Articles | Volume 22, issue 7
https://doi.org/10.5194/acp-22-4867-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-4867-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interactions between the stratospheric polar vortex and Atlantic circulation on seasonal to multi-decadal timescales
Oscar Dimdore-Miles
CORRESPONDING AUTHOR
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
Lesley Gray
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
National Centre for Atmospheric Science, Leeds LS2 9PH, UK
Scott Osprey
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
National Centre for Atmospheric Science, Leeds LS2 9PH, UK
Jon Robson
National Centre for Atmospheric Science, Leeds LS2 9PH, UK
Department of Meteorology, University of Reading, Reading RG6 6ET, UK
Rowan Sutton
National Centre for Atmospheric Science, Leeds LS2 9PH, UK
Department of Meteorology, University of Reading, Reading RG6 6ET, UK
Bablu Sinha
National Oceanography Centre, University of Southampton Waterfront Campus European Way, Southampton SO14 3ZH, UK
Related authors
Oscar Dimdore-Miles, Lesley Gray, and Scott Osprey
Weather Clim. Dynam., 2, 205–231, https://doi.org/10.5194/wcd-2-205-2021, https://doi.org/10.5194/wcd-2-205-2021, 2021
Short summary
Short summary
Observations of the stratosphere span roughly half a century, preventing analysis of multi-decadal variability in circulation using these data. Instead, we rely on long simulations of climate models. Here, we use a model to examine variations in northern polar stratospheric winds and find they vary with a period of around 90 years. We show that this is possibly due to variations in the size of winds over the Equator. This result may improve understanding of Equator–polar stratospheric coupling.
Teresa Carmo-Costa, Roberto Bilbao, Jon Robson, Ana Teles-Machado, and Pablo Ortega
Earth Syst. Dynam., 16, 1001–1028, https://doi.org/10.5194/esd-16-1001-2025, https://doi.org/10.5194/esd-16-1001-2025, 2025
Short summary
Short summary
Climate models can be used to skilfully predict decadal changes in North Atlantic ocean heat content. However, significant regional differences among these models reveal large uncertainties in the influence of external forcings. This study examines eight climate models to understand the differences in their predictive capacity for the North Atlantic, investigating the importance of external forcings and key model characteristics such as ocean stratification and the local atmospheric forcing.
Wah Kin Michael Lai, Jon Robson, Laura Wilcox, Nick Dunstone, and Rowan Sutton
EGUsphere, https://doi.org/10.5194/egusphere-2025-2598, https://doi.org/10.5194/egusphere-2025-2598, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In a climate model at two different resolutions, anthropogenic aerosols induce a fast cooling followed by a delayed warming in the subpolar North Atlantic. The delayed warming is stronger at higher resolution due to a stronger Atlantic Meridional Overturning Circulation (AMOC) response. This difference is due to the lower resolution model having more sea ice which insulates the ocean. This result show that the North Atlantic response to external forcing is sensitive to regional differences.
Hiroaki Naoe, Jorge L. Garcia-Franco, Chang-Hyun Park, Mario Rodrigo, Froila M. Palmeiro, Federico Serva, Masakazu Taguchi, Kohei Yoshida, James A. Anstey, Javier Garcia-Serrano, Seok-Woo Son, Yoshio Kawatani, Neal Butchart, Kevin Hamilton, Chih-Chieh Chen, Anne Glanville, Tobias Kerzenmacher, Francois Lott, Clara Orbe, Scott Osprey, Mijeong Park, Jadwiga H. Richter, Stefan Versick, and Shingo Watanabe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1148, https://doi.org/10.5194/egusphere-2025-1148, 2025
Short summary
Short summary
This study examines links between the stratospheric Quasi-Biennial Oscillation (QBO) and large-scale atmospheric circulations in the tropics, subtropics, and polar regions. The QBO teleconnections and their modulation by the El Niño-Southern Oscillation (ENSO) are investigated through a series of climate model experiments. While QBO teleconnections are qualitatively reproduced by the multi-model ensemble, they are not consistent due to modelled QBO bias and other systematic model biases.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Dillon Elsbury, Federico Serva, Julie M. Caron, Seung-Yoon Back, Clara Orbe, Jadwiga H. Richter, James A. Anstey, Neal Butchart, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Yoshio Kawatani, Tobias Kerzenmacher, Francois Lott, Hiroaki Naoe, Scott Osprey, Froila M. Palmeiro, Seok-Woo Son, Masakazu Taguchi, Stefan Versick, Shingo Watanabe, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-3950, https://doi.org/10.5194/egusphere-2024-3950, 2025
Short summary
Short summary
This study examines how the Madden-Julian Oscillation (MJO), a major tropical weather pattern, is influenced by persistent El Niño or La Niña sea surface temperature conditions during winter. Using a coordinated set of climate model experiments, we find that El Niño strengthens Kelvin waves, speeding up MJO propagation, while La Niña strengthens Rossby waves, slowing it down. Better understanding these interactions between the MJO and ocean helps us better understand natural climate variability.
Alex T. Archibald, Bablu Sinha, Maria R. Russo, Emily Matthews, Freya A. Squires, N. Luke Abraham, Stephane J.-B. Bauguitte, Thomas J. Bannan, Thomas G. Bell, David Berry, Lucy J. Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian A. King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Bengamin I. Moat, Katie Read, Chris Reed, Malcolm J. Roberts, Reinhard Schiemann, David Schroeder, Timothy J. Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Mingxi Yang
Earth Syst. Sci. Data, 17, 135–164, https://doi.org/10.5194/essd-17-135-2025, https://doi.org/10.5194/essd-17-135-2025, 2025
Short summary
Short summary
Here, we present an overview of the data generated as part of the North Atlantic Climate System Integrated Study (ACSIS) programme that are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA; www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC; bodc.ac.uk). The datasets described here cover the North Atlantic Ocean, the atmosphere above (it including its composition), and Arctic sea ice.
