. Johnson, K. Emma Knowland, Rajesh Kumar, Aaron D. Lamplugh, Audra McClure-Begley, Brandi J. McCarty, Ann M. Middlebrook, Gabriele Pfister, Jeff Peischl, Irina Petropavlovskikh, Pamela S. Rickley, Andrew W. Rollins, Scott P. Sandberg, Christoph J. Senff, and Carsten Warneke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1938, https://doi.org/10.5194/egusphere-2024-1938, 2024
Short summary
Short summary
High ozone (O3) formed by reactions of nitrogen oxides (NOx) and volatile organic compounds (VOCs) can harm human health and welfare. High O3 is usually associated with hot summer days, but under certain conditions, high O3 can also form under winter conditions. In this study, we describe a high O3 event that occurred in Colorado during the COVID-19 quarantine that was caused in part by the decrease in traffic, and in part by a shallow inversion created by descent of stratospheric air.
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-264, https://doi.org/10.5194/hess-2024-264, 2024
Revised manuscript under review for HESS
Short summary
Short summary
This study evaluates how different methods of simulating runoff impact river flow predictions globally. By comparing seven approaches within the Noah-MP land surface model, we found significant differences in accuracy, with some methods underestimating or overestimating runoff. The results are crucial for improving water resource management and flood prediction. Our work highlights the need for precise modeling to better prepare for climate-related challenges.
Falk M. Oraschewski, Inka Koch, M. Reza Ershadi, Jonathan D. Hawkins, Olaf Eisen, and Reinhard Drews
The Cryosphere, 18, 3875–3889, https://doi.org/10.5194/tc-18-3875-2024, https://doi.org/10.5194/tc-18-3875-2024, 2024
Short summary
Short summary
Mountain glaciers have a layered structure which contains information about past snow accumulation and ice flow. Using ground-penetrating radar instruments, the internal structure can be observed. The detection of layers in the deeper parts of a glacier is often difficult. Here, we present a new approach for imaging the englacial structure of an Alpine glacier (Colle Gnifetti, Switzerland and Italy) using a phase-sensitive radar that can detect reflection depth changes at sub-wavelength scales.
Chenrui Diao, Yangyang Xu, Aixue Hu, and Zhili Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1920, https://doi.org/10.5194/egusphere-2024-1920, 2024
Short summary
Short summary
The increase of industrial aerosols in Asia and reductions in North America & Europe during 1980–2020 influenced the climate changes over the Pacific Ocean differently. Asian aerosols caused El Niño-like temperature pattern and slightly weakened the natural variation in North Pacific, while reduced western countries’ emissions led to extensive warming in mid-to-high latitudes of North Pacific. Human impacts on the Pacific climate may change when emission reduction occur over Asia in the future.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Rajesh Kumar, Piyush Bhardwaj, Cenlin He, Jennifer Boehnert, Forrest Lacey, Stefano Alessandrini, Kevin Sampson, Matthew Casali, Scott Swerdlin, Olga Wilhelmi, Gabriele G. Pfister, Benjamin Gaubert, and Helen Worden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-180, https://doi.org/10.5194/essd-2024-180, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
We have created a 14-year hourly air quality dataset at 12 km resolution by combining satellite observations of atmospheric composition with air quality models over the contiguous United States (CONUS) . The dataset has been found to reproduce key observed features of air quality over the CONUS. To enable easy visualization and interpretation of county level air quality measures and trends by stakeholders, an ArcGIS air quality dashboard has also been developed.
Yafang Guo, Chayan Roychoudhury, Mohammad Amin Mirrezaei, Rajesh Kumar, Armin Sorooshian, and Avelino F. Arellano
Geosci. Model Dev., 17, 4331–4353, https://doi.org/10.5194/gmd-17-4331-2024, https://doi.org/10.5194/gmd-17-4331-2024, 2024
Short summary
Short summary
This research focuses on surface ozone (O3) pollution in Arizona, a historically air-quality-challenged arid and semi-arid region in the US. The unique characteristics of this kind of region, e.g., intense heat, minimal moisture, and persistent desert shrubs, play a vital role in comprehending O3 exceedances. Using the WRF-Chem model, we analyzed O3 levels in the pre-monsoon month, revealing the model's skill in capturing diurnal and MDA8 O3 levels.
Katrine A. Gorham, Sam Abernethy, Tyler R. Jones, Peter Hess, Natalie M. Mahowald, Daphne Meidan, Matthew S. Johnson, Maarten M. J. W. van Herpen, Yangyang Xu, Alfonso Saiz-Lopez, Thomas Röckmann, Chloe A. Brashear, Erika Reinhardt, and David Mann
Atmos. Chem. Phys., 24, 5659–5670, https://doi.org/10.5194/acp-24-5659-2024, https://doi.org/10.5194/acp-24-5659-2024, 2024
Short summary
Short summary
Rapid reduction in atmospheric methane is needed to slow the rate of global warming. Reducing anthropogenic methane emissions is a top priority. However, atmospheric methane is also impacted by rising natural emissions and changing sinks. Studies of possible atmospheric methane removal approaches, such as iron salt aerosols to increase the chlorine radical sink, benefit from a roadmapped approach to understand if there may be viable and socially acceptable ways to decrease future risk.
Chaman Gul, Shichang Kang, Yuanjian Yang, Xinlei Ge, and Dong Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1144, https://doi.org/10.5194/egusphere-2024-1144, 2024
Preprint archived
Short summary
Short summary
Long-term variations in upper atmospheric temperature and water vapor in the selected domains of time and space are presented. The temperature during the past two decades showed a cooling trend and water vapor showed an increasing trend and had an inverse relation with temperature in selected domains of space and time. Seasonal temperature variations are distinct, with a summer minimum and a winter maximum. Our results can be an early warning indication for future climate change.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-56, https://doi.org/10.5194/gmd-2024-56, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This paper presents ML-AMPSIT, a new tool that exploits different machine learning algorithms to perform sensitivity analysis for atmospheric models, providing a computationally efficient way to identify key parameters that affect model output. The tool is tested by taking as a case study the simulation of a sea breeze circulation over flat terrain with the WRF/Noah-MP model, investigating the sensitivity of model results to different vegetation-related parameters.
Jianzhong Xu, Xinghua Zhang, Wenhui Zhao, Lixiang Zhai, Miao Zhong, Jinsen Shi, Junying Sun, Yanmei Liu, Conghui Xie, Yulong Tan, Kemei Li, Xinlei Ge, Qi Zhang, and Shichang Kang
Earth Syst. Sci. Data, 16, 1875–1900, https://doi.org/10.5194/essd-16-1875-2024, https://doi.org/10.5194/essd-16-1875-2024, 2024
Short summary
Short summary
A comprehensive aerosol observation project was carried out in the Tibetan Plateau (TP) and its surroundings in recent years to investigate the properties and sources of atmospheric aerosols as well as their regional differences by performing multiple intensive field observations. The release of this dataset can provide basic and systematic data for related research in the atmospheric, cryospheric, and environmental sciences in this unique region.
Gaurav Govardhan, Sachin D. Ghude, Rajesh Kumar, Sumit Sharma, Preeti Gunwani, Chinmay Jena, Prafull Yadav, Shubhangi Ingle, Sreyashi Debnath, Pooja Pawar, Prodip Acharja, Rajmal Jat, Gayatry Kalita, Rupal Ambulkar, Santosh Kulkarni, Akshara Kaginalkar, Vijay K. Soni, Ravi S. Nanjundiah, and Madhavan Rajeevan
Geosci. Model Dev., 17, 2617–2640, https://doi.org/10.5194/gmd-17-2617-2024, https://doi.org/10.5194/gmd-17-2617-2024, 2024
Short summary
Short summary
A newly developed air quality forecasting framework, Decision Support System (DSS), for air quality management in Delhi, India, provides source attribution with numerous emission reduction scenarios besides forecasts. DSS shows that during post-monsoon and winter seasons, Delhi and its neighboring districts contribute to 30 %–40 % each to pollution in Delhi. On average, a 40 % reduction in the emissions in Delhi and the surrounding districts would result in a 24 % reduction in Delhi's pollution.
Leon Kuhn, Steffen Beirle, Vinod Kumar, Sergey Osipov, Andrea Pozzer, Tim Bösch, Rajesh Kumar, and Thomas Wagner
Atmos. Chem. Phys., 24, 185–217, https://doi.org/10.5194/acp-24-185-2024, https://doi.org/10.5194/acp-24-185-2024, 2024
Short summary
Short summary
NO₂ is an important air pollutant. It was observed that the WRF-Chem model shows significant deviations in NO₂ abundance when compared to measurements. We use a 1-month simulation over central Europe to show that these deviations can be mostly resolved by reparameterization of the vertical mixing routine. In order to validate our results, they are compared to in situ, satellite, and MAX-DOAS measurements.
Yuling Hu, Haipeng Yu, Shichang Kang, Junhua Yang, Mukesh Rai, Xiufeng Yin, Xintong Chen, and Pengfei Chen
Atmos. Chem. Phys., 24, 85–107, https://doi.org/10.5194/acp-24-85-2024, https://doi.org/10.5194/acp-24-85-2024, 2024
Short summary
Short summary
The Tibetan Plateau (TP) saw a record-breaking aerosol pollution event from April 20 to May 10, 2016. We studied the impact of aerosol–meteorology feedback on the transboundary transport flux of black carbon (BC) during this severe pollution event. It was found that the aerosol–meteorology feedback decreases the transboundary transport flux of BC from the central and western Himalayas towards the TP. This study is of great significance for the protection of the ecological environment of the TP.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Xiufeng Yin, Dipesh Rupakheti, Guoshuai Zhang, Jiali Luo, Shichang Kang, Benjamin de Foy, Junhua Yang, Zhenming Ji, Zhiyuan Cong, Maheswar Rupakheti, Ping Li, Yuling Hu, and Qianggong Zhang
Atmos. Chem. Phys., 23, 10137–10143, https://doi.org/10.5194/acp-23-10137-2023, https://doi.org/10.5194/acp-23-10137-2023, 2023
Short summary
Short summary
The monthly mean surface ozone concentrations peaked earlier in the south in April and May and later in the north in June and July over the Tibetan Plateau. The migration of monthly surface ozone peaks was coupled with the synchronous movement of tropopause folds and the westerly jet that created conditions conducive to stratospheric ozone intrusion. Stratospheric ozone intrusion significantly contributed to surface ozone across the Tibetan Plateau.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Manu Goudar, Juliëtte C. S. Anema, Rajesh Kumar, Tobias Borsdorff, and Jochen Landgraf
Geosci. Model Dev., 16, 4835–4852, https://doi.org/10.5194/gmd-16-4835-2023, https://doi.org/10.5194/gmd-16-4835-2023, 2023
Short summary
Short summary
A framework was developed to automatically detect plumes and compute emission estimates with cross-sectional flux method (CFM) for biomass burning events in TROPOMI CO datasets using Visible Infrared Imaging Radiometer Suite active fire data. The emissions were more reliable when changing plume height in downwind direction was used instead of constant injection height. The CFM had uncertainty even when the meteorological conditions were accurate; thus there is a need for better inversion models.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Matthew S. Johnson, Amir H. Souri, Sajeev Philip, Rajesh Kumar, Aaron Naeger, Jeffrey Geddes, Laura Judd, Scott Janz, Heesung Chong, and John Sullivan
Atmos. Meas. Tech., 16, 2431–2454, https://doi.org/10.5194/amt-16-2431-2023, https://doi.org/10.5194/amt-16-2431-2023, 2023
Short summary
Short summary
Satellites provide vital information for studying the processes controlling ozone formation. Based on the abundance of particular gases in the atmosphere, ozone formation is sensitive to specific human-induced and natural emission sources. However, errors and biases in satellite retrievals hinder this data source’s application for studying ozone formation sensitivity. We conducted a thorough statistical evaluation of two commonly applied satellites for investigating ozone formation sensitivity.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023, https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire by decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offset some of the fire reduction.
Huiming Lin, Yindong Tong, Long Chen, Chenghao Yu, Zhaohan Chu, Qianru Zhang, Xiufeng Yin, Qianggong Zhang, Shichang Kang, Junfeng Liu, James Schauer, Benjamin de Foy, and Xuejun Wang
Atmos. Chem. Phys., 23, 3937–3953, https://doi.org/10.5194/acp-23-3937-2023, https://doi.org/10.5194/acp-23-3937-2023, 2023
Short summary
Short summary
Lhasa is the largest city in the Tibetan Plateau, and its atmospheric mercury concentrations represent the highest level of pollution in this region. Unexpectedly high concentrations of atmospheric mercury species were found. Combined with the trajectory analysis, the high atmospheric mercury concentrations may have originated from external long-range transport. Local sources, especially special mercury-related sources, are important factors influencing the variability of atmospheric mercury.
Prajjwal Rawat, Manish Naja, Evan Fishbein, Pradeep K. Thapliyal, Rajesh Kumar, Piyush Bhardwaj, Aditya Jaiswal, Sugriva N. Tiwari, Sethuraman Venkataramani, and Shyam Lal
Atmos. Meas. Tech., 16, 889–909, https://doi.org/10.5194/amt-16-889-2023, https://doi.org/10.5194/amt-16-889-2023, 2023
Short summary
Short summary
Satellite-based ozone observations have gained importance due to their global coverage. However, satellite-retrieved products are indirect and need to be validated, particularly over mountains. Ozonesondes launched from a Himalayan site are used to assess the Atmospheric Infrared Sounder (AIRS) ozone retrieval. AIRS is shown to overestimate ozone in the upper troposphere and lower stratosphere, while the differences from ozonesondes are more minor in the middle troposphere and stratosphere.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Pooja V. Pawar, Sachin D. Ghude, Gaurav Govardhan, Prodip Acharja, Rachana Kulkarni, Rajesh Kumar, Baerbel Sinha, Vinayak Sinha, Chinmay Jena, Preeti Gunwani, Tapan Kumar Adhya, Eiko Nemitz, and Mark A. Sutton
Atmos. Chem. Phys., 23, 41–59, https://doi.org/10.5194/acp-23-41-2023, https://doi.org/10.5194/acp-23-41-2023, 2023
Short summary
Short summary
In this study, for the first time in South Asia we compare simulated ammonia, ammonium, and total ammonia using the WRF-Chem model and MARGA measurements during winter in the Indo-Gangetic Plain region. Since observations show HCl promotes the fraction of high chlorides in Delhi, we added HCl / Cl emissions to the model. We conducted three sensitivity experiments with changes in HCl emissions, and improvements are reported in accurately simulating ammonia, ammonium, and total ammonia.