Aleena M. Jaison, Lesley J. Gray, Scott M. Osprey, Jeff R. Knight, and Martin B. Andrews
Weather Clim. Dynam., 5, 1489–1504, https://doi.org/10.5194/wcd-5-1489-2024, https://doi.org/10.5194/wcd-5-1489-2024, 2024
Short summary
Short summary
Models have biases in semi-annual oscillation (SAO) representation, mainly due to insufficient eastward wave forcing. We examined if the bias is from increased wave absorption due to circulation biases in the low–middle stratosphere. Alleviating biases at lower altitudes improves the SAO, but substantial bias remains. Alternative methods like gravity wave parameterization changes should be explored to enhance the modelled SAO, potentially improving sudden stratospheric warming predictability.
Yoshio Kawatani, Kevin Hamilton, Shingo Watanabe, James A. Anstey, Jadwiga H. Richter, Neal Butchart, Clara Orbe, Scott M. Osprey, Hiroaki Naoe, Dillon Elsbury, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Tobias Kerzenmacher, François Lott, Froila M. Palmerio, Mijeong Park, Federico Serva, Masakazu Taguchi, Stefan Versick, and Kohei Yoshioda
EGUsphere, https://doi.org/10.5194/egusphere-2024-3270, https://doi.org/10.5194/egusphere-2024-3270, 2024
Short summary
Short summary
The Quasi-Biennial Oscillation (QBO) of the tropical stratospheric mean winds has been relatively steady over the 7 decades it has been observed, but there are always cycle-to-cycle variations. This study used several global atmospheric models to investigate systematic modulation of the QBO by the El Niño/La Niña cycle. All models simulated shorter periods during El Niño, in agreement with observations. By contrast, the models disagreed even on the sign of the El Niño effect on QBO amplitude.
Paula L. M. Gonzalez, Lesley J. Gray, Stergios Misios, Scott Osprey, and Hedi Ma
EGUsphere, https://doi.org/10.5194/egusphere-2024-2487, https://doi.org/10.5194/egusphere-2024-2487, 2024
Preprint archived
Short summary
Short summary
This study has examined a set of reanalyses, both modern and 20th Century, to evaluate the robustness of the signatures of the 11-yr solar cycle in the North Atlantic climate. We find a robust response to the 11-yr solar cycle over the North Atlantic sector with a positive SLP anomaly north of the Azores region at lags of +2–3 years following solar maximum. An ocean reanalysis dataset shows that thermal inertia of the ocean could explain the lag in the SC response.
Ed Hawkins, Nigel Arnell, Jamie Hannaford, and Rowan Sutton
Geosci. Commun., 7, 161–165, https://doi.org/10.5194/gc-7-161-2024, https://doi.org/10.5194/gc-7-161-2024, 2024
Short summary
Short summary
Climate change can often seem rather remote, especially when the discussion is about global averages which appear to have little relevance to local experiences. But those global changes are already affecting people, even if they do not fully realise it, and effective communication of this issue is critical. We use long observations and well-understood physical principles to visually highlight how global emissions influence local flood risk in one river basin in the UK.
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Jorge L. García-Franco, Lesley J. Gray, Scott Osprey, Robin Chadwick, and Zane Martin
Weather Clim. Dynam., 3, 825–844, https://doi.org/10.5194/wcd-3-825-2022, https://doi.org/10.5194/wcd-3-825-2022, 2022
Short summary
Short summary
This paper establishes robust links between the stratospheric quasi-biennial oscillation (QBO) and several features of tropical climate. Robust precipitation responses, as well as changes to the Walker circulation, were found to be robustly linked to the variability in the lower stratosphere associated with the QBO using a 500-year simulation of a state-of-the-art climate model.
Rachael N. C. Sanders, Daniel C. Jones, Simon A. Josey, Bablu Sinha, and Gael Forget
Ocean Sci., 18, 953–978, https://doi.org/10.5194/os-18-953-2022, https://doi.org/10.5194/os-18-953-2022, 2022
Short summary
Short summary
In 2015, record low temperatures were observed in the North Atlantic. Using an ocean model, we show that surface heat loss in December 2013 caused 75 % of the initial cooling before this "cold blob" was trapped below the surface. The following summer, the cold blob re-emerged due to a strong temperature difference between the surface ocean and below, driving vertical diffusion of heat. Lower than average surface warming then led to the coldest temperature anomalies in August 2015.
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
Pablo Ortega, Jon I. Robson, Matthew Menary, Rowan T. Sutton, Adam Blaker, Agathe Germe, Jöel J.-M. Hirschi, Bablu Sinha, Leon Hermanson, and Stephen Yeager
Earth Syst. Dynam., 12, 419–438, https://doi.org/10.5194/esd-12-419-2021, https://doi.org/10.5194/esd-12-419-2021, 2021
Short summary
Short summary
Deep Labrador Sea densities are receiving increasing attention because of their link to many of the processes that govern decadal climate oscillations in the North Atlantic and their potential use as a precursor of those changes. This article explores those links and how they are represented in global climate models, documenting the main differences across models. Models are finally compared with observational products to identify the ones that reproduce the links more realistically.
Oscar Dimdore-Miles, Lesley Gray, and Scott Osprey
Weather Clim. Dynam., 2, 205–231, https://doi.org/10.5194/wcd-2-205-2021, https://doi.org/10.5194/wcd-2-205-2021, 2021
Short summary
Short summary
Observations of the stratosphere span roughly half a century, preventing analysis of multi-decadal variability in circulation using these data. Instead, we rely on long simulations of climate models. Here, we use a model to examine variations in northern polar stratospheric winds and find they vary with a period of around 90 years. We show that this is possibly due to variations in the size of winds over the Equator. This result may improve understanding of Equator–polar stratospheric coupling.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Irene Polo, Keith Haines, Jon Robson, and Christopher Thomas
Ocean Sci., 16, 1067–1088, https://doi.org/10.5194/os-16-1067-2020, https://doi.org/10.5194/os-16-1067-2020, 2020
Short summary
Short summary
AMOC variability controls climate and is driven by wind and buoyancy forcing in the Atlantic. Density changes there are expected to connect to tropical regions. We develop methods to identify boundary density profiles at 26° N which relate to the AMOC. We found that density anomalies propagate equatorward along the western boundary, eastward along the Equator and then poleward up the eastern boundary with 2 years lag between boundaries. Record lengths of more than 26 years are required.
Cited articles
Alley, R. B.: Wally Was Right: Predictive Ability of the North
Atlantic “Conveyor Belt” Hypothesis for Abrupt Climate
Change, Annu. Rev. Earth Pl. Sc., 35, 241–272,
https://doi.org/10.1146/annurev.earth.35.081006.131524, 2007. a
Andrews, M. B., Knight, J. R., Scaife, A. A., Lu, Y., Wu, T., Gray, L. J., and
Schenzinger, V.: Observed and Simulated Teleconnections Between the
Stratospheric Quasi-Biennial Oscillation and Northern Hemisphere
Winter Atmospheric Circulation, J. Geophys. Res.-Atmos., 124, 1219–1232, https://doi.org/10.1029/2018JD029368, 2019. a
Ayarzagüena, B., Palmeiro, F. M., Barriopedro, D., Calvo, N., Langematz, U., and Shibata, K.: On the representation of major stratospheric warmings in reanalyses, Atmos. Chem. Phys., 19, 9469–9484, https://doi.org/10.5194/acp-19-9469-2019, 2019. a
Ayarzagüena, B., Charlton-Perez, A., Butler, A., Hitchcock, P., Simpson,
I., Polvani, L., Butchart, N., Gerber, E., Gray, L., Hassler, B., Lin, P.,
Lott, F., Manzini, E., Mizuta, R., Orbe, C., Osprey, S., Saint-Martin, D.,
Sigmond, M., Taguchi, M., and Watanabe, S.: Uncertainty in the Response
of Sudden Stratospheric Warmings and Stratosphere-Troposphere
Coupling to Quadrupled CO2 Concentrations in CMIP6 Models,
J. Geophys. Res.-Atmos., 125, 103–121,
https://doi.org/10.1029/2019JD032345, 2020. a
Bakker, P., Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D.,
van den Broeke, M. R., Chan, W.-L., Hu, A., Beadling, R. L., Marsland, S. J.,
Mernild, S. H., Saenko, O. A., Swingedouw, D., Sullivan, A., and Yin, J.:
Fate of the Atlantic Meridional Overturning Circulation: Strong
Decline under Continued Warming and Greenland Melting, Geophys. Res. Lett., 43, 12252–12260, https://doi.org/10.1002/2016GL070457, 2016. a
Baldwin, M. P. and Thompson, D. W.: A Critical Comparison of
Stratosphere-Troposphere Coupling Indices, Quarterly J. Roy. Meteor. Soc., 135, 1661–1672, https://doi.org/10.1002/qj.479,
2009. a
Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H.,
Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H.,
Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden
Stratospheric Warmings, Rev. Geophys., 59, e2020RG000708,
https://doi.org/10.1029/2020RG000708, 2021. a
Bancalá, S., Krüger, K., and Giorgetta, M.: The Preconditioning of
Major Sudden Stratospheric Warmings, J. Geophys. Res. -Atmos., 117, 4101, https://doi.org/10.1029/2011JD016769, 2012. a
Biastoch, A., Böning, C. W., Getzlaff, J., Molines, J.-M., and Madec, G.:
Causes of Interannual-Decadal Variability in the
Meridional Overturning Circulation of the Midlatitude North Atlantic
Ocean, J. Climate, 21, 6599–6615, https://doi.org/10.1175/2008JCLI2404.1,
2008. a, b
Böning, C. W., Scheinert, M., Dengg, J., Biastoch, A., and Funk, A.:
Decadal Variability of Subpolar Gyre Transport and Its Reverberation in the
North Atlantic Overturning, Geophys. Res. Lett., 33,
https://doi.org/10.1029/2006GL026906, 2006.