Shaoyong Wang, Xiaobo He, Shichang Kang, Hui Fu, and Xiaofeng Hong
The Cryosphere, 16, 5023–5040, https://doi.org/10.5194/tc-16-5023-2022, https://doi.org/10.5194/tc-16-5023-2022, 2022
Short summary
Short summary
This study used the sine-wave exponential model and long-term water stable isotopic data to estimate water mean residence time (MRT) and its influencing factors in a high-altitude permafrost catchment (5300 m a.s.l.) in the central Tibetan Plateau (TP). MRT for stream and supra-permafrost water was estimated at 100 and 255 d, respectively. Climate and vegetation factors affected the MRT of stream and supra-permafrost water mainly by changing the thickness of the permafrost active layer.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Vjeran Višnjević, Reinhard Drews, Clemens Schannwell, Inka Koch, Steven Franke, Daniela Jansen, and Olaf Eisen
The Cryosphere, 16, 4763–4777, https://doi.org/10.5194/tc-16-4763-2022, https://doi.org/10.5194/tc-16-4763-2022, 2022
Short summary
Short summary
We present a simple way to model the internal layers of an ice shelf and apply the method to the Roi Baudouin Ice Shelf in East Antarctica. Modeled results are compared to measurements obtained by radar. We distinguish between ice directly formed on the shelf and ice transported from the ice sheet, and we map the spatial changes in the volume of the locally accumulated ice. In this context, we discuss the sensitivity of the ice shelf to future changes in surface accumulation and basal melt.
Jizu Chen, Wentao Du, Shichang Kang, Xiang Qin, Weijun Sun, Yang Li, Yushuo Liu, Lihui Luo, and Youyan Jiang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-179, https://doi.org/10.5194/tc-2022-179, 2022
Preprint withdrawn
Short summary
Short summary
This study developed a dynamic deposition model of light absorbing particles (LAPs), which coupled with a surface energy and mass balance model. Based on the coupled model, we assessed atmospheric deposited BC effect on glacier melting, and quantified global warming and increment of emitted black carbon respective contributions to current accelerated glacier melting.
Xinghua Zhang, Wenhui Zhao, Lixiang Zhai, Miao Zhong, Jinsen Shi, Junying Sun, Yanmei Liu, Conghui Xie, Yulong Tan, Kemei Li, Xinlei Ge, Qi Zhang, Shichang Kang, and Jianzhong Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-211, https://doi.org/10.5194/essd-2022-211, 2022
Manuscript not accepted for further review
Short summary
Short summary
A comprehensive aerosol observation project was carried out in the Tibetan Plateau (TP) in recent years to investigate the properties and sources of atmospheric aerosols as well as their regional differences by performing multiple short-term intensive field observations. The real-time online high-time-resolution (hourly) data of aerosol properties in the different TP region are integrated in a new dataset and can provide supporting for related studies in in the TP.
Yongqin Liu, Pengcheng Fang, Bixi Guo, Mukan Ji, Pengfei Liu, Guannan Mao, Baiqing Xu, Shichang Kang, and Junzhi Liu
Earth Syst. Sci. Data, 14, 2303–2314, https://doi.org/10.5194/essd-14-2303-2022, https://doi.org/10.5194/essd-14-2303-2022, 2022
Short summary
Short summary
Glaciers are an important pool of microorganisms, organic carbon, and nitrogen. This study constructed the first dataset of microbial abundance and total nitrogen in Tibetan Plateau (TP) glaciers and the first dataset of dissolved organic carbon in ice cores on the TP. These new data could provide valuable information for research on the glacier carbon and nitrogen cycle and help in assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
Mukesh Rai, Shichang Kang, Junhua Yang, Maheswar Rupakheti, Dipesh Rupakheti, Lekhendra Tripathee, Yuling Hu, and Xintong Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-199, https://doi.org/10.5194/acp-2022-199, 2022
Revised manuscript not accepted
Short summary
Short summary
Our study revealed distinctive seasonality with the maximum and minimum aerosol concentrations during the winter and summer seasons respectively. However, interestingly summer high (AOD > 0.8) was observed over South Asia. The highest aerosols are laden over South Asia and East China within 1–2 km, however, aerosol overshooting found up to 10 km due to the deep convection process. Whereas, integrated aerosol transport for OC during spring was found to be 5 times higher than the annual mean.
Huiming Lin, Yindong Tong, Chenghao Yu, Long Chen, Xiufeng Yin, Qianggong Zhang, Shichang Kang, Lun Luo, James Schauer, Benjamin de Foy, and Xuejun Wang
Atmos. Chem. Phys., 22, 2651–2668, https://doi.org/10.5194/acp-22-2651-2022, https://doi.org/10.5194/acp-22-2651-2022, 2022
Short summary
Short summary
The Tibetan Plateau is known as
The Third Poleand is generally considered to be a clean area owing to its high altitude. However, it may receive be impacted by air pollutants transported from the Indian subcontinent. Pollutants generally enter the Tibetan Plateau in several ways. Among them is the Yarlung Zangbu–Brahmaputra Grand Canyon. In this study, we identified the influence of the Indian summer monsoon on the origin, transport, and behavior of mercury in this area.
Shichang Kang, Yulan Zhang, Pengfei Chen, Junming Guo, Qianggong Zhang, Zhiyuan Cong, Susan Kaspari, Lekhendra Tripathee, Tanguang Gao, Hewen Niu, Xinyue Zhong, Xintong Chen, Zhaofu Hu, Xiaofei Li, Yang Li, Bigyan Neupane, Fangping Yan, Dipesh Rupakheti, Chaman Gul, Wei Zhang, Guangming Wu, Ling Yang, Zhaoqing Wang, and Chaoliu Li
Earth Syst. Sci. Data, 14, 683–707, https://doi.org/10.5194/essd-14-683-2022, https://doi.org/10.5194/essd-14-683-2022, 2022
Short summary
Short summary
The Tibetan Plateau is important to the Earth’s climate. However, systematically observed data here are scarce. To perform more integrated and in-depth investigations of the origins and distributions of atmospheric pollutants and their impacts on cryospheric change, systematic data of black carbon and organic carbon from the atmosphere, glaciers, snow cover, precipitation, and lake sediment cores over the plateau based on the Atmospheric Pollution and Cryospheric Change program are provided.
Chenrui Diao, Yangyang Xu, and Shang-Ping Xie
Atmos. Chem. Phys., 21, 18499–18518, https://doi.org/10.5194/acp-21-18499-2021, https://doi.org/10.5194/acp-21-18499-2021, 2021
Short summary
Short summary
Anthropogenic aerosol (AA) emission has shown a zonal redistribution since the 1980s, with a decline in the Western Hemisphere (WH) high latitudes and an increase in the Eastern Hemisphere (EH) low latitudes. This study compares the role of zonally asymmetric forcings affecting the climate. The WH aerosol reduction dominates the poleward shift of the Hadley cell and the North Pacific warming, while the EH AA forcing is largely confined to the emission domain and induces local cooling responses.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Jinlei Chen, Shichang Kang, Wentao Du, Junming Guo, Min Xu, Yulan Zhang, Xinyue Zhong, Wei Zhang, and Jizu Chen
The Cryosphere, 15, 5473–5482, https://doi.org/10.5194/tc-15-5473-2021, https://doi.org/10.5194/tc-15-5473-2021, 2021
Short summary
Short summary
Sea ice is retreating with rapid warming in the Arctic. It will continue and approach the worst predicted pathway released by the IPCC. The irreversible tipping point might show around 2060 when the oldest ice will have completely disappeared. It has a huge impact on human production. Ordinary merchant ships will be able to pass the Northeast Passage and Northwest Passage by the midcentury, and the opening time will advance to the next 10 years for icebreakers with moderate ice strengthening.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Kun Wang, Shohei Hattori, Mang Lin, Sakiko Ishino, Becky Alexander, Kazuki Kamezaki, Naohiro Yoshida, and Shichang Kang
Atmos. Chem. Phys., 21, 8357–8376, https://doi.org/10.5194/acp-21-8357-2021, https://doi.org/10.5194/acp-21-8357-2021, 2021
Short summary
Short summary
Sulfate aerosols play an important climatic role and exert adverse effects on the ecological environment and human health. In this study, we present the triple oxygen isotopic composition of sulfate from the Mt. Everest region, southern Tibetan Plateau, and decipher the formation mechanisms of atmospheric sulfate in this pristine environment. The results indicate the important role of the S(IV) + O3 pathway in atmospheric sulfate formation promoted by conditions of high cloud water pH.
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Sabino Piazzolla, Gabriele Pfister, Rajesh Kumar, Carl Drews, Simone Tilmes, Louisa Emmons, and Matthew Johnson
Atmos. Chem. Phys., 21, 6129–6153, https://doi.org/10.5194/acp-21-6129-2021, https://doi.org/10.5194/acp-21-6129-2021, 2021
Short summary
Short summary
The tropospheric ozone lidar at the JPL Table Mountain Facility (TMF) was used to investigate the impact of Los Angeles (LA) Basin pollution transport and stratospheric intrusions in the planetary boundary layer on the San Gabriel Mountains. The results of this study indicate a dominant role of the LA Basin pollution on days when high ozone levels were observed at TMF (March–October period).
Sher Muhammad and Amrit Thapa
Earth Syst. Sci. Data, 13, 767–776, https://doi.org/10.5194/essd-13-767-2021, https://doi.org/10.5194/essd-13-767-2021, 2021
Short summary
Short summary
Snow is a dominant water resource in high-mountain Asia and crucial for mountain communities and downstream populations. The present MODIS snow products are significantly uncertain and not useful for observation and simulation of climate, hydrology, and other water-related studies. This study reduces uncertainty in the daily MODIS snow data and generates a MODIS Terra–Aqua combined product reducing uncertainties due to cloud cover, data gaps, and other errors caused by sensor limitations.
Julián Gelman Constantin, Lucas Ruiz, Gustavo Villarosa, Valeria Outes, Facundo N. Bajano, Cenlin He, Hector Bajano, and Laura Dawidowski
The Cryosphere, 14, 4581–4601, https://doi.org/10.5194/tc-14-4581-2020, https://doi.org/10.5194/tc-14-4581-2020, 2020
Short summary
Short summary
We present the results of two field campaigns and modeling activities on the impact of atmospheric particles on Alerce Glacier (Argentinean Andes). We found that volcanic ash remains at different snow layers several years after eruption, increasing light absorption on the glacier surface (with a minor contribution of soot). This leads to 36 % higher annual glacier melting. We find remarkably that volcano eruptions in 2011 and 2015 have a relevant effect on the glacier even in 2016 and 2017.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Yonghoon Choi, Joshua P. DiGangi, Glenn S. Diskin, Xiaomei Xu, Cenlin He, Helen Worden, Simone Tilmes, Rebecca Buchholz, Hannah S. Halliday, and Avelino F. Arellano
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-864, https://doi.org/10.5194/acp-2020-864, 2020
Revised manuscript not accepted
Short summary
Short summary
A specific demonstration of the potential use of correlative information from carbon monoxide to refine estimates of regional carbon dioxide emissions from fossil fuel combustion.
Chinmay Jena, Sachin D. Ghude, Rachana Kulkarni, Sreyashi Debnath, Rajesh Kumar, Vijay Kumar Soni, Prodip Acharja, Santosh H. Kulkarni, Manoj Khare, Akshara J. Kaginalkar, Dilip M. Chate, Kaushar Ali, Ravi S. Nanjundiah, and Madhavan N. Rajeevan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-673, https://doi.org/10.5194/acp-2020-673, 2020
Publication in ACP not foreseen
Short summary
Short summary
Simulations of atmospheric particulate matter (PM2.5) with WRF-Chem model with three different aerosol mechanisms coupled with gas-phase chemical schemes are compared to understand the spatial and temporal variability of PM2.5 over the Indo-Gangetic Plain (IGP) in the winter season. All three chemical schemes underestimate the observed concentrations of major aerosol composition and precursor gases over IGP which in turn affect the optical depth and overall performance of the model for PM2.5.
Yangyang Xu, Lei Lin, Simone Tilmes, Katherine Dagon, Lili Xia, Chenrui Diao, Wei Cheng, Zhili Wang, Isla Simpson, and Lorna Burnell
Earth Syst. Dynam., 11, 673–695, https://doi.org/10.5194/esd-11-673-2020, https://doi.org/10.5194/esd-11-673-2020, 2020
Short summary
Short summary
Two geoengineering schemes to mitigate global warming, (a) capturing atmospheric CO2 and (b) injecting stratospheric sulfur gas, are compared. Based on two sets of large-ensemble model experiments, we show that sulfur injection will effectively mitigate projected terrestrial drying over the Americas, and the mitigation benefit will emerge more quickly than with carbon capture. Innovative means of sulfur injection should continue to be explored as one potential low-cost climate solution.
Shuang Yi, Chunqiao Song, Kosuke Heki, Shichang Kang, Qiuyu Wang, and Le Chang
The Cryosphere, 14, 2267–2281, https://doi.org/10.5194/tc-14-2267-2020, https://doi.org/10.5194/tc-14-2267-2020, 2020
Short summary
Short summary
High-Asia glaciers have been observed to be retreating the fastest in the southeastern Tibeten Plateau, where vast amounts of glacier and snow feed the streamflow of the Brahmaputra. Here, we provide the first monthly glacier and snow mass balance during 2002–2017 based on satellite gravimetry. The results confirm previous long-term decreases but reveal strong seasonal variations. This work helps resolve previous divergent model estimates and underlines the importance of meltwater.
Meixin Zhang, Chun Zhao, Zhiyuan Cong, Qiuyan Du, Mingyue Xu, Yu Chen, Ming Chen, Rui Li, Yunfei Fu, Lei Zhong, Shichang Kang, Delong Zhao, and Yan Yang
Atmos. Chem. Phys., 20, 5923–5943, https://doi.org/10.5194/acp-20-5923-2020, https://doi.org/10.5194/acp-20-5923-2020, 2020
Short summary
Short summary
Analysis of multiple numerical experiments over the Himalayas and Tibetan Plateau (TP) shows that the complex topography results in 50 % stronger overall cross-Himalayan transport during the pre-monsoon season primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed in some valleys and deeper valley channels associated with larger transported BC mass volume, which leads to 30–50 % stronger BC radiative heating over the TP.