a
Buckley, M. W. and Marshall, J.: Observations, Inferences, and Mechanisms of
the Atlantic Meridional Overturning Circulation: A Review, Rev. Geophys., 54, 5–63, https://doi.org/10.1002/2015RG000493, 2016. a
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.: Observed
Fingerprint of a Weakening Atlantic Ocean Overturning Circulation,
Nature, 556, 191–196, https://doi.org/10.1038/s41586-018-0006-5, 2018. a
Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N., and Rahmstorf,
S.: Current Atlantic Meridional Overturning Circulation Weakest in Last
Millennium, Nat. Geosci., 14, 118–120,
https://doi.org/10.1038/s41561-021-00699-z, 2021. a
Cessi, P., Bryan, K., and Zhang, R.: Global Seiching of Thermocline Waters
between the Atlantic and the Indian-Pacific Ocean Basins,
Geophys. Res. Lett., 31, https://doi.org/10.1029/2003GL019091, 2004. a
Charlton, A. J. and Polvani, L. M.: A New Look at Stratospheric Sudden
Warmings. Part I: Climatology and Modeling Benchmarks, J. Climate, 20, 449–469, https://doi.org/10.1175/JCLI3996.1, 2007. a
Charlton-Perez, A. J., Ferranti, L., and Lee, R. W.: The Influence of the
Stratospheric State on North Atlantic Weather Regimes, Q. J. Roy. Meteor. Soc., 144, 1140–1151, https://doi.org/10.1002/qj.3280,
2018. a, b
Cheng, H., Edwards, R. L., Broecker, W. S., Denton, G. H., Kong, X., Wang, Y.,
Zhang, R., and Wang, X.: Ice Age Terminations, Science, 326, 248–252,
https://doi.org/10.1126/science.1177840, 2009. a
Cohen, J., Barlow, M., and Saito, K.: Decadal Fluctuations in Planetary
Wave Forcing Modulate Global Warming in Late Boreal Winter, J. Climate, 22, 4418–4426, https://doi.org/10.1175/2009JCLI2931.1, 2009. a
Copernicus Climate Change Service Climate Data Store (CDS): Climate reanalysis, CDS [data set], https://climate.copernicus.eu/climate-reanalysis (last access: 10 August 2021), 2022. a
Davini, P., Cagnazzo, C., and Anstey, J. A.: A Blocking View of the
Stratosphere-Troposphere Coupling, J. Geophys. Res.-Atmos., 119, 11100–11115, https://doi.org/10.1002/2014JD021703, 2014. a
Delworth, T., Manabe, S., and Stouffer, R. J.: Interdecadal Variations of
the Thermohaline Circulation in a Coupled Ocean-Atmosphere Model,
J. Climate, 6, 1993–2011,
https://doi.org/10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2, 1993. a, b, c
Delworth, T. L. and Dixon, K. W.: Implications of the Recent Trend in the
Arctic/North Atlantic Oscillation for the North Atlantic
Thermohaline Circulation, J. Climate, 13, 3721–3727,
https://doi.org/10.1175/1520-0442(2000)013<3721:IOTRTI>2.0.CO;2, 2000. a
Delworth, T. L. and Greatbatch, R. J.: Multidecadal Thermohaline Circulation
Variability Driven by Atmospheric Surface Flux Forcing, J. Climate, 13, 1481–1495,
https://doi.org/10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2, 2000. a
Delworth, T. L. and Mann, M. E.: Observed and Simulated Multidecadal
Variability in the Northern Hemisphere, Clim. Dynam., 16, 661–676,
https://doi.org/10.1007/s003820000075, 2000. a
Delworth, T. L. and Zeng, F.: The Impact of the North Atlantic
Oscillation on Climate through Its Influence on the Atlantic
Meridional Overturning Circulation, J. Climate, 29, 941–962,
https://doi.org/10.1175/JCLI-D-15-0396.1, 2016. a, b
Dimdore-Miles, O.: oscardm20994/Wavelet_analysis: Wavlet_analysis (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4529635, 2021. a
Domeisen, D. I. V.: Estimating the Frequency of Sudden Stratospheric
Warming Events From Surface Observations of the North Atlantic
Oscillation, J. Geophys. Res.-Atmos., 124, 3180–3194,
https://doi.org/10.1029/2018JD030077, 2019. a, b
Domeisen, D. I. V., Garfinkel, C. I., and Butler, A. H.: The Teleconnection
of El Niño Southern Oscillation to the Stratosphere, Rev. Geophys., 57, 5–47, https://doi.org/10.1029/2018RG000596, 2019. a
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B.,
Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim,
E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The Role of the Stratosphere in Subseasonal to
Seasonal Prediction: 1. Predictability of the Stratosphere,
J. Geophys. Res.-Atmos., 125, e2019JD030 920,
https://doi.org/10.1029/2019JD030920, 2020a. a
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B.,
Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim,
E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and
Taguchi, M.: The Role of the Stratosphere in Subseasonal to
Seasonal Prediction: 2. Predictability Arising From
Stratosphere-Troposphere Coupling, J. Geophys. Res.-Atmos., 125, e2019JD030 923, https://doi.org/10.1029/2019JD030923,
2020b. a
Earth System Grid Federation of the Centre for Environmental Data Analysis: WCRP Coupled Model Intercomparison Project (Phase 6), ESGF [data set], https://esgf-index1.ceda.ac.uk/projects/cmip6-ceda/ (last access: 6 August 2021), 2019. a
Eden, C. and Jung, T.: North Atlantic Interdecadal Variability: Oceanic
Response to the North Atlantic Oscillation (1865–1997),
J. Climate, 14, 676–691,
https://doi.org/10.1175/1520-0442(2001)014<0676:NAIVOR>2.0.CO;2, 2001. a
Eden, C. and Willebrand, J.: Mechanism of Interannual to Decadal
Variability of the North Atlantic Circulation, J. Climate, 14,
2266–2280, https://doi.org/10.1175/1520-0442(2001)014<2266:MOITDV>2.0.CO;2, 2001. a, b
Frankignoul, C., Gastineau, G., and Kwon, Y.-O.: The Influence of the
AMOC Variability on the Atmosphere in CCSM3, J. Climate,
26, 9774–9790, https://doi.org/10.1175/JCLI-D-12-00862.1, 2013. a, b
Frierson, D. M. W., Hwang, Y.-T., Fučkar, N. S., Seager, R., Kang, S. M.,
Donohoe, A., Maroon, E. A., Liu, X., and Battisti, D. S.: Contribution of
Ocean Overturning Circulation to Tropical Rainfall Peak in the Northern
Hemisphere, Nat. Geosci., 6, 940–944, https://doi.org/10.1038/ngeo1987, 2013. a
Garfinkel, C. I., Hurwitz, M. M., and Oman, L. D.: Effect of Recent Sea Surface
Temperature Trends on the Arctic Stratospheric Vortex, J. Geophys. Res.-Atmos., 120, 5404–5416,
https://doi.org/10.1002/2015JD023284, 2015. a
Garfinkel, C. I., Son, S.-W., Song, K., Aquila, V., and Oman, L. D.:
Stratospheric Variability Contributed to and Sustained the Recent Hiatus in
Eurasian Winter Warming, Geophys. Res. Lett., 44, 374–382,
https://doi.org/10.1002/2016GL072035, 2017. a
Gerber, E. P., Polvani, L. M., and Ancukiewicz, D.: Annular Mode Time Scales in
the Intergovernmental Panel on Climate Change Fourth Assessment
Report Models, Geophys. Res. Lett., 35, L22707,
https://doi.org/10.1029/2008GL035712, 2008a. a
Gerber, E. P., Voronin, S., and Polvani, L. M.: Testing the Annular Mode
Autocorrelation Time Scale in Simple Atmospheric General Circulation
Models, Mon. Weather Rev., 136, 1523–1536,
https://doi.org/10.1175/2007MWR2211.1, 2008b. a
Gerber, E. P., Orbe, C., and Polvani, L. M.: Stratospheric Influence on the
Tropospheric Circulation Revealed by Idealized Ensemble Forecasts,
Geophys. Res. Lett., 36, L24801, https://doi.org/10.1029/2009GL040913, 2009. a
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the Cross Wavelet
Transform and Wavelet Coherence to Geophysical Time Series, Nonlinear Proc. Geoph., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004. a
Haase, S., Matthes, K., Latif, M., and Omrani, N.-E.: The Importance of a
Properly Represented Stratosphere for Northern Hemisphere Surface
Variability in the Atmosphere and the Ocean, J. Climate,
31, 8481–8497, https://doi.org/10.1175/JCLI-D-17-0520.1, 2018. a
Halpert, M. S. and Bell, G. D.: Climate Assessment for 1996, B. Am. Meteorol. Soc., 78, S1–S50,
https://doi.org/10.1175/1520-0477-78.5s.S1, 1997. a
Hausmann, U., Czaja, A., and Marshall, J.: Mechanisms controlling the SST
air-sea heat flux feedback and its dependence on spatial scale, Clim. Dynam., 48, 1297–1307, https://doi.org/10.1007/s00382-016-3142-3, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
Global Reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hitchcock, P. and Simpson, I. R.: The Downward Influence of Stratospheric
Sudden Warmings, J. Atmos. Sci., 71, 3856–3876,
https://doi.org/10.1175/JAS-D-14-0012.1, 2014. a
Hurrell, J., Kushnir, Y., Ottersen, G., and Visbeck, M.: The North Atlantic
Oscillation: Climatic Significance and Environmental Impact,
Geophys. Monogr. Ser., 134, https://doi.org/10.1029/GM134, 2003. a
Johnson, N. C.: How Many ENSO Flavors Can We Distinguish?, J. Climate, 26, 4816–4827, https://doi.org/10.1175/JCLI-D-12-00649.1, 2013. a
King, A. D., Butler, A. H., Jucker, M., Earl, N. O., and Rudeva, I.: Observed
Relationships Between Sudden Stratospheric Warmings and European
Climate Extremes, J. Geophys. Res.-Atmos., 124,
13 943–13 961, https://doi.org/10.1029/2019JD030480, 2019. a
Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., and Mann, M. E.: A
Signature of Persistent Natural Thermohaline Circulation Cycles in Observed
Climate, Geophys. Res. Lett., 32, L20708, https://doi.org/10.1029/2005GL024233, 2005. a
Kolstad, E. W., Breiteig, T., and Scaife, A. A.: The Association between
Stratospheric Weak Polar Vortex Events and Cold Air Outbreaks in the
Northern Hemisphere, Q. J. Roy. Meteor. Soc., 136, 886–893, https://doi.org/10.1002/qj.620, 2010. a
Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., and
Rahmstorf, S.: On the Driving Processes of the Atlantic Meridional
Overturning Circulation, Rev. Geophys., 45, RG2001,
https://doi.org/10.1029/2004RG000166, 2007. a
Latif, M. and Keenlyside, N. S.: A Perspective on Decadal Climate Variability