Meng Gao, Jinhui Gao, Bin Zhu, Rajesh Kumar, Xiao Lu, Shaojie Song, Yuzhong Zhang, Beixi Jia, Peng Wang, Gufran Beig, Jianlin Hu, Qi Ying, Hongliang Zhang, Peter Sherman, and Michael B. McElroy
Atmos. Chem. Phys., 20, 4399–4414, https://doi.org/10.5194/acp-20-4399-2020, https://doi.org/10.5194/acp-20-4399-2020, 2020
Short summary
Short summary
A regional fully coupled meteorology–chemistry model, Weather Research and Forecasting model with Chemistry (WRF-Chem), was employed to study the seasonality of ozone (O3) pollution and its sources in both China and India.
Md. Robiul Islam, Thilina Jayarathne, Isobel J. Simpson, Benjamin Werden, John Maben, Ashley Gilbert, Puppala S. Praveen, Sagar Adhikari, Arnico K. Panday, Maheswar Rupakheti, Donald R. Blake, Robert J. Yokelson, Peter F. DeCarlo, William C. Keene, and Elizabeth A. Stone
Atmos. Chem. Phys., 20, 2927–2951, https://doi.org/10.5194/acp-20-2927-2020, https://doi.org/10.5194/acp-20-2927-2020, 2020
Short summary
Short summary
The Kathmandu Valley experiences high levels of air pollution. In this study, atmospheric gases and particulate matter were characterized by online and off-line measurements, with an emphasis on understanding their sources. The major sources of particulate matter and trace gases were identified as garbage burning, biomass burning, and vehicles. The majority of secondary organic aerosol was attributed to anthropogenic precursors, while a minority was attributed to biogenic gases.
Sher Muhammad and Amrit Thapa
Earth Syst. Sci. Data, 12, 345–356, https://doi.org/10.5194/essd-12-345-2020, https://doi.org/10.5194/essd-12-345-2020, 2020
Short summary
Short summary
Snow is the major water resource in high-mountain Asia; therefore, it is crucial to continuously monitor it. Currently, remote sensing, mainly MODIS, is used for snow monitoring. However, the available MODIS snow product is not useful for various applications without postprocessing and improvement. This study reduces uncertainty in the MODIS snow data. We found approximately 50% underestimation and overestimation of snow cover by MODIS Terra–Aqua products, which were improved in this study.
Xuan Zhang, Haofei Zhang, Wen Xu, Xiaokang Wu, Geoffrey S. Tyndall, John J. Orlando, John T. Jayne, Douglas R. Worsnop, and Manjula R. Canagaratna
Atmos. Meas. Tech., 12, 5535–5545, https://doi.org/10.5194/amt-12-5535-2019, https://doi.org/10.5194/amt-12-5535-2019, 2019
Short summary
Short summary
We develop a new technique to characterize organic nitrates as intact molecules in atmospheric aerosols, and we apply this technique to identify hydroxy nitrates in secondary organic aerosols produced from the photochemical oxidation of isoprene.
Lei Lin, Andrew Gettelman, Yangyang Xu, Chenglai Wu, Zhili Wang, Nan Rosenbloom, Susan C. Bates, and Wenjie Dong
Geosci. Model Dev., 12, 3773–3793, https://doi.org/10.5194/gmd-12-3773-2019, https://doi.org/10.5194/gmd-12-3773-2019, 2019
Short summary
Short summary
Here we evaluate the performance of the Community Atmosphere Model version 6 (CAM6) released in 2018, with the default 1º horizontal resolution and a higher-resolution simulation (approximately 0.25º), against various precipitation observational datasets over Asia. With the prognostic treatment of precipitation processes (which is missing in CAM5) and the new microphysics module, CAM6 is able to better simulate climatological mean and extreme precipitation over Asia.
Wei Pu, Jiecan Cui, Tenglong Shi, Xuelei Zhang, Cenlin He, and Xin Wang
Atmos. Chem. Phys., 19, 9949–9968, https://doi.org/10.5194/acp-19-9949-2019, https://doi.org/10.5194/acp-19-9949-2019, 2019
Short summary
Short summary
LAPs (light-absorbing particles) deposited on snow can decrease snow albedo and increase the absorption of solar radiation. Radiative forcing by LAPs will affect the regional hydrological cycle and climate. We use MODIS observations to retrieve the radiative forcing by LAPs in snow across northeastern China (NEC). The results of radiative forcing present distinct spatial variability. We find that the biases are negatively correlated with LAP concentrations and range from
~ 5 % to ~ 350 %.
Xinghua Zhang, Jianzhong Xu, Shichang Kang, Qi Zhang, and Junying Sun
Atmos. Chem. Phys., 19, 7897–7911, https://doi.org/10.5194/acp-19-7897-2019, https://doi.org/10.5194/acp-19-7897-2019, 2019
Short summary
Short summary
Highly time resolved chemistry and sources of PM1 were measured by an Aerodyne HR-ToF-AMS at Waliguan Baseline Observatory, a high-altitude background station at the northeastern edge of Qinghai–Tibet Plateau (QTP), during summer 2017. Relatively higher mass concentration of PM1 and dominant sulfate contribution were observed in this site compared to those at other high-elevation sites in the southern or central QTP, indicating the different aerosol sources between them.
Xin Wan, Shichang Kang, Maheswar Rupakheti, Qianggong Zhang, Lekhendra Tripathee, Junming Guo, Pengfei Chen, Dipesh Rupakheti, Arnico K. Panday, Mark G. Lawrence, Kimitaka Kawamura, and Zhiyuan Cong
Atmos. Chem. Phys., 19, 2725–2747, https://doi.org/10.5194/acp-19-2725-2019, https://doi.org/10.5194/acp-19-2725-2019, 2019
Short summary
Short summary
The sources of primary and secondary aerosols in the Hindu Kush–Himalayan–Tibetan Plateau region are not well known. Organic molecular tracers are useful for aerosol source apportionment. The characterization of molecular tracers were first systemically investigated and the contribution from primary and secondary sources to carbonaceous aerosols was estimated in the Kathmandu Valley. Our results demonstrate that biomass burning contributed a significant fraction to OC in the Kathmandu Valley.
Yanqing An, Jianzhong Xu, Lin Feng, Xinghua Zhang, Yanmei Liu, Shichang Kang, Bin Jiang, and Yuhong Liao
Atmos. Chem. Phys., 19, 1115–1128, https://doi.org/10.5194/acp-19-1115-2019, https://doi.org/10.5194/acp-19-1115-2019, 2019
Short summary
Short summary
Detailed molecular chemical composition of water-soluble organic matter in the Himalayas was characterized by positive electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for the first time. Many products formed from biogenic volatile organic compounds and biomass-burning-emitted compounds were found in the organic compounds, suggesting the important contribution of these two sources in the Himalayas.
Huopo Chen, Huijun Wang, Jianqi Sun, Yangyang Xu, and Zhicong Yin
Atmos. Chem. Phys., 19, 233–243, https://doi.org/10.5194/acp-19-233-2019, https://doi.org/10.5194/acp-19-233-2019, 2019
Short summary
Short summary
Our results show that the anthropogenic air pollution over eastern China will increase considerably at the end of 21st century, even though we keep the aerosol emission constant throughout the experiment. Furthermore, estimation shows that the effect of climate change induced by the GHG warming can account for 11%–28% of the changes of anthropogenic air pollution days over this region.
Zhiwen Dong, Shichang Kang, Dahe Qin, Yaping Shao, Sven Ulbrich, and Xiang Qin
The Cryosphere, 12, 3877–3890, https://doi.org/10.5194/tc-12-3877-2018, https://doi.org/10.5194/tc-12-3877-2018, 2018
Short summary
Short summary
This study aimed to provide a first and unique record of physicochemical properties and mixing states of LAPs at the glacier and atmosphere interface over the northeastern Tibetan Plateau to determine the individual LAPs' structure aging and mixing state changes through the atmospheric deposition process from atmosphere to glacier–snowpack surface, thereby helping to characterize the LAPs' radiative forcing and climate effects in the cryosphere region.
Marianne Tronstad Lund, Gunnar Myhre, Amund Søvde Haslerud, Ragnhild Bieltvedt Skeie, Jan Griesfeller, Stephen Matthew Platt, Rajesh Kumar, Cathrine Lund Myhre, and Michael Schulz
Geosci. Model Dev., 11, 4909–4931, https://doi.org/10.5194/gmd-11-4909-2018, https://doi.org/10.5194/gmd-11-4909-2018, 2018
Short summary
Short summary
Atmospheric aerosols play a key role in the climate system, but their exact impact on the energy balance remains uncertain. Accurate representation of the geographical distribution and properties of aerosols in global models is key to reduce this uncertainty. Here we use a new emission inventory and a range of observations to carefully validate a state-of-the-art model and present an updated estimate of the net direct effect of anthropogenic aerosols since the preindustrial era.
J. Douglas Goetz, Michael R. Giordano, Chelsea E. Stockwell, Ted J. Christian, Rashmi Maharjan, Sagar Adhikari, Prakash V. Bhave, Puppala S. Praveen, Arnico K. Panday, Thilina Jayarathne, Elizabeth A. Stone, Robert J. Yokelson, and Peter F. DeCarlo
Atmos. Chem. Phys., 18, 14653–14679, https://doi.org/10.5194/acp-18-14653-2018, https://doi.org/10.5194/acp-18-14653-2018, 2018
Short summary
Short summary
Size distributions and emission factors of submicron aerosol were quantified using online techniques for a variety of common but under-sampled combustion sources in South Asia: wood and dung cooking fires, groundwater pumps, brick kilns, trash burning, and open burning of crop residues. Optical properties (brown carbon light absorption and the absorption Ångström exponent, AAE) of the emissions were also investigated. Contextual comparisons to the literature and other NAMaSTE results were made.
Zhiyuan Cong, Shaopeng Gao, Wancang Zhao, Xin Wang, Guangming Wu, Yulan Zhang, Shichang Kang, Yongqin Liu, and Junfeng Ji
The Cryosphere, 12, 3177–3186, https://doi.org/10.5194/tc-12-3177-2018, https://doi.org/10.5194/tc-12-3177-2018, 2018
Short summary
Short summary
Cryoconites from glaciers on the Tibetan Plateau and surrounding area were studied for iron oxides. We found that goethite is the predominant iron oxide form. Using the abundance, speciation and optical properties of iron oxides, the total light absorption was quantitatively attributed to goethite, hematite, black carbon and organic matter. Such findings are essential to understand the relative significance of anthropogenic and natural impacts.
Xintong Chen, Shichang Kang, Zhiyuan Cong, Junhua Yang, and Yaoming Ma
Atmos. Chem. Phys., 18, 12859–12875, https://doi.org/10.5194/acp-18-12859-2018, https://doi.org/10.5194/acp-18-12859-2018, 2018
Short summary
Short summary
To understand the impact of transboundary atmospheric black carbon on the Mt. Everest region and depict the transport pathways in different spatiotemporal scales, we first investigated the concentration level, temporal variation, and sources of black carbon based on high-resolution (2-year) measurements at Qomolangma (Mt. Everest) Station (4276 m a.s.l.). Next, the WRF-Chem simulations were used to reveal the transport mechanisms of black carbon from southern Asia to the Mt. Everest region.
Piyush Bhardwaj, Manish Naja, Maheswar Rupakheti, Aurelia Lupascu, Andrea Mues, Arnico Kumar Panday, Rajesh Kumar, Khadak Singh Mahata, Shyam Lal, Harish C. Chandola, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 11949–11971, https://doi.org/10.5194/acp-18-11949-2018, https://doi.org/10.5194/acp-18-11949-2018, 2018
Short summary
Short summary
This study provides information about the regional variabilities in some of the pollutants using observations in Nepal and India. It is shown that agricultural crop residue burning leads to a significant enhancement in ozone and CO over a wider region. Further, the wintertime higher ozone levels are shown to be largely due to local emissions, while regional transport could be important in spring and hence shows the role of regional sources versus local sources in the Kathmandu Valley.
Cenlin He, Mark G. Flanner, Fei Chen, Michael Barlage, Kuo-Nan Liou, Shichang Kang, Jing Ming, and Yun Qian
Atmos. Chem. Phys., 18, 11507–11527, https://doi.org/10.5194/acp-18-11507-2018, https://doi.org/10.5194/acp-18-11507-2018, 2018
Short summary
Short summary
Snow albedo plays a key role in the Earth and climate system. It can be affected by impurities and snow properties. This study implements new parameterizations into a widely used snow model to account for effects of snow shape and black carbon–snow mixing state on snow albedo reduction in the Tibetan Plateau. This study points toward an imperative need for extensive measurements and improved model characterization of snow grain shape and aerosol–snow mixing state in Tibet and elsewhere.
Xiufeng Yin, Shichang Kang, Benjamin de Foy, Yaoming Ma, Yindong Tong, Wei Zhang, Xuejun Wang, Guoshuai Zhang, and Qianggong Zhang
Atmos. Chem. Phys., 18, 10557–10574, https://doi.org/10.5194/acp-18-10557-2018, https://doi.org/10.5194/acp-18-10557-2018, 2018
Short summary
Short summary
Total gaseous mercury concentrations were measured at Nam Co Station on the inland Tibetan Plateau for ~ 3 years. The mean concentration of TGM during the entire monitoring period was 1.33 ± 0.24 ngm-3, ranking it the lowest in China and indicating the pristine atmospheric environment of the inland Tibetan Plateau. Variation of TGM at Nam Co was affected by regional surface reemission, vertical mixing and long-range transported atmospheric mercury, which was associated with the Indian monsoon.
Xiaokang Wu, Huang Yang, Darryn W. Waugh, Clara Orbe, Simone Tilmes, and Jean-Francois Lamarque
Atmos. Chem. Phys., 18, 7439–7452, https://doi.org/10.5194/acp-18-7439-2018, https://doi.org/10.5194/acp-18-7439-2018, 2018
Short summary
Short summary
The seasonal and interannual variability of transport times from northern mid-latitudes into the southern hemisphere is examined using simulations of
agetracers. The largest variability occurs near the surface close to the tropical convergence zones, but the peak is further south and there is a smaller tropical–extratropical contrast for tracers with more rapid loss. Hence the variability of trace gases in the southern extratropics will vary with their chemical lifetime.
Hewen Niu, Shichang Kang, Hailong Wang, Rudong Zhang, Xixi Lu, Yun Qian, Rukumesh Paudyal, Shijin Wang, Xiaofei Shi, and Xingguo Yan
Atmos. Chem. Phys., 18, 6441–6460, https://doi.org/10.5194/acp-18-6441-2018, https://doi.org/10.5194/acp-18-6441-2018, 2018
Short summary
Short summary
Deposition of light-absorbing carbonaceous aerosol on the surface of glaciers can greatly alter the energy fluxes of glaciers. Two years of continuous observations of carbonaceous aerosols in a glacierized region are analyzed. We mainly studied the light absorption properties of carbonaceous aerosol and have employed a global aerosol–climate model to estimate source attributions of atmospheric black carbon.