and Predictability, Deep Sea Research Part II: Topical Studies in
Oceanography, 58, 1880–1894, https://doi.org/10.1016/j.dsr2.2010.10.066, 2011. a
Lau, K.-M. and Weng, H.: Climate Signal Detection Using Wavelet Transform:
How to Make a Time Series Sing, B. Am. Meteorol. Soc., 76, 2391–2402,
https://doi.org/10.1175/1520-0477(1995)076<2391:CSDUWT>2.0.CO;2, 1995. a
Lavoie, D., Lambert, N., and Gilbert, D.: Projections of Future Trends in
Biogeochemical Conditions in the Northwest Atlantic Using CMIP5 Earth
System Models, Atmos. Ocean, 57, 18–40,
https://doi.org/10.1080/07055900.2017.1401973, 2019. a
Lawrence, Z. D., Perlwitz, J., Butler, A. H., Manney, G. L., Newman, P. A.,
Lee, S. H., and Nash, E. R.: The Remarkably Strong Arctic Stratospheric
Polar Vortex of Winter 2020: Links to Record-Breaking Arctic
Oscillation and Ozone Loss, J. Geophys. Res.-Atmos., 125, e2020JD033 271, https://doi.org/10.1029/2020JD033271, 2020. a
Lehtonen, I. and Karpechko, A. Y.: Observed and Modeled Tropospheric Cold
Anomalies Associated with Sudden Stratospheric Warmings, J. Geophys. Res.-Atmos., 121, 1591–1610,
https://doi.org/10.1002/2015JD023860, 2016. a, b
Liu, W., Xie, S.-P., Liu, Z., and Zhu, J.: Overlooked Possibility of a
Collapsed Atlantic Meridional Overturning Circulation in Warming Climate,
Science Advances, 3, e1601666, https://doi.org/10.1126/sciadv.1601666, 2017. a
Liu, W., Fedorov, A., and Sévellec, F.: The Mechanisms of the
Atlantic Meridional Overturning Circulation Slowdown Induced by Arctic
Sea Ice Decline, J. Climate, 32, 977–996,
https://doi.org/10.1175/JCLI-D-18-0231.1, 2019. a
Liu, Y., Liang, X. S., and Weisberg, R. H.: Rectification of the Bias in
the Wavelet Power Spectrum, J. Atmos. Ocean. Techn., 24, 2093–2102, https://doi.org/10.1175/2007JTECHO511.1, 2007. a
Lohmann, K., Drange, H., and Bentsen, M.: Response of the North Atlantic
Subpolar Gyre to Persistent North Atlantic Oscillation like Forcing,
Clim. Dynam., 32, 273–285, https://doi.org/10.1007/s00382-008-0467-6, 2009. a
Lu, H., Baldwin, M. P., Gray, L. J., and Jarvis, M. J.: Decadal-Scale Changes
in the Effect of the QBO on the Northern Stratospheric Polar Vortex,
J. Geophys. Res.-Atmos., 113, D10114,
https://doi.org/10.1029/2007JD009647, 2008. a, b
Lu, H., Bracegirdle, T. J., Phillips, T., Bushell, A., and Gray, L.: Mechanisms
for the Holton-Tan Relationship and Its Decadal Variation, J. Geophys. Res.-Atmos., 119, 2811–2830,
https://doi.org/10.1002/2013JD021352, 2014. a, b
Manney, G. L., Krüger, K., Sabutis, J. L., Sena, S. A., and Pawson, S.: The
Remarkable 2003–2004 Winter and Other Recent Warm Winters in the
Arctic Stratosphere since the Late 1990s, J. Geophys. Res.-Atmos., 110, D04107, https://doi.org/10.1029/2004JD005367, 2005. a, b
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A
Pacific Interdecadal Climate Oscillation with Impacts on Salmon
Production, B. Am. Meteorol. Soc., 78,
1069–1080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2, 1997. a
Manzini, E., Cagnazzo, C., Fogli, P. G., Bellucci, A., and Müller, W. A.:
Stratosphere-Troposphere Coupling at Inter-Decadal Time Scales:
Implications for the North Atlantic Ocean, Geophys. Res. Lett., 39, L05801, https://doi.org/10.1029/2011GL050771, 2012. a
Maycock, A. C., Masukwedza, G. I. T., Hitchcock, P., and Simpson, I. R.: A
Regime Perspective on the North Atlantic Eddy-Driven Jet Response
to Sudden Stratospheric Warmings, J. Climate, 33, 3901–3917,
https://doi.org/10.1175/JCLI-D-19-0702.1, 2020. a
McCarthy, G., Frajka-Williams, E., Johns, W. E., Baringer, M. O., Meinen,
C. S., Bryden, H. L., Rayner, D., Duchez, A., Roberts, C., and Cunningham,
S. A.: Observed Interannual Variability of the Atlantic Meridional
Overturning Circulation at 26.5∘ N, Geophys. Res. Lett., 39, L19609, https://doi.org/10.1029/2012GL052933, 2012. a
McCarthy, G. D., Smeed, D. A., Johns, W. E., Frajka-Williams, E., Moat,
B. I., Rayner, D., Baringer, M. O., Meinen, C. S., Collins, J., and Bryden,
H. L.: Measuring the Atlantic Meridional Overturning Circulation at
26∘ N, Prog. Oceanogr., 130, 91–111,
https://doi.org/10.1016/j.pocean.2014.10.006, 2015. a
Medhaug, I., Langehaug, H. R., Eldevik, T., Furevik, T., and Bentsen, M.:
Mechanisms for Decadal Scale Variability in a Simulated Atlantic
Meridional Overturning Circulation, Clim. Dynam., 39, 77–93,
https://doi.org/10.1007/s00382-011-1124-z, 2012. a, b
Menary, M. B., Park, W., Lohmann, K., Vellinga, M., Palmer, M. D., Latif, M.,
and Jungclaus, J. H.: A Multimodel Comparison of Centennial Atlantic
Meridional Overturning Circulation Variability, Clim. Dynam., 38,
2377–2388, https://doi.org/10.1007/s00382-011-1172-4, 2012. a
Menary, M. B., Kuhlbrodt, T., Ridley, J., Andrews, M. B., Dimdore-Miles,
O. B., Deshayes, J., Eade, R., Gray, L., Ineson, S., Mignot, J., Roberts,
C. D., Robson, J., Wood, R. A., and Xavier, P.: Preindustrial Control
Simulations With HadGEM3-GC3.1 for CMIP6, J. Adv. Model. Earth Sy., 10, 3049–3075, https://doi.org/10.1029/2018MS001495, 2018. a
Mielke, C., Frajka-Williams, E., and Baehr, J.: Observed and Simulated
Variability of the AMOC at 26∘ N and 41∘ N,
Geophys. Res. Lett., 40, 1159–1164, https://doi.org/10.1002/grl.50233, 2013. a
Moat, B. I., Frajka-Williams, E., Smeed, D., Rayner, D., Sanchez-Franks,
A., Johns, W. E., Baringer, M. O., Volkov, D. L., and Collins, J.: Atlantic
Meridional Overturning Circulation Observed by the
RAPID-MOCHA-WBTS (RAPID-Meridional Overturning
Circulation and Heatflux Array-Western Boundary Time Series) Array
at 26N from 2004 to 2018 (V2018.2)., British Oceonograpic Data Centre (BODC) [data set],
https://doi.org/10.5285/AA57E879-4CCA-28B6-E053-6C86ABC02DE5, 2020. a
Mulcahy, J. P., Jones, C., Sellar, A., Johnson, B., Boutle, I. A., Jones, A.,
Andrews, T., Rumbold, S. T., Mollard, J., Bellouin, N., Johnson, C. E.,
Williams, K. D., Grosvenor, D. P., and McCoy, D. T.: Improved Aerosol
Processes and Effective Radiative Forcing in HadGEM3 and
UKESM1, J. Adv. Model. Earth Sy., 10, 2786–2805,
https://doi.org/10.1029/2018MS001464, 2018. a
Pawson, S. and Naujokat, B.: The Cold Winters of the Middle 1990s in the
Northern Lower Stratosphere, J. Geophys. Res.-Atmos.,
104, 14209–14222, https://doi.org/10.1029/1999JD900211, 1999. a, b, c, d
Rao, J., Garfinkel, C. I., and Ren, R.: Modulation of the Northern Winter
Stratospheric El Niño–Southern Oscillation Teleconnection
by the PDO, J. Climate, 32, 5761–5783,
https://doi.org/10.1175/JCLI-D-19-0087.1, 2019. a
Ridley, J. K., Blockley, E. W., Keen, A. B., Rae, J. G. L., West, A. E., and Schroeder, D.: The sea ice model component of HadGEM3-GC3.1, Geosci. Model Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018, 2018. a
Roberts, C. D., Jackson, L., and McNeall, D.: Is the 2004–2012
Reduction of the Atlantic Meridional Overturning Circulation
Significant?, Geophys. Res. Lett., 41, 3204–3210,
https://doi.org/10.1002/2014GL059473, 2014. a, b
Robson, J., Sutton, R., Lohmann, K., Smith, D., and Palmer, M. D.: Causes of
the Rapid Warming of the North Atlantic Ocean in the Mid-1990s,
J. Climate, 25, 4116–4134, https://doi.org/10.1175/JCLI-D-11-00443.1, 2012. a, b
Robson, J., Aksenov, Y., Bracegirdle, T. J., Dimdore-Miles, O., Griffiths,
P. T., Grosvenor, D. P., Hodson, D. L. R., Keeble, J., MacIntosh, C., Megann,
A., Osprey, S., Povey, A. C., Schröder, D., Yang, M., Archibald, A. T.,
Carslaw, K. S., Gray, L., Jones, C., Kerridge, B., Knappett, D., Kuhlbrodt,
T., Russo, M., Sellar, A., Siddans, R., Sinha, B., Sutton, R., Walton, J.,
and Wilcox, L. J.: The Evaluation of the North Atlantic Climate
System in UKESM1 Historical Simulations for CMIP6, J. Adv. Model. Earth Sy., 12, e2020MS002126,
https://doi.org/10.1029/2020MS002126, 2020. a
Scaife, A. A. and Smith, D.: A Signal-to-Noise Paradox in Climate Science, npj
Climate and Atmospheric Science, 1, 1–8, https://doi.org/10.1038/s41612-018-0038-4,
2018. a
Schimanke, S., Zittel, J., Spangehl, T., and Cubasch, U.: Multi-Decadal
Variability of Sudden Stratospheric Warmings in an AOGCM, Geophys. Res. Lett., 38, L01801, https://doi.org/10.1029/2010GL045756, 2011. a, b
Shaw, T. A. and Perlwitz, J.: The Life Cycle of Northern Hemisphere
Downward Wave Coupling between the Stratosphere and Troposphere,
J. Climate, 26, 1745–1763, https://doi.org/10.1175/JCLI-D-12-00251.1, 2013. a
Smeed, D., Moat, B. I., Rayner, D., Johns, W. E., Baringer, M. O., Volkov,
D. L., and Frajka-Williams, E.: Atlantic Meridional Overturning Circulation
Observed by the RAPID-MOCHA-WBTS (RAPID-Meridional
Overturning Circulation and Heatflux Array-Western Boundary Time
Series) Array at 26N from 2004 to 2018, British Oceonograpic Data Centre (BODC) [data set],
https://doi.org/10.5285/8CD7E7BB-9A20-05D8-E053-6C86ABC012C2, 2019. a, b
Smeed, D. A., Josey, S. A., Beaulieu, C., Johns, W. E., Moat, B. I.,
Frajka-Williams, E., Rayner, D., Meinen, C. S., Baringer, M. O., Bryden,
H. L., and McCarthy, G. D.: The North Atlantic Ocean Is in a State of
Reduced Overturning, Geophys. Res. Lett., 45, 1527–1533,
https://doi.org/10.1002/2017GL076350, 2018. a, b
Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y., Blockley, E. W., Calvert, D., Graham, T., Hewitt, H. T., Hyder, P., Kuhlbrodt, T., Rae, J. G. L., and Sinha, B.: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions, Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, 2018. a
Sutton, R. T. and Hodson, D. L. R.: Atlantic Ocean Forcing of North