D. Rupakheti, S. Kang, Z. Cong, M. Rupakheti, L. Tripathee, A. K. Panday, and B. Holben
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1493–1497, https://doi.org/10.5194/isprs-archives-XLII-3-1493-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1493-2018, 2018
Chaman Gul, Siva Praveen Puppala, Shichang Kang, Bhupesh Adhikary, Yulan Zhang, Shaukat Ali, Yang Li, and Xiaofei Li
Atmos. Chem. Phys., 18, 4981–5000, https://doi.org/10.5194/acp-18-4981-2018, https://doi.org/10.5194/acp-18-4981-2018, 2018
Short summary
Short summary
Snow and ice samples were collected from six glaciers and multiple mountain valleys from northern Pakistan. Samples were analyzed for black carbon and water-insoluble organic carbon. Relatively high concentrations of black carbon, organic carbon, and dust were reported. Snow albedo and radiative forcing were estimated for the snow samples. Possible source regions of pollutants were identified through various techniques.
Xinghua Zhang, Jianzhong Xu, Shichang Kang, Yanmei Liu, and Qi Zhang
Atmos. Chem. Phys., 18, 4617–4638, https://doi.org/10.5194/acp-18-4617-2018, https://doi.org/10.5194/acp-18-4617-2018, 2018
Short summary
Short summary
Highly time and chemically resolved submicron aerosol properties were characterized online for the first time in a high-altitude site (Qomolangma station, 4276 m a.s.l.) in the northern Himalayas by using the Aerodyne HR-ToF-AMS. Biomass burning plumes were frequently observed and the dynamic processes (emissions, transport, and chemical processing) were characterized. The source and chemical composition of organic aerosol were further elucidated using positive matrix factorization analysis.
Haipeng Wang, Jianhui Chen, Shengda Zhang, David D. Zhang, Zongli Wang, Qinghai Xu, Shengqian Chen, Shijin Wang, Shichang Kang, and Fahu Chen
Clim. Past, 14, 383–396, https://doi.org/10.5194/cp-14-383-2018, https://doi.org/10.5194/cp-14-383-2018, 2018
Short summary
Short summary
The chironomid-inferred temperature record from Gonghai Lake exhibits a stepwise decreasing trend since 4 ka. A cold event in the Era of Disunity, the Sui-Tang Warm Period, the Medieval Warm Period and the Little Ice Age can all be recognized in our record, as well as in many other temperature reconstructions in China. Local wars in Shanxi Province, documented in the historical literature during the past 2700 years, are statistically significantly correlated with changes in temperature.
Thilina Jayarathne, Chelsea E. Stockwell, Prakash V. Bhave, Puppala S. Praveen, Chathurika M. Rathnayake, Md. Robiul Islam, Arnico K. Panday, Sagar Adhikari, Rashmi Maharjan, J. Douglas Goetz, Peter F. DeCarlo, Eri Saikawa, Robert J. Yokelson, and Elizabeth A. Stone
Atmos. Chem. Phys., 18, 2259–2286, https://doi.org/10.5194/acp-18-2259-2018, https://doi.org/10.5194/acp-18-2259-2018, 2018
Short summary
Short summary
Emissions of fine particulate matter and its constituents were quantified for a variety of under-sampled combustion sources in South Asia: wood and dung cooking fires, generators, groundwater pumps, brick kilns, trash burning, and open burning of biomasses. Garbage burning and three-stone cooking fires were among the highest emitters, while servicing of motor vehicles significantly reduced PM. These data may be used in source apportionment and to update regional and global emission inventories.
Yulan Zhang, Shichang Kang, Michael Sprenger, Zhiyuan Cong, Tanguang Gao, Chaoliu Li, Shu Tao, Xiaofei Li, Xinyue Zhong, Min Xu, Wenjun Meng, Bigyan Neupane, Xiang Qin, and Mika Sillanpää
The Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, https://doi.org/10.5194/tc-12-413-2018, 2018
Short summary
Short summary
Light-absorbing impurities deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snowpack and ice. This study focused on the black carbon and mineral dust in snow cover on the Tibetan Plateau. We discussed their concentrations, distributions, possible sources, and albedo reduction and radiative forcing. Findings indicated that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections.
Yingying Yan, Jintai Lin, and Cenlin He
Atmos. Chem. Phys., 18, 1185–1202, https://doi.org/10.5194/acp-18-1185-2018, https://doi.org/10.5194/acp-18-1185-2018, 2018
Short summary
Short summary
Examining observed and simulated ozone at about 1000 sites during 1990–2014, we find a clear diurnal cycle both in the magnitude of ozone trends and in the relative importance of climate variability versus anthropogenic emissions to ozone changes, which has policy implications to mitigate ozone at night and other non-peak hours.
Bin Zhao, Kuo-Nan Liou, Yu Gu, Jonathan H. Jiang, Qinbin Li, Rong Fu, Lei Huang, Xiaohong Liu, Xiangjun Shi, Hui Su, and Cenlin He
Atmos. Chem. Phys., 18, 1065–1078, https://doi.org/10.5194/acp-18-1065-2018, https://doi.org/10.5194/acp-18-1065-2018, 2018
Short summary
Short summary
The interactions between aerosols and ice clouds represent one of the largest uncertainties among anthropogenic forcings on climate change. We find that the responses of ice crystal effective radius, a key parameter determining ice clouds' net radiative effect, to aerosol loadings are modulated by water vapor amount and vary from a significant negative correlation in moist conditions (consistent with the “Twomey effect” for liquid clouds) to a strong positive correlation in dry conditions.
Xinyue Zhong, Tingjun Zhang, Shichang Kang, Kang Wang, Lei Zheng, Yuantao Hu, and Huijuan Wang
The Cryosphere, 12, 227–245, https://doi.org/10.5194/tc-12-227-2018, https://doi.org/10.5194/tc-12-227-2018, 2018
Jianzhong Xu, Qi Zhang, Jinsen Shi, Xinlei Ge, Conghui Xie, Junfeng Wang, Shichang Kang, Ruixiong Zhang, and Yuhang Wang
Atmos. Chem. Phys., 18, 427–443, https://doi.org/10.5194/acp-18-427-2018, https://doi.org/10.5194/acp-18-427-2018, 2018
Short summary
Short summary
This manuscript presents results from a comprehensive field study using an HR-AMS coupled with a suite of other instruments in central Tibetan Plateau. The study discusses the chemical composition, sources, and processes of submicron aerosol during the transition from pre-monsoon to monsoon. Organic aerosol was overall highly oxidized during the entire study with higher O / C ratios during the pre-monsoon period. Sensitivity of air pollution transport with synoptic process was also evaluated.
Youhua Tang, Mariusz Pagowski, Tianfeng Chai, Li Pan, Pius Lee, Barry Baker, Rajesh Kumar, Luca Delle Monache, Daniel Tong, and Hyun-Cheol Kim
Geosci. Model Dev., 10, 4743–4758, https://doi.org/10.5194/gmd-10-4743-2017, https://doi.org/10.5194/gmd-10-4743-2017, 2017
Short summary
Short summary
In order to evaluate the data assimilation tools for regional real-time PM2.5 forecasts, we applied a 3D-Var assimilation tool to adjust the aerosol initial condition by assimilating satellite-retrieved aerosol optical depth and surface PM2.5 observations for a regional air quality model, which is compared to another assimilation method, optimal interpolation. We discuss the pros and cons of these two assimilation methods based on the comparison of their 1-month four-cycles-per-day runs.
Lin Feng, Yanqing An, Jianzhong Xu, Shichang Kang, Xiaofei Li, Yongqiang Zhou, Yunlin Zhang, Bin Jiang, and Yuhong Liao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-507, https://doi.org/10.5194/bg-2017-507, 2017
Revised manuscript not accepted
Chaeyoon Cho, Sang-Woo Kim, Maheswar Rupakheti, Jin-Soo Park, Arnico Panday, Soon-Chang Yoon, Ji-Hyoung Kim, Hyunjae Kim, Haeun Jeon, Minyoung Sung, Bong Mann Kim, Seungkyu K. Hong, Rokjin J. Park, Dipesh Rupakheti, Khadak Singh Mahata, Puppala Siva Praveen, Mark G. Lawrence, and Brent Holben
Atmos. Chem. Phys., 17, 12617–12632, https://doi.org/10.5194/acp-17-12617-2017, https://doi.org/10.5194/acp-17-12617-2017, 2017
Short summary
Short summary
We investigated the optical and chemical properties and direct radiative effects of aerosols in the Kathmandu Valley. We concluded that the ratio of light-absorbing to scattering aerosols as well as the concentration of light-absorbing aerosols is much higher at Kathmandu than other comparable regions, and it contributes to a great atmospheric absorption efficiency. This study provides unprecedented insights into aerosol optical properties and their radiative forcings in the Kathmandu Valley.
Chaoliu Li, Fangping Yan, Shichang Kang, Pengfei Chen, Xiaowen Han, Zhaofu Hu, Guoshuai Zhang, Ye Hong, Shaopeng Gao, Bin Qu, Zhejing Zhu, Jiwei Li, Bing Chen, and Mika Sillanpää
Atmos. Chem. Phys., 17, 11899–11912, https://doi.org/10.5194/acp-17-11899-2017, https://doi.org/10.5194/acp-17-11899-2017, 2017
Short summary
Short summary
In this study, we found, due to contribution of carbonates, previously reported BC concentration in atmosphere of the Himalayas and Tibetan Plateau (HTP) were overestimated by around 39–52 %. Meanwhile, we found BC deposition of lake cores overestimated the atmospheric deposition of BC in the HTP; BC depositions of glacier region reflected actual values of 17.9 ± 5.3 mg m−2 a−1. The above results are critical for studying atmospheric distribution and chemical transport of BC in and around the HTP.
Xiufeng Yin, Shichang Kang, Benjamin de Foy, Zhiyuan Cong, Jiali Luo, Lang Zhang, Yaoming Ma, Guoshuai Zhang, Dipesh Rupakheti, and Qianggong Zhang
Atmos. Chem. Phys., 17, 11293–11311, https://doi.org/10.5194/acp-17-11293-2017, https://doi.org/10.5194/acp-17-11293-2017, 2017
Short summary
Short summary
We presented 5-year surface ozone measurements at Nam Co in the inland Tibetan Plateau and made a synthesis comparison of diurnal and seasonal patterns on regional and hemispheric scales. Surface ozone at Nam Co is mainly dominated by natural processes and is less influenced by stratospheric intrusions and human activities than on the rim of the Tibetan Plateau. Ozone at Nam Co is representative of background that is valuable for studying ozone-related effects on large scales.
Benjamin M. Sanderson, Yangyang Xu, Claudia Tebaldi, Michael Wehner, Brian O'Neill, Alexandra Jahn, Angeline G. Pendergrass, Flavio Lehner, Warren G. Strand, Lei Lin, Reto Knutti, and Jean Francois Lamarque
Earth Syst. Dynam., 8, 827–847, https://doi.org/10.5194/esd-8-827-2017, https://doi.org/10.5194/esd-8-827-2017, 2017
Short summary
Short summary
We present the results of a set of climate simulations designed to simulate futures in which the Earth's temperature is stabilized at the levels referred to in the 2015 Paris Agreement. We consider the necessary future emissions reductions and the aspects of extreme weather which differ significantly between the 2 and 1.5 °C climate in the simulations.
Zhili Wang, Lei Lin, Meilin Yang, Yangyang Xu, and Jiangnan Li
Atmos. Chem. Phys., 17, 11075–11088, https://doi.org/10.5194/acp-17-11075-2017, https://doi.org/10.5194/acp-17-11075-2017, 2017
Short summary
Short summary
There is still debate over whether the total aerosols enhance or weaken the East Asian summer monsoon (EASM). This could be related to both the complicated nature of aerosol chemical compositions and ocean responses to aerosols. Our results show that there is a clear distinction between fast and slow responses of the EASM to scattering and absorbing aerosols, and the slow response due to aerosol-induced change in sea surface temperature plays an important role in driving the change of the EASM.
Dipesh Rupakheti, Bhupesh Adhikary, Puppala Siva Praveen, Maheswar Rupakheti, Shichang Kang, Khadak Singh Mahata, Manish Naja, Qianggong Zhang, Arnico Kumar Panday, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 11041–11063, https://doi.org/10.5194/acp-17-11041-2017, https://doi.org/10.5194/acp-17-11041-2017, 2017
Short summary
Short summary
For the first time, atmospheric composition was monitored during pre-monsoon season of 2013 at Lumbini (UNESCO world heritage site as birthplace of the Buddha). PM and O3 frequently exceeded WHO guidelines. Pollution concentration, diurnal characteristics and influence of open burning on air quality in Lumbini were investigated. Potential source regions were also identified. Results show that air pollution at this site is of a great concern, requiring prompt attention for mitigation.
Ling Qi, Qinbin Li, Daven K. Henze, Hsien-Liang Tseng, and Cenlin He
Atmos. Chem. Phys., 17, 9697–9716, https://doi.org/10.5194/acp-17-9697-2017, https://doi.org/10.5194/acp-17-9697-2017, 2017
Short summary
Short summary
We find that Asian anthropogenic sources are the largest contributors (~ 40 %) to surface BC in spring in the Arctic, inconsistent with previous studies which repeatedly identified sources of surface BC as anthropogenic emissions from Europe and Russia. It takes 12–17 days for Asian anthropogenic emissions to be transported to the Arctic surface. Additionally, a large fraction (40–65 %) of Asian contribution is in the form of chronic pollution on 1- to 2-month timescales.
Xin Wan, Shichang Kang, Quanlian Li, Dipesh Rupakheti, Qianggong Zhang, Junming Guo, Pengfei Chen, Lekhendra Tripathee, Maheswar Rupakheti, Arnico K. Panday, Wu Wang, Kimitaka Kawamura, Shaopeng Gao, Guangming Wu, and Zhiyuan Cong
Atmos. Chem. Phys., 17, 8867–8885, https://doi.org/10.5194/acp-17-8867-2017, https://doi.org/10.5194/acp-17-8867-2017, 2017
Short summary
Short summary
Biomass burning (BB) tracers in the aerosols in Lumbini, northern IGP, were studied for the first time. The levoglucosan was the predominant tracer and BB significantly contributed to the air quality in Lumbini. Mixed crop residues and hardwood were main burning materials. BB emissions constituted large fraction of OC, especially during the post-monsoon season. The sources of BB aerosols in Lumbini varies seasonally due to the influence of local emissions and long-range transport.
Ling Qi, Qinbin Li, Cenlin He, Xin Wang, and Jianping Huang
Atmos. Chem. Phys., 17, 7459–7479, https://doi.org/10.5194/acp-17-7459-2017, https://doi.org/10.5194/acp-17-7459-2017, 2017
Short summary
Short summary
Black carbon (BC) is the second only to CO2 in heating the planet, but the simulation of BC is associated with large uncertainties. BC burden is largely underestimated over land and overestimated over ocean. Our study finds that a missing process in current Wegener–Bergeron–Findeisen models largely explains the discrepancy in BC simulation over land. We call for more observations of BC in mixed-phase clouds to understand this process and improve the simulation of global BC.
Kabindra M. Shakya, Maheswar Rupakheti, Anima Shahi, Rejina Maskey, Bidya Pradhan, Arnico Panday, Siva P. Puppala, Mark Lawrence, and Richard E. Peltier
Atmos. Chem. Phys., 17, 6503–6516, https://doi.org/10.5194/acp-17-6503-2017, https://doi.org/10.5194/acp-17-6503-2017, 2017
Short summary
Short summary
Particulate matter levels were monitored at six major roadway intersections in the Kathmandu Valley during two seasons in 2014. The study documented distinct seasonal (dry season versus wet season) and diel variations in particulate matter levels. This study suggests traffic-related emissions, and soil–dust–construction materials were found to be a major source of particulate matter at these locations.
Sujan Shrestha, Siva Praveen Puppala, Bhupesh Adhikary, Kundan Lal Shrestha, and Arnico K. Panday
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-287, https://doi.org/10.5194/acp-2017-287, 2017
Revised manuscript not accepted
Ling Qi, Qinbin Li, Yinrui Li, and Cenlin He
Atmos. Chem. Phys., 17, 1037–1059, https://doi.org/10.5194/acp-17-1037-2017, https://doi.org/10.5194/acp-17-1037-2017, 2017
Short summary
Short summary
The Arctic is the most vulnerable region for climate change. Black carbon (BC) in air and deposited on snow and ice warms the Arctic substantially, but simulations of BC climate effects are associated with large uncertainties. To reduce this uncertainty, it is imperative to improve the simulation of BC distribution in the Arctic. We evaluate the effects of controlling factors (emissions, dry and wet deposition) on BC distribution and call for more observations to constrain these processes.
Bin Liu, Zhiyuan Cong, Yuesi Wang, Jinyuan Xin, Xin Wan, Yuepeng Pan, Zirui Liu, Yonghong Wang, Guoshuai Zhang, Zhongyan Wang, Yongjie Wang, and Shichang Kang
Atmos. Chem. Phys., 17, 449–463, https://doi.org/10.5194/acp-17-449-2017, https://doi.org/10.5194/acp-17-449-2017, 2017
Short summary
Short summary
The first observation net of background atmospheric aerosols of the Himalayas and Tibetan Plateau were conducted in 2011–2013, and the aerosol mass loadings were especially illustrated in this paper. Consequently, these terrestrial aerosol masses were strongly ecosystem-dependent, with various seasonality and diurnal cycles at these sites. These findings implicate that regional characteristics and fine-particle emissions need to be treated sensitively when assessing their climatic effects.
Jianzhong Xu, Jinsen Shi, Qi Zhang, Xinlei Ge, Francesco Canonaco, André S. H. Prévôt, Matthias Vonwiller, Sönke Szidat, Jinming Ge, Jianmin Ma, Yanqing An, Shichang Kang, and Dahe Qin
Atmos. Chem. Phys., 16, 14937–14957, https://doi.org/10.5194/acp-16-14937-2016, https://doi.org/10.5194/acp-16-14937-2016, 2016
Short summary
Short summary
This study deployed an AMS field study in Lanzhou, a city in northwestern China, evaluating the chemical composition, sources, and processes of urban aerosols during wintertime. In comparison with the results during summer in Lanzhou, the air pollution during winter was more severe and the sources were more complex. In addition, this paper estimates the contributions of fossil and non-fossil sources of organic carbon to primary and secondary organic carbon using the carbon isotopic method.
Fangping Yan, Shichang Kang, Chaoliu Li, Yulan Zhang, Xiang Qin, Yang Li, Xiaopeng Zhang, Zhaofu Hu, Pengfei Chen, Xiaofei Li, Bin Qu, and Mika Sillanpää
The Cryosphere, 10, 2611–2621, https://doi.org/10.5194/tc-10-2611-2016, https://doi.org/10.5194/tc-10-2611-2016, 2016
Short summary
Short summary
DOC release of Laohugou Glacier No. 12 was 192 kg km−2 yr−1, of which 43.2 % could be decomposed and return to atmosphere as CO2 within 28 days, producing positive feedback in the warming process and influencing downstream ecosystems. Radiative forcing of snow pit DOC was calculated to be 0.43 W m−2, accounting for about 10 % of the radiative forcing caused by BC. Therefore, DOC is also a light-absorbing agent in glacierized regions, influencing the albedo of glacier surface and glacier melting.
Chelsea E. Stockwell, Ted J. Christian, J. Douglas Goetz, Thilina Jayarathne, Prakash V. Bhave, Puppala S. Praveen, Sagar Adhikari, Rashmi Maharjan, Peter F. DeCarlo, Elizabeth A. Stone, Eri Saikawa, Donald R. Blake, Isobel J. Simpson, Robert J. Yokelson, and Arnico K. Panday
Atmos. Chem. Phys., 16, 11043–11081, https://doi.org/10.5194/acp-16-11043-2016, https://doi.org/10.5194/acp-16-11043-2016, 2016
Short summary
Short summary
We present the first, or rare, field measurements in South Asia of emission factors for up to 80 gases (pollutants, greenhouse gases, and precursors) and black carbon and aerosol optical properties at 405 and 870 nm for many previously under-sampled sources that are important in developing countries such as cooking with dung and wood, garbage and crop residue burning, brick kilns, motorcycles, generators and pumps, etc. Brown carbon contributes significantly to total aerosol absorption.
Shengyun Chen, Wenjie Liu, Qian Zhao, Lin Zhao, Qingbai Wu, Xingjie Lu, Shichang Kang, Xiang Qin, Shilong Chen, Jiawen Ren, and Dahe Qin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-80, https://doi.org/10.5194/tc-2016-80, 2016
Revised manuscript not accepted
Short summary
Short summary
Experimental warming was manipulated using open top chambers in alpine grassland ecosystem in the permafrost regions of the Qinghai-Tibet Plateau. The results revealed variations of earlier thawing, later freezing and longer freezing-thawing periods in shallow soil. Further, the estimated permafrost table declined under the warming scenarios. The work will be helpful to evaluate the stability of Qinghai-Tibet Railway/Highway and estimate the release of carbon under the future climate warming.
Bin Zhao, Kuo-Nan Liou, Yu Gu, Cenlin He, Wee-Liang Lee, Xing Chang, Qinbin Li, Shuxiao Wang, Hsien-Liang R. Tseng, Lai-Yung R. Leung, and Jiming Hao
Atmos. Chem. Phys., 16, 5841–5852, https://doi.org/10.5194/acp-16-5841-2016, https://doi.org/10.5194/acp-16-5841-2016, 2016
Short summary
Short summary
We examine the impact of buildings on surface solar fluxes in Beijing by accounting for their 3-D structures. We find that inclusion of buildings changes surface solar fluxes by within ±1 W m−2, ±1–10 W m−2, and up to ±100 W m−2 at grid resolutions of 4 km, 800 m, and 90 m, respectively. We can resolve pairs of positive-negative flux deviations on different sides of buildings at ≤ 800 m resolutions. We should treat building-effect on solar fluxes differently in models with different resolutions.
Kristina Pistone, Puppala S. Praveen, Rick M. Thomas, Veerabhadran Ramanathan, Eric M. Wilcox, and Frida A.-M. Bender
Atmos. Chem. Phys., 16, 5203–5227, https://doi.org/10.5194/acp-16-5203-2016, https://doi.org/10.5194/acp-16-5203-2016, 2016
Short summary
Short summary
A recent field campaign (CARDEX) in the northern Indian Ocean concurrently measured cloud and aerosol properties and atmospheric structure and dynamics from a ground-based observatory and unmanned aerial vehicles (UAVs). These new measurements show a correlation between highly polluted conditions and increased cloud water content, concurrent with higher atmospheric temperature and humidity. Such correlations may be of interest in future studies of the effects of pollution on cloud properties.
Yang Li, Jizu Chen, Shichang Kang, Chaoliu Li, Bin Qu, Lekhendra Tripathee, Fangping Yan, Yulan Zhang, Junmin Guo, Chaman Gul, and Xiang Qin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-32, https://doi.org/10.5194/tc-2016-32, 2016
Preprint withdrawn
Short summary
Short summary
To our knowledge, this study constitutes the first quantitative dataset of the impacts of light absorbing particles (LAPs) on glacier ablation estimated directly from the northeastern edge of the Tibetan Plateau (TP).The average concentrations of black carbon (BC) and mineral dust (MD) in surface snow and ice at Laohugou Glacier No. 12 (LHG) were much higher than those detected in snow pits and ice cores in TP and Tien Shan mountains.
Cenlin He, Qinbin Li, Kuo-Nan Liou, Ling Qi, Shu Tao, and Joshua P. Schwarz
Atmos. Chem. Phys., 16, 3077–3098, https://doi.org/10.5194/acp-16-3077-2016, https://doi.org/10.5194/acp-16-3077-2016, 2016
Short summary
Short summary
Blarck carbon aging significantly affects its global distribution and thus climatic effects. This study develops a microphysics-based BC aging scheme in a global model, which substantially improves model simulations of BC over the remote Pacific. The microphysical scheme shows fast aging over source regions and much slower aging in remote regions. The microphysical aging significantly reduces global BC burden and lifetime, showing important implications for the estimate of BC radiative effects.
Y. Xu, V. Ramanathan, and W. M. Washington
Atmos. Chem. Phys., 16, 1303–1315, https://doi.org/10.5194/acp-16-1303-2016, https://doi.org/10.5194/acp-16-1303-2016, 2016
Short summary
Short summary
We show that black carbon aerosol pollution is likely the dominant factor in causing the accelerated retreat of snowpack in Himalayas. The simulated snow fraction and surface albedo change at the surface, as well as the enhanced warming at higher elevations, are remarkably similar to observations in past decades. The reason for the model's ability to simulate the observed trends is that we replace the model-simulated black carbon forcing with one that is constrained by observations.
F. Höpner, F. A.-M. Bender, A. M. L. Ekman, P. S. Praveen, C. Bosch, J. A. Ogren, A. Andersson, Ö. Gustafsson, and V. Ramanathan
Atmos. Chem. Phys., 16, 1045–1064, https://doi.org/10.5194/acp-16-1045-2016, https://doi.org/10.5194/acp-16-1045-2016, 2016
Short summary
Short summary
The paper presents aerosol properties measured during the Cloud Aerosol Radiative Forcing Experiment (CARDEX) on the Maldives Islands in winter 2012. The vertical distribution of absorbing aerosol which is very relevant to the radiative forcing in that region, is investigated. A method for determining particle absorption and equivalent black carbon concentration from lidar extinction coefficients, characteristic single scattering albedo and mass absorption efficiency, is presented and evaluated.
E. W. Butt, A. Rap, A. Schmidt, C. E. Scott, K. J. Pringle, C. L. Reddington, N. A. D. Richards, M. T. Woodhouse, J. Ramirez-Villegas, H. Yang, V. Vakkari, E. A. Stone, M. Rupakheti, P. S. Praveen, P. G. van Zyl, J. P. Beukes, M. Josipovic, E. J. S. Mitchell, S. M. Sallu, P. M. Forster, and D. V. Spracklen
Atmos. Chem. Phys., 16, 873–905, https://doi.org/10.5194/acp-16-873-2016, https://doi.org/10.5194/acp-16-873-2016, 2016
Short summary
Short summary
We estimate the impact of residential emissions (cooking and heating) on atmospheric aerosol, human health, and climate. We find large contributions to annual mean ambient PM2.5 in residential sources regions resulting in significant but uncertain global premature mortality when key uncertainties in emission flux are considered. We show that residential emissions exert an uncertain global radiative effect and suggest more work is needed to characterise residential emissions climate importance.
C. He, K.-N. Liou, Y. Takano, R. Zhang, M. Levy Zamora, P. Yang, Q. Li, and L. R. Leung
Atmos. Chem. Phys., 15, 11967–11980, https://doi.org/10.5194/acp-15-11967-2015, https://doi.org/10.5194/acp-15-11967-2015, 2015
Y. H. Mao, Q. B. Li, D. K. Henze, Z. Jiang, D. B. A. Jones, M. Kopacz, C. He, L. Qi, M. Gao, W.-M. Hao, and K.-N. Liou
Atmos. Chem. Phys., 15, 7685–7702, https://doi.org/10.5194/acp-15-7685-2015, https://doi.org/10.5194/acp-15-7685-2015, 2015
S. Song, N. E. Selin, A. L. Soerensen, H. Angot, R. Artz, S. Brooks, E.-G. Brunke, G. Conley, A. Dommergue, R. Ebinghaus, T. M. Holsen, D. A. Jaffe, S. Kang, P. Kelley, W. T. Luke, O. Magand, K. Marumoto, K. A. Pfaffhuber, X. Ren, G.-R. Sheu, F. Slemr, T. Warneke, A. Weigelt, P. Weiss-Penzias, D. C. Wip, and Q. Zhang
Atmos. Chem. Phys., 15, 7103–7125, https://doi.org/10.5194/acp-15-7103-2015, https://doi.org/10.5194/acp-15-7103-2015, 2015
Short summary
Short summary
A better knowledge of mercury (Hg) emission fluxes into the global atmosphere is important for assessing its human health impacts and evaluating the effectiveness of corresponding policy actions. We for the first time apply a top-down approach at a global scale to quantitatively estimate present-day mercury emission sources as well as key parameters in a chemical transport model, in order to better constrain the global biogeochemical cycle of mercury.
S. Kang, F. Wang, U. Morgenstern, Y. Zhang, B. Grigholm, S. Kaspari, M. Schwikowski, J. Ren, T. Yao, D. Qin, and P. A. Mayewski
The Cryosphere, 9, 1213–1222, https://doi.org/10.5194/tc-9-1213-2015, https://doi.org/10.5194/tc-9-1213-2015, 2015
Short summary
Y. Xu and S.-P. Xie
Atmos. Chem. Phys., 15, 5827–5833, https://doi.org/10.5194/acp-15-5827-2015, https://doi.org/10.5194/acp-15-5827-2015, 2015
Short summary
Short summary
Strong solar heating by absorbing aerosols (black carbon) is considered more effective in inducing atmospheric circulation change than reflecting aerosols (sulfate), which do not have direct atmospheric heating effect. Surprisingly, we show that reflecting aerosols induce tropospheric temperature and circulation response similar to that induced by absorbing aerosols. The common response is mediated by the ocean through SST gradient, a process overlooked so far in aerosol-climate connection.
R. Kumar, M. C. Barth, V. S. Nair, G. G. Pfister, S. Suresh Babu, S. K. Satheesh, K. Krishna Moorthy, G. R. Carmichael, Z. Lu, and D. G. Streets
Atmos. Chem. Phys., 15, 5415–5428, https://doi.org/10.5194/acp-15-5415-2015, https://doi.org/10.5194/acp-15-5415-2015, 2015
Short summary
Short summary
We examine differences in the surface BC between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identify dominant sources of BC in South Asia during ICARB. Anthropogenic emissions were the main source of BC during ICARB and had about 5 times stronger influence on the BoB compared to the AS. Regional-scale transport contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions.
C. He, Q. B. Li, K. N. Liou, J. Zhang, L. Qi, Y. Mao, M. Gao, Z. Lu, D. G. Streets, Q. Zhang, M. M. Sarin, and K. Ram
Atmos. Chem. Phys., 14, 7091–7112, https://doi.org/10.5194/acp-14-7091-2014, https://doi.org/10.5194/acp-14-7091-2014, 2014
R. Kumar, M. C. Barth, S. Madronich, M. Naja, G. R. Carmichael, G. G. Pfister, C. Knote, G. P. Brasseur, N. Ojha, and T. Sarangi
Atmos. Chem. Phys., 14, 6813–6834, https://doi.org/10.5194/acp-14-6813-2014, https://doi.org/10.5194/acp-14-6813-2014, 2014
R. Kumar, M. C. Barth, G. G. Pfister, M. Naja, and G. P. Brasseur
Atmos. Chem. Phys., 14, 2431–2446, https://doi.org/10.5194/acp-14-2431-2014, https://doi.org/10.5194/acp-14-2431-2014, 2014
Y. Xu, D. Zaelke, G. J. M. Velders, and V. Ramanathan
Atmos. Chem. Phys., 13, 6083–6089, https://doi.org/10.5194/acp-13-6083-2013, https://doi.org/10.5194/acp-13-6083-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
High ice-nucleating particle concentrations associated with Arctic haze in springtime cold-air outbreaks
CCN estimations at a high-altitude remote site: role of organic aerosol variability and hygroscopicity
Aerosol hygroscopicity over the southeast Atlantic Ocean during the biomass burning season – Part 1: From the perspective of scattering enhancement
Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: increase in particulate matter concentrations across New Mexico and West Texas
Large spatiotemporal variability in aerosol properties over central Argentina during the CACTI field campaign
Quantification and characterization of primary biological aerosol particles and microbes aerosolized from Baltic seawater
Brownness of organics in anthropogenic biomass burning aerosols over South Asia
Source apportionment of particle number size distribution at the street canyon and urban background sites
Long-range transport of coarse mineral dust: an evaluation of the Met Office Unified Model against aircraft observations
Extreme Saharan dust events expand northward over the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 episodes
Atmospheric black carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sources
Changing optical properties of black carbon and brown carbon aerosols during long-range transport from the Indo-Gangetic Plain to the equatorial Indian Ocean
Aerosol size distribution properties associated with cold-air outbreaks in the Norwegian Arctic
Ice-nucleating particles active below −24 °C in a Finnish boreal forest and their relationship to bioaerosols
Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise
Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland
Multi-year gradient measurements of sea spray fluxes over the Baltic Sea and the North Atlantic Ocean
External particle mixing influences hygroscopicity in a sub-urban area
Measurement report: In situ vertical profiles of below-cloud aerosol over the central Greenland Ice Sheet
Occurrence, abundance, and formation of atmospheric tarballs from a wide range of wildfires in the western US
Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei, and radiative forcing – results from 5-year observations in central Europe
Simulated contrail-processed aviation soot aerosols are poor ice-nucleating particles at cirrus temperatures
Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Quantifying the dust direct radiative effect in the southwestern United States: findings from multiyear measurements
How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Markedly different impacts of primary emissions and secondary aerosol formation on aerosol mixing states revealed by simultaneous measurements of CCNC, H(/V)TDMA, and SP2
Aerosol spectral optical properties in the Paris urban area, and its peri−urban and forested surroundings during summer 2022 from ACROSS surface observations
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Measurement report: Analysis of aerosol optical depth variation at Zhongshan Station in Antarctica
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires
Attribution of aerosol particle number size distributions to main sources using an 11-year urban dataset
Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals
Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
Measurement report: A comparison of ground-level ice-nucleating-particle abundance and aerosol properties during autumn at contrasting marine and terrestrial locations
Efficient droplet activation of ambient black carbon particles in a suburban environment
Tropospheric sulfate from Cumbre Vieja (La Palma) observed over Cabo Verde contrasted with background conditions: a lidar case study of aerosol extinction, backscatter, depolarization and lidar ratio profiles at 355, 532 and 1064 nm
The radiative impact of biomass burning aerosols on dust emissions over Namibia and the long-range transport of smoke observed during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) campaign
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Amazonian aerosol size distributions in a lognormal phase space: characteristics and trajectories
Measurement report: Hygroscopicity of size-selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of chloride aerosol
An observation-constrained estimation of brown carbon aerosol direct radiative effects
The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air
Optical properties and simple forcing efficiency of the organic aerosols and black carbon emitted by residential wood burning in rural central Europe
Particle phase state and aerosol liquid water greatly impact secondary aerosol formation: insights into phase transition and its role in haze events
Measurement Report: Comparative Analysis of Fluorescing African Dust Particles in Spain and Puerto Rico
Measurement report: Nocturnal subsidence behind the cold front enhances surface particulate matter in plains regions: observations from the mobile multi-lidar system
Increase in precipitation scavenging contributes to long-term reductions of light-absorbing aerosol in the Arctic
Sea spray emissions from the Baltic Sea: comparison of aerosol eddy covariance fluxes and chamber-simulated sea spray emissions
Higher absorption enhancement of black carbon in summer shown by 2-year measurements at the high-altitude mountain site of Pic du Midi Observatory in the French Pyrenees
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 14045–14072, https://doi.org/10.5194/acp-24-14045-2024, https://doi.org/10.5194/acp-24-14045-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) allow ice to form in clouds at temperatures warmer than −35°C. We measured INP concentrations over the Norwegian and Barents seas in weather events where cold air is ejected from the Arctic. These concentrations were among the highest measured in the Arctic. It is likely that the INPs were transported to the Arctic from distant regions. These results show it is important to consider hemispheric-scale INP processes to understand INP concentrations in the Arctic.
Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos
Atmos. Chem. Phys., 24, 13865–13888, https://doi.org/10.5194/acp-24-13865-2024, https://doi.org/10.5194/acp-24-13865-2024, 2024
Short summary
Short summary
This study provides valuable insights to improve cloud condensation nuclei (CCN) estimations at a high-altitude remote site which is influenced by nearby urban pollution. Understanding the factors that affect CCN estimations is essential to improve the CCN data coverage worldwide and assess aerosol–cloud interactions on a global scale. This is crucial for improving climate models, since aerosol–cloud interactions are the most important source of uncertainty in climate projections.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, Paola Formenti, and Steven G. Howell
Atmos. Chem. Phys., 24, 13849–13864, https://doi.org/10.5194/acp-24-13849-2024, https://doi.org/10.5194/acp-24-13849-2024, 2024
Short summary
Short summary
Using airborne measurements over the southeast Atlantic Ocean, we examined how much moisture aerosols take up during Africa’s biomass burning season. Our study revealed the important role of organic aerosols and introduced a predictive model for moisture uptake, accounting for organics, sulfate, and black carbon, summarizing results from various campaigns. These findings improve our understanding of aerosol–moisture interactions and their radiative effects in this climatically critical region.
Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer
Atmos. Chem. Phys., 24, 13733–13750, https://doi.org/10.5194/acp-24-13733-2024, https://doi.org/10.5194/acp-24-13733-2024, 2024
Short summary
Short summary
On 26 February 2023, New Mexico and West Texas were impacted by a severe dust storm. To analyze this storm, 28 meteorological stations and 19 PM2.5 and PM10 stations were used. Dust particles were in the air for 16 h, and dust storm conditions lasted for up to 120 min. Hourly PM2.5 and PM10 concentrations were up to 518 and 9983 µg m−3, respectively. For Lubbock, Texas, the maximum PM2.5 concentrations were the highest ever recorded.
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024, https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary
Short summary
Aerosol property measurements recently collected on the ground and by a research aircraft in central Argentina during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign exhibit large spatial and temporal variability. These measurements coupled with coincident meteorological information provide a valuable data set needed to evaluate and improve model predictions of aerosols in a traditionally data-sparse region of South America.
Julika Zinke, Gabriel Pereira Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 13413–13428, https://doi.org/10.5194/acp-24-13413-2024, https://doi.org/10.5194/acp-24-13413-2024, 2024
Short summary
Short summary
Bioaerosols, which can influence climate and human health, were studied in the Baltic Sea. In May and August 2021, we used a sea spray simulation chamber during two ship-based campaigns to collect and measure these aerosols. We found that microbes were enriched in air compared to seawater. Bacterial diversity was analysed using DNA sequencing. Our methods provided consistent estimates of microbial emission fluxes, aligning with previous studies.
Chimurkar Navinya, Taveen Singh Kapoor, Gupta Anurag, Chandra Venkataraman, Harish C. Phuleria, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 24, 13285–13297, https://doi.org/10.5194/acp-24-13285-2024, https://doi.org/10.5194/acp-24-13285-2024, 2024
Short summary
Short summary
Brown carbon (BrC) aerosols show an order-of-magnitude variation in their light absorption strength. Our understanding of BrC from real-world biomass burning remains limited, complicating the determination of its radiative impact. Our study reports absorption properties of BrC emitted from four major biomass burning sources using field measurements in India. It develops an absorption parameterization for BrC and examines the spatial variability in BrC's absorption strength across India.
Sami D. Harni, Minna Aurela, Sanna Saarikoski, Jarkko V. Niemi, Harri Portin, Hanna Manninen, Ville Leinonen, Pasi Aalto, Phil K. Hopke, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 24, 12143–12160, https://doi.org/10.5194/acp-24-12143-2024, https://doi.org/10.5194/acp-24-12143-2024, 2024
Short summary
Short summary
In this study, particle number size distribution data were used in a novel way in positive matrix factorization analysis to find aerosol source profiles in the area. Measurements were made in Helsinki at a street canyon and urban background sites between February 2015 and June 2019. Five different aerosol sources were identified. These sources underline the significance of traffic-related emissions in urban environments despite recent improvements in emission reduction technologies.
Natalie G. Ratcliffe, Claire L. Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Lisa-Maria Wieland, Maximilian Dollner, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Chem. Phys., 24, 12161–12181, https://doi.org/10.5194/acp-24-12161-2024, https://doi.org/10.5194/acp-24-12161-2024, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large-dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
Sergio Rodríguez and Jessica López-Darias
Atmos. Chem. Phys., 24, 12031–12053, https://doi.org/10.5194/acp-24-12031-2024, https://doi.org/10.5194/acp-24-12031-2024, 2024
Short summary
Short summary
Extreme Saharan dust events expanded northward to the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 events. These episodes are caused by low-to-high dipole meteorology during hemispheric anomalies characterized by subtropical anticyclones shifting to higher latitudes, anomalous low pressures beyond the tropics and amplified Rossby waves. Extreme dust events occur in a paradoxical context of a multidecadal decrease in dust emissions, a topic that requires further investigation.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024, https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the Southern Hemisphere, especially in high-altitude conditions. This study provides insight into the concentration level, variability, and optical properties of BC in La Paz and El Alto and at the Chacaltaya Global Atmosphere Watch Station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, in addition to biomass and open waste burning.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly B. Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 11737–11757, https://doi.org/10.5194/acp-24-11737-2024, https://doi.org/10.5194/acp-24-11737-2024, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties; hence, it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months of INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INPs we observe are, at least some of the time, of biological origin.
Rebecca Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 11255–11273, https://doi.org/10.5194/acp-24-11255-2024, https://doi.org/10.5194/acp-24-11255-2024, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude, and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024, https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known about the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer and occasionally reach the free troposphere.
Piotr Markuszewski, E. Douglas Nilsson, Julika Zinke, E. Monica Mårtensson, Matthew Salter, Przemysław Makuch, Małgorzata Kitowska, Iwona Niedźwiecka-Wróbel, Violetta Drozdowska, Dominik Lis, Tomasz Petelski, Luca Ferrero, and Jacek Piskozub
Atmos. Chem. Phys., 24, 11227–11253, https://doi.org/10.5194/acp-24-11227-2024, https://doi.org/10.5194/acp-24-11227-2024, 2024
Short summary
Short summary
Our research provides new insights into the study of sea spray aerosol (SSA) emissions in the Baltic Sea and North Atlantic. We observed that SSA flux is suppressed during increased marine biological activity in the Baltic Sea. At the same time, the influence of wave age showed higher SSA emissions in the Baltic Sea for younger waves compared to the Atlantic Ocean. These insights underscore the complex interplay between biological activity and physical dynamics in regulating SSA emissions.
Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3027, https://doi.org/10.5194/egusphere-2024-3027, 2024
Short summary
Short summary
Aerosol hygroscopicity has been investigated at the sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity.
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
Atmos. Chem. Phys., 24, 11103–11114, https://doi.org/10.5194/acp-24-11103-2024, https://doi.org/10.5194/acp-24-11103-2024, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud–aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
Atmos. Chem. Phys., 24, 10985–11004, https://doi.org/10.5194/acp-24-10985-2024, https://doi.org/10.5194/acp-24-10985-2024, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. This study reveals the compositions, abundance, sizes, and mixing states of TBs and shows that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass-burning events and ages, enhancing our knowledge of TB emissions and our understanding of their climate impact.
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 24, 10667–10687, https://doi.org/10.5194/acp-24-10667-2024, https://doi.org/10.5194/acp-24-10667-2024, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. NPF features differ between site categories, implying the crucial role of local environmental factors such as the degree of emissions and meteorological conditions. The results also underscore the importance of local environments when assessing the impact of NPF on climate in models.
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 10409–10424, https://doi.org/10.5194/acp-24-10409-2024, https://doi.org/10.5194/acp-24-10409-2024, 2024
Short summary
Short summary
Aviation soot residuals released from contrails can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates where ice nucleation can occur. Here we show that contrail-processed soot is highly compact but that it remains unable to form ice at a relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that it will not perturb cirrus cloud formation via ice nucleation.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024, https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over 3 years and during dust storms at a field site in a desert region in the southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024, https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Short summary
The study combines aerosol particle measurements at the surface and vertical profiling of the atmosphere with a scanning Doppler lidar to investigate how particle transportation together with boundary layer evolution can affect particle and SO2 concentrations at the surface in the Arabian Peninsula region. The instrumentation enabled us to see elevated nucleation mode particle and SO2 concentrations at the surface when air masses transported from polluted areas are mixed in the boundary layer.
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024, https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Short summary
Using simultaneous measurements of DMA–CCNC, H(/V)TDMA, and DMA–SP2, impacts of primary emissions and secondary aerosol formations on changes in aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing-state parameters derived from different techniques can help us gain more insight into aerosol physical properties which, in turn, will aid the investigation of emission characteristics and secondary aerosol formation pathways.
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2299, https://doi.org/10.5194/egusphere-2024-2299, 2024
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed the urban emission impact on the surrounding areas. The CRI full period averages at 520 nm were 1.41–0.037i (urban), 1.52–0.038i (peri-urban), 1.50−0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22% of absorption at 370 nm.
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Lijing Chen, Lei Zhang, Yong She, Zhaoliang Zeng, Yu Zheng, Biao Tian, Wenqian Zhang, Zhaohui Liu, and Minghu Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-798, https://doi.org/10.5194/egusphere-2024-798, 2024
Short summary
Short summary
AOD at Zhongshan Station varies seasonally, with lower values in summer and higher values in winter. Winter and spring AOD increases due to reduced fine mode particles, while summer and autumn increases are linked to particle growth. Duirnal AOD variation correlates positively with temperature but negatively with wind speed and humidity. Backward trajectory shows aerosols on high (low) AOD days primarily originate from the ocean (interior Antarctica).
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005, https://doi.org/10.5194/acp-24-7983-2024, https://doi.org/10.5194/acp-24-7983-2024, 2024
Short summary
Short summary
The springtime southeast Atlantic atmosphere contains lots of smoke from continental fires. This smoke travels with water vapor; more smoke means more humidity. We use aircraft observations and models to describe how the values change through the season and over the region. We sort the atmosphere into different types by vertical structure and amount of smoke and humidity. Since our work shows how frequently these components coincide, it helps to better quantify heating effects over this region.
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
Máté Vörösmarty, Philip K. Hopke, and Imre Salma
Atmos. Chem. Phys., 24, 5695–5712, https://doi.org/10.5194/acp-24-5695-2024, https://doi.org/10.5194/acp-24-5695-2024, 2024
Short summary
Short summary
The World Health Organization identified ultrafine particles, which make up most of the particle number concentrations, as a potential risk factor for humans. The sources of particle numbers are very different from those of the particulate matter mass. We performed source apportionment of size-segregated particle number concentrations over the diameter range of 6–1000 nm in Budapest for 11 full years. Six source types were identified, characterized and quantified.
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
Andreas Petzold, Ulrich Bundke, Anca Hienola, Paolo Laj, Cathrine Lund Myhre, Alex Vermeulen, Angeliki Adamaki, Werner Kutsch, Valerie Thouret, Damien Boulanger, Markus Fiebig, Markus Stocker, Zhiming Zhao, and Ari Asmi
Atmos. Chem. Phys., 24, 5369–5388, https://doi.org/10.5194/acp-24-5369-2024, https://doi.org/10.5194/acp-24-5369-2024, 2024
Short summary
Short summary
Easy and fast access to long-term and high-quality observational data is recognised as fundamental to environmental research and the development of climate forecasting and assessment services. We discuss the potential new directions in atmospheric sciences offered by the atmosphere-centric European research infrastructures ACTRIS, IAGOS, and ICOS, building on their capabilities for standardised provision of data through open access combined with tools and methods of data-intensive science.
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Henriette Gebauer, Athena Augusta Floutsi, Moritz Haarig, Martin Radenz, Ronny Engelmann, Dietrich Althausen, Annett Skupin, Albert Ansmann, Cordula Zenk, and Holger Baars
Atmos. Chem. Phys., 24, 5047–5067, https://doi.org/10.5194/acp-24-5047-2024, https://doi.org/10.5194/acp-24-5047-2024, 2024
Short summary
Short summary
Sulfate aerosol from the volcanic eruption at La Palma in 2021 was observed over Cabo Verde. We characterized the aerosol burden based on a case study of lidar and sun photometer observations. We compared the volcanic case to the typical background conditions (reference case) to quantify the volcanic pollution. We show the first ever measurements of the extinction coefficient, lidar ratio and depolarization ratio at 1064 nm for volcanic sulfate.
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
Yueyue Cheng, Chao Liu, Jiandong Wang, Jiaping Wang, Zhouyang Zhang, Li Chen, Dafeng Ge, Caijun Zhu, Jinbo Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 3065–3078, https://doi.org/10.5194/acp-24-3065-2024, https://doi.org/10.5194/acp-24-3065-2024, 2024
Short summary
Short summary
Brown carbon (BrC), a light-absorbing aerosol, plays a pivotal role in influencing global climate. However, assessing BrC radiative effects remains challenging because the required observational data are hardly accessible. Here we develop a new BrC radiative effect estimation method combining conventional observations and numerical models. Our findings reveal that BrC absorbs up to a third of the sunlight at 370 nm that black carbon does, highlighting its importance in aerosol radiative effects.
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Xiangxinyue Meng, Zhijun Wu, Jingchuan Chen, Yanting Qiu, Taomou Zong, Mijung Song, Jiyi Lee, and Min Hu
Atmos. Chem. Phys., 24, 2399–2414, https://doi.org/10.5194/acp-24-2399-2024, https://doi.org/10.5194/acp-24-2399-2024, 2024
Short summary
Short summary
Our study revealed that particles predominantly exist in a semi-solid or solid state during clean winter days with RH below 30 %. However, a non-liquid to a liquid phase transition occurred when the aerosol liquid water (ALW) mass fraction surpassed 15 % (dry mass) at transition RH thresholds ranging from 40 % to 60 %. We also provide insights into the increasingly important roles of particle phase state variation and ALW in secondary particulate growth during haze formation in Beijing, China.
Bighnaraj Sarangi, Darrel Baumgardner, Ana Isabel Calvo, Benjamin Bolaños-Rosero, Roberto Fraile, Alberto Rodríguez-Fernández, Delia Fernández-González, Carlos Blanco-Alegre, Cátia Gonçalves, Estela D. Vicente, and Olga L. Mayol Bracero
EGUsphere, https://doi.org/10.5194/egusphere-2024-446, https://doi.org/10.5194/egusphere-2024-446, 2024
Short summary
Short summary
Measurements of fluorescing aerosol particle properties have been made during two major African dust events, one over the island of Puerto Rico and the other over the city of León, Spain The measurements were with two Wideband Integrated Bioaerosol Spectrometers. A significant change in the background aerosol properties, at both locations, is observed when the dust is in the respective regions.
Yiming Wang, Haolin Wang, Yujie Qin, Xinqi Xu, Guowen He, Nanxi Liu, Shengjie Miao, Xiao Lu, Haichao Wang, and Shaojia Fan
Atmos. Chem. Phys., 24, 2267–2285, https://doi.org/10.5194/acp-24-2267-2024, https://doi.org/10.5194/acp-24-2267-2024, 2024
Short summary
Short summary
We conducted a vertical measurement of winter PM2.5 using a mobile multi-lidar system in four cities. Combined with the surface PM2.5 data, the ERA5 reanalysis data, and GEOS-Chem simulations during Dec 2018–Feb 2019, we found that transport nocturnal PM2.5 enhancement by subsidence (T-NPES) events widely occurred with high frequencies in plains regions in eastern China but happened less often in basin regions like Xi’an and Chengdu. We propose a conceptual model of the T-NPES events.
Dominic Heslin-Rees, Peter Tunved, Johan Ström, Roxana Cremer, Paul Zieger, Ilona Riipinen, Annica M. L. Ekman, Konstantinos Eleftheriadis, and Radovan Krejci
Atmos. Chem. Phys., 24, 2059–2075, https://doi.org/10.5194/acp-24-2059-2024, https://doi.org/10.5194/acp-24-2059-2024, 2024
Short summary
Short summary
Light-absorbing atmospheric particles (e.g. black carbon – BC) exert a warming effect on the Arctic climate. We show that the amount of particle light absorption decreased from 2002 to 2023. We conclude that in addition to reductions in emissions of BC, wet removal plays a role in the long-term reduction of BC in the Arctic, given the increase in surface precipitation experienced by air masses arriving at the site. The potential impact of biomass burning events is shown to have increased.
Julika Zinke, Ernst Douglas Nilsson, Piotr Markuszewski, Paul Zieger, Eva Monica Mårtensson, Anna Rutgersson, Erik Nilsson, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 1895–1918, https://doi.org/10.5194/acp-24-1895-2024, https://doi.org/10.5194/acp-24-1895-2024, 2024
Short summary
Short summary
We conducted two research campaigns in the Baltic Sea, during which we combined laboratory sea spray simulation experiments with flux measurements on a nearby island. To combine these two methods, we scaled the laboratory measurements to the flux measurements using three different approaches. As a result, we derived a parameterization that is dependent on wind speed and wave state for particles with diameters 0.015–10 μm. This parameterization is applicable to low-salinity waters.
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Thierry Bourrianne, Véronique Pont, François Gheusi, and Emmanuel Leclerc
Atmos. Chem. Phys., 24, 1801–1824, https://doi.org/10.5194/acp-24-1801-2024, https://doi.org/10.5194/acp-24-1801-2024, 2024
Short summary
Short summary
At a French high-altitude site, where many complex interactions between black carbon (BC), radiation, clouds and snow impact climate, 2 years of refractive BC (rBC) and aerosol optical and microphysical measurements have been made. We observed strong seasonal rBC properties variations, with an enhanced absorption in summer compared to winter. The combination of rBC emission sources, transport pathways, atmospheric dynamics and chemical processes explains the rBC light absorption seasonality.
Cited articles
Bolch, T., Kulkarni, a., Kaab, a., Huggel, C., Paul, F., Cogley, J. G.,
Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and
Stoffel, M.: The State and Fate of Himalayan Glaciers, Science,
336, 310–314, https://doi.org/10.1126/science.1215828, 2012.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
Deangelo, B. J., Flanner, M. G., Ghan, S., K??rcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C.
A., and Purcell, R. G.: The dri thermal/optical reflectance carbon analysis
system: description, evaluation and applications in U.S. Air quality
studies, Atmos. Environ., 27, 1185–1201,
https://doi.org/10.1016/0960-1686(93)90245-T, 1993.
Dang, C., Fu, Q., and Warren, S. G.: Effect of snow grain shape on snow
albedo, J. Atmos. Sci., 73, 3573–3583,
https://doi.org/10.1175/JAS-D-15-0276.1, 2016.
Dang, C., Zender, C. S., and Flanner, M. G.: Intercomparison and improvement of two-stream shortwave radiative transfer schemes in Earth system models for a unified treatment of cryospheric surfaces, The Cryosphere, 13, 2325–2343, https://doi.org/10.5194/tc-13-2325-2019, 2019.
Flanner, M. G. and Zender, C. S.: Linking snowpack microphysics and albedo
evolution, J. Geophys. Res.-Atmos., 111, 1–12,
https://doi.org/10.1029/2005JD006834, 2006.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.:
Present-day climate forcing and response from black carbon in snow, J.
Geophys. Res.-Atmos., 112, 1–17, https://doi.org/10.1029/2006JD008003,
2007.
Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V., and Rasch, P. J.: Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys., 9, 2481–2497, https://doi.org/10.5194/acp-9-2481-2009, 2009.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled chemistry within the WRF
model, Atmos. Environ., 39, 6957–6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Gul, C., Puppala, S. P., Kang, S., Adhikary, B., Zhang, Y., Ali, S., Li, Y., and Li, X.: Concentrations and source regions of light-absorbing particles in snow/ice in northern Pakistan and their impact on snow albedo, Atmos. Chem. Phys., 18, 4981–5000, https://doi.org/10.5194/acp-18-4981-2018, 2018.
Gul, C., Mahapatra, P. S., Kang, S., Singh, P. K., Wu, X., He, C., Kumar,
R., Rai, M., Xu, Y., and Puppala, S. P.: Black carbon concentration in the
central Himalayas: Impact on glacier melt and potential source contribution,
Environ. Pollut., 275, 116544, https://doi.org/10.1016/j.envpol.2021.116544,
2021.
Hansen, J. and Nazarenko, L.: Soot climate forcing via snow and ice albedos,
P. Natl. Acad. Sci. USA, 101, 423–428,
https://doi.org/10.1073/pnas.2237157100, 2004.
Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and climate response,
J. Geophys. Res.-Atmos., 102, 6831–6864, https://doi.org/10.1029/96JD03436,
1997.
He, C. and Flanner, M. G.: Snow Albedo and Radiative Transfer: Theory,
Modeling, and Parameterization,
https://doi.org/10.1007/978-3-030-38696-2_3,
2020.
He, C., Takano, Y., Liou, K. N., Yang, P., Li, Q., and Chen, F.: Impact of
snow grain shape and black carbon-snow internal mixing on snow optical
properties: Parameterizations for climate models, J. Climate, 30,
10019–10036, https://doi.org/10.1175/JCLI-D-17-0300.1, 2017.
He, C., Flanner, M. G., Chen, F., Barlage, M., Liou, K.-N., Kang, S., Ming, J., and Qian, Y.: Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model, Atmos. Chem. Phys., 18, 11507–11527, https://doi.org/10.5194/acp-18-11507-2018, 2018.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., et al.: ERA5 monthly averaged data on single levels from 1979 to present, [data set], Copernicus Clim. Chang. Serv. Clim. Data Store, 10, 252–266, https://doi.org/10.24381/cds.f17050d7, 2019,
Hock, R.: Glacier melt: A review of processes and their modelling, Prog.
Phys. Geogr., 29, 362–391, https://doi.org/10.1191/0309133305pp453ra, 2005.
Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate change
will affect the Asian water towers., Science, 328, 1382–1385,
https://doi.org/10.1126/science.1183188, 2010.
Ji, Z., Kang, S., Cong, Z., Zhang, Q., and Yao, T.: Simulation of
carbonaceous aerosols over the Third Pole and adjacent regions:
distribution, transportation, deposition, and climatic effects, Clim. Dynam.,
45, 2831–2846, https://doi.org/10.1007/s00382-015-2509-1, 2015.
Kang, S., Xu, Y., Q. You, Flügel, W., Pepin, N., and Yao,
T.: Review of climate and cryospheric change in the Tibetan Plateau,
Environ. Res. Lett., 5, 1–8, https://doi.org/10.1088/1748-9326/5/1/015101,
2010.
Kang, S., Zhang, Q., Qian, Y., Ji, Z., Li, C., Cong, Z., Zhang, Y., Guo, J.,
Du, W., Huang, J., You, Q., Panday, A. K., Rupakheti, M., Chen, D.,
Gustafsson, Ö., Thiemens, M. H., and Qin, D.: Linking atmospheric
pollution to cryospheric change in the Third Pole region: current progress
and future prospects, Nat. Sci. Rev., 6, 796–809, https://doi.org/10.1093/nsr/nwz031,
2019.
Kang, S., Zhang, Y., Qian, Y., and Wang, H.: A review of black carbon in
snow and ice and its impact on the cryosphere, Earth-Sci. Rev., 210,
103346, https://doi.org/10.1016/j.earscirev.2020.103346,
2020.
Kaspari, S., Painter, T. H., Gysel, M., Skiles, S. M., and Schwikowski, M.: Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings, Atmos. Chem. Phys., 14, 8089–8103, https://doi.org/10.5194/acp-14-8089-2014, 2014.
Knote, C., Hodzic, A., Jimenez, J. L., Volkamer, R., Orlando, J. J., Baidar, S., Brioude, J., Fast, J., Gentner, D. R., Goldstein, A. H., Hayes, P. L., Knighton, W. B., Oetjen, H., Setyan, A., Stark, H., Thalman, R., Tyndall, G., Washenfelder, R., Waxman, E., and Zhang, Q.: Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model, Atmos. Chem. Phys., 14, 6213–6239, https://doi.org/10.5194/acp-14-6213-2014, 2014.
Kumar, R., Naja, M., Satheesh, S. K., Ojha, N., Joshi, H., Sarangi, T.,
Pant, P., Dumka, U. C., Hegde, P., and Venkataramani, S.: Influences of the
springtime northern Indian biomass burning over the central Himalayas, J.
Geophys. Res.-Atmos., 116, 1–14, https://doi.org/10.1029/2010JD015509,
2011.
Kumar, R., Barth, M. C., Nair, V. S., Pfister, G. G., Suresh Babu, S., Satheesh, S. K., Krishna Moorthy, K., Carmichael, G. R., Lu, Z., and Streets, D. G.: Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB), Atmos. Chem. Phys., 15, 5415–5428, https://doi.org/10.5194/acp-15-5415-2015, 2015.
Li, C., Bosch, C., Kang, S., Andersson, A., Chen, P., Zhang, Q., Cong, Z.,
Chen, B., Qin, D., and Gustafsson, Ö.: Sources of black carbon to the
Himalayan-Tibetan Plateau glaciers, Nat. Commun., 7, 1–7,
https://doi.org/10.1038/ncomms12574, 2016.
Li, C., Yan, F., Kang, S., Yan, C., Hu, Z., Chen, P., Gao, S., Zhang, C.,
He, C., Kaspari, S., and Stubbins, A.: Carbonaceous matter in the atmosphere
and glaciers of the Himalayas and the Tibetan plateau: An investigative
review, Environ. Int., 146, 106281,
https://doi.org/10.1016/j.envint.2020.106281, 2021.
Li, X., Kang, S., He, X., Qu, B., Tripathee, L., Jing, Z., Paudyal, R., Li,
Y., Zhang, Y., Yan, F., Li, G., and Li, C.: Light-absorbing impurities
accelerate glacier melt in the Central Tibetan Plateau, Sci. Total Environ., 587, 482–490,
https://doi.org/10.1016/j.scitotenv.2017.02.169, 2017.
Li, Y., Chen, J., Kang, S., Li, C., Qu, B., Tripathee, L., Yan, F., Zhang, Y., Guo, J., Gul, C., and Qin, X.: Impacts of black carbon and mineral dust on radiative forcing and glacier melting during summer in the Qilian Mountains, northeastern Tibetan Plateau, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2016-32, 2016.
Marcovecchio, A., Behrangi, A., Dong, X., Xi, B., and Huang, Y.:
Precipitation Influence on and Response to Early and Late Arctic Sea Ice
Melt Onset During Melt Season, Int. J. Clim., 42, 81–96,
https://doi.org/10.1002/joc.7233, 2021.
Mayer, C., Lambrecht, A., Belò, M., Smiraglia, C., and Diolaiuti, G.:
Glaciological characteristics of the ablation zone of Baltoro glacier,
Karakoram, Pakistan, Ann. Glaciol., 43, 123–131,
https://doi.org/10.3189/172756406781812087, 2006.
Ming, J., Xiao, C., Cachier, H., Qin, D., Qin, X., Li, Z., and Pu, J.: Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos, Atmos. Res., 92, 114–123, https://doi.org/10.1016/j.atmosres.2008.09.007, 2009.
Niu, H., Kang, S., Wang, Y., Sarangi, C., Rupakheti, D., and Qian, Y.: Measurements of light-absorbing impurities in snow over four glaciers on the Tibetan Plateau, Atmos. Res., 243, ISSN 0169-8095, https://doi.org/10.1016/j.atmosres.2020.105002, 2020.
Pepin, N. C., and Lundquist, J. D.: Temperature trends at high elevations:
Patterns across the globe, Geophys. Res. Lett., 35, 1–6,
https://doi.org/10.1029/2008GL034026, 2008.
Qian, Y., Flanner, M. G., Leung, L. R., and Wang, W.: Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate, Atmos. Chem. Phys., 11, 1929–1948, https://doi.org/10.5194/acp-11-1929-2011, 2011.
Qian, Y., Wang, H., Zhang, R., Flanner, M. G., and Rasch, P. J.: A
sensitivity study on modeling black carbon in snow and its radiative forcing
over the Arctic and Northern China, Environ. Res. Lett., 9, 64001,
https://doi.org/10.1088/1748-9326/9/6/064001, 2014.
Qu, B., Ming, J., Kang, S.-C., Zhang, G.-S., Li, Y.-W., Li, C.-D., Zhao, S.-Y., Ji, Z.-M., and Cao, J.-J.: The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities, Atmos. Chem. Phys., 14, 11117–11128, https://doi.org/10.5194/acp-14-11117-2014, 2014.
Quinn, P. K., Bates, T. S., Baum, E., Doubleday, N., Fiore, A. M., Flanner, M., Fridlind, A., Garrett, T. J., Koch, D., Menon, S., Shindell, D., Stohl, A., and Warren, S. G.: Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies, Atmos. Chem. Phys., 8, 1723–1735, https://doi.org/10.5194/acp-8-1723-2008, 2008.
Rai, M., Mahapatra, P. S., Gul, C., Kayastha, R. B., Panday, A. K., and
Puppala, S. P.: Aerosol Radiative Forcing Estimation over a Remote
High-altitude Location (∼4900 m a.s.l.) near Yala Glacier, Nepal,
Aerosol Air Qual. Res., 19, 1872–1891,
https://doi.org/10.4209/aaqr.2018.09.0342, 2019.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due
to black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156,
2008.
Ricchiazzi, P., Yang, S. R., Gautier, C., and Sowle, D.: SB DART: A
Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in
the Earth's Atmosphere, B. Am. Meteorol. Soc., 79,
2101–2114, 1998.
Schmale, J., Flanner, M., Kang, S., Sprenger, M., Zhang, Q., Guo, J., Li, Y., Schwikowski, M., and Farinotti, D.: Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon, Sci. Rep., 7, ISSN 2045-2322, https://doi.org/10.1038/srep40501, 2017.
Tripathee, L., Gul, C., Kang, S., Chen, P., Huang, J., and Rai, M.:
Transport Mechanisms, Potential Sources, and Radiative Impacts of Black
Carbon Aerosols on the Himalayas and Tibetan Plateau Glaciers, in: Air
Pollution and Its Complications: From the Regional to the Global Scale,
edited by: Tiwari, S. and Saxena, P., Springer International Publishing,
Cham, 7–23, https://doi.org/10.1007/978-3-030-70509-1_ 2,
2021.
Vaux, H. J., Balk, D., Gleick, P., William, K. M. Lau., Levy, M., Malone, L. E., Mcdonald, R., Shindell, D., Thompson, G. L., Wescoat, L. J., and Williams, W. M.: Himalayan Glaciers: Climate Change, Water Resources, and Water Security, The National Academies Press, National Academies Press, Washington, DC, ISSN 0-309-26098-1 pp., https://doi.org/10.17226/13449, 2012.
Wang, X., Pu, W., Ren, Y., Zhang, X., Zhang, X., Shi, J., Jin, H., Dai, M., and Chen, Q.: Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey, Atmos. Chem. Phys., 17, 2279–2296, https://doi.org/10.5194/acp-17-2279-2017, 2017.
Wang, Y., Ma, P. L., Peng, J., Zhang, R., Jiang, J. H., Easter, R. C., and
Yung, Y. L.: Constraining Aging Processes of Black Carbon in the Community
Atmosphere Model Using Environmental Chamber Measurements, J. Adv. Model.
Earth Syst., 10, 2514–2526, https://doi.org/10.1029/2018MS001387, 2018.
Warren, S. G. and Brandt, R. E.: Optical constants of ice from the
ultraviolet to the microwave: A revised compilation, J. Geophys. Res.-Atmos., 113, 1–10, https://doi.org/10.1029/2007JD009744, 2008.
Xu, B., Yao, T., Liu, X., and Wang, N.: Elemental and organic carbon measurements with a two-step heating-gas chromatography system in snow samples from the Tibetan Plateau, Ann. Glaciol., 43, 257–262, https://doi.org/10.3189/172756406781812122, 2006.
Xu, B., Cao, J., Joswiak, D. R., Liu, X., Zhao, H., and He, J.:
Post-depositional enrichment of black soot in snow-pack and accelerated
melting of Tibetan glaciers, Environ. Res. Lett., 7, 014022,
https://doi.org/10.1088/1748-9326/7/1/014022, 2012.
Yang, S., Xu, B., Cao, J., Zender, C. S., and Wang, M.: Climate effect of
black carbon aerosol in a Tibetan Plateau glacier, Atmos. Environ., 111,
71–78, https://doi.org/10.1016/j.atmosenv.2015.03.016, 2015.
Yao, T., Xue, Y., Chen, D. L., Chen, F., Thompson, L. G., Cui, P., Koike,
T., Lau, W. K. M., Lettenmaier, D. P., Mosbrugger, V., Zhang, R., Xu, B.,
Dozier, J., Gillespie, T. W., Gu, Y., Kang, S., Piao, S., Sugimoto, S.,
Ueno, K., Wang, L., Wang, W., Zhang, F., Sheng, Y., Guo, W., Ailikun, Yang,
X., Ma, Y., Shen, S. S. P., Su, Z., Chen, F., Liang, S., Liu, Y., Singh, V.
P., Yang, K., Yang, D., Zhao, X., Qian, Y., Zhang, Y., and Li, Q.: Recent
Third Pole's Rapid Warming Accompanies Cryospheric Melt and Water Cycle
Intensification and Interactions between Monsoon and Environment:
Multidisciplinary Approach with Observations, Modeling, and Analysis, B.
Am. Meteorol. Soc., 100, 423–444, 2019.
Yasunari, T. J., Bonasoni, P., Laj, P., Fujita, K., Vuillermoz, E., Marinoni, A., Cristofanelli, P., Duchi, R., Tartari, G., and Lau, K.-M.: Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory – Pyramid data and snow albedo changes over Himalayan glaciers, Atmos. Chem. Phys., 10, 6603–6615, https://doi.org/10.5194/acp-10-6603-2010, 2010.
Yasunari, T. J., Koster, R. D., Lau, W. K. M., and Kim, K.: Impact of snow
darkening via dust, black carbon, and organic carbon on boreal spring
climate in the Earth system, J. Geophys. Res.-Atmos., 120, 5485–5503,
https://doi.org/10.1002/2014JD022977, 2015.
You, Q., Cai, Z., Pepin, N., Chen, D., Ahrens, B., Jiang, Z., Wu, F., Kang,
S., Zhang, R., Wu, T., Wang, P., Li, M., Zuo, Z., Gao, Y., Zhai, P., and
Zhang, Y.: Warming amplification over the Arctic Pole and Third Pole:
Trends, mechanisms and consequences, Earth-Sci. Rev., 217, 103625,
https://doi.org/10.1016/j.earscirev.2021.103625, 2021.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, D13204, https://doi.org/10.1029/2007JD008782, 2008.
Zhang, Q., Kang, S., Kaspari, S., Li, C., Qin, D., Mayewski, P. A., and Hou,
S.: Rare earth elements in an ice core from Mt. Everest: Seasonal variations
and potential sources, Atmos. Res., 94, 300–312,
https://doi.org/10.1016/j.atmosres.2009.06.005, 2009.
Zhang, Y., Kang, S., Cong, Z., Schmale, J., Sprenger, M., Li, C., Yang, W.,
Gao, T., Sillanpää, M., Li, X., Liu, Y., Chen, P., and Zhang, X.:
Light-absorbing impurities enhance glacier albedo reduction in the
southeastern Tibetan plateau, J. Geophys. Res., 122, 6915–6933,
https://doi.org/10.1002/2016JD026397, 2017.
Zhang, Y., Kang, S., Sprenger, M., Cong, Z., Gao, T., Li, C., Tao, S., Li, X., Zhong, X., Xu, M., Meng, W., Neupane, B., Qin, X., and Sillanpää, M.: Black carbon and mineral dust in snow cover on the Tibetan Plateau, The Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, 2018.
Zhao, C., Hu, Z., Qian, Y., Ruby Leung, L., Huang, J., Huang, M., Jin, J., Flanner, M. G., Zhang, R., Wang, H., Yan, H., Lu, Z., and Streets, D. G.: Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements, Atmos. Chem. Phys., 14, 11475–11491, https://doi.org/10.5194/acp-14-11475-2014, 2014.
Short summary
This work aims to understand concentrations, spatial variability, and potential source regions of light-absorbing impurities (black carbon aerosols, dust particles, and organic carbon) in the surface snow of central and western Himalayan glaciers and their impact on snow albedo and radiative forcing.
This work aims to understand concentrations, spatial variability, and potential source regions...
Altmetrics
Final-revised paper
Preprint