American and European Summer Climate, Science, 309, 115–118,
https://doi.org/10.1126/science.1109496, 2005. a
Taguchi, M.: Is There a Statistical Connection between Stratospheric
Sudden Warming and Tropospheric Blocking Events?, J. Atmos. Sci., 65, 1442–1454, https://doi.org/10.1175/2007JAS2363.1, 2008. a
Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Mulcahy, J., Sellar, A., Walton, J., and Jones, C.: MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP piControl, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6298, 2019. a
Thompson, D. W. J., Baldwin, M. P., and Wallace, J. M.: Stratospheric
Connection to Northern Hemisphere Wintertime Weather:
Implications for Prediction, J. Climate, 15, 1421–1428,
https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2, 2002. a
Timmermann, A., An, S.-I., Krebs, U., and Goosse, H.: ENSO Suppression Due
to Weakening of the North Atlantic Thermohaline Circulation, J. Climate, 18, 3122–3139, https://doi.org/10.1175/JCLI3495.1, 2005. a
Tomassini, L., Gerber, E. P., Baldwin, M. P., Bunzel, F., and Giorgetta, M.:
The Role of Stratosphere-Troposphere Coupling in the Occurrence of Extreme
Winter Cold Spells over Northern Europe, J. Adv. Model. Earth Sy., 4, M00A03, https://doi.org/10.1029/2012MS000177, 2012. a
Tompkins, A.: On the Relationship between Tropical Convection and Sea Surface
Temperature, J. Climate, 14, 633–637,
https://doi.org/10.1175/1520-0442(2001)014<0633:OTRBTC>2.0.CO;2, 2001. a, b
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis.,
B. Am. Meteorol. Soc., 79, 61–78,
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998. a, b, c, d
Tulloch, R. and Marshall, J.: Exploring Mechanisms of Variability and
Predictability of Atlantic Meridional Overturning Circulation in
Two Coupled Climate Models, J. Climate, 25, 4067–4080,
https://doi.org/10.1175/JCLI-D-11-00460.1, 2012. a
Vial, J., Osborn, T., and Lott, F.: Sudden Stratospheric Warmings and
Tropospheric Blockings in a Multi-Century Simulation of the IPSL-CM5A
Coupled Climate Model, Clim. Dynam., 40, 2401–2414, https://doi.org/10.1007/s00382-013-1675-2, 2013. a
Visbeck, M., Cullen, H., Krahmann, G., and Naik, N.: An Ocean Model's Response
to North Atlantic Oscillation-like Wind Forcing, Geophys. Res. Lett., 25, 4521–4524, https://doi.org/10.1029/1998GL900162, 1998.
a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019. a, b
Wang, Z., Lu, Y., Dupont, F., W. Loder, J., Hannah, C., and G. Wright, D.:
Variability of Sea Surface Height and Circulation in the North Atlantic:
Forcing Mechanisms and Linkages, Prog. Oceanogr., 132, 273–286,
https://doi.org/10.1016/j.pocean.2013.11.004, 2015. a
Wang, Z., Brickman, D., and Greenan, B. J. W.: Characteristic Evolution of the
Atlantic Meridional Overturning Circulation from 1990 to 2015: An
Eddy-Resolving Ocean Model Study, Deep Sea Research Part I: Oceanographic
Research Papers, 149, 103056, https://doi.org/10.1016/j.dsr.2019.06.002, 2019. a
White, I. P., Garfinkel, C. I., Gerber, E. P., Jucker, M., Hitchcock, P., and
Rao, J.: The Generic Nature of the Tropospheric Response to Sudden
Stratospheric Warmings, J. Climate, 33, 5589–5610,
https://doi.org/10.1175/JCLI-D-19-0697.1, 2020. a
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D.,
Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P., Ineson,
S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S. F., Rae, J.
G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey, D., Thorpe, L.,
Watterson, I. G., Walters, D. N., West, A., Wood, R. A., Woollings, T., and
Xavier, P. K.: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0
and GC3.1) Configurations, J. Adv. Model. Earth Sy., 10, 357–380, https://doi.org/10.1002/2017MS001115, 2018. a
Xu, X., Chassignet, E. P., Johns, W. E., Schmitz, W. J., and Metzger, E. J.:
Intraseasonal to Interannual Variability of the Atlantic Meridional
Overturning Circulation from Eddy-Resolving Simulations and Observations,
J. Geophys. Res.-Oceans, 119, 5140–5159,
https://doi.org/10.1002/2014JC009994, 2014. a
Yang, J.: Local and Remote Wind Stress Forcing of the Seasonal Variability of
the Atlantic Meridional Overturning Circulation (AMOC) Transport at
26.5∘ N, J. Geophys. Res.-Oceans, 120,
2488–2503, https://doi.org/10.1002/2014JC010317, 2015. a
Yool, A., Palmiéri, J., Jones, C. G., Sellar, A. A., de Mora, L.,
Kuhlbrodt, T., Popova, E. E., Mulcahy, J. P., Wiltshire, A., Rumbold, S. T.,
Stringer, M., Hill, R. S. R., Tang, Y., Walton, J., Blaker, A., Nurser, A.
J. G., Coward, A. C., Hirschi, J., Woodward, S., Kelley, D. I., Ellis, R.,
and Rumbold-Jones, S.: Spin-up of UK Earth System Model 1 (UKESM1)
for CMIP6, J. Adv. Model. Earth Sy., 12,
e2019MS001933, https://doi.org/10.1029/2019MS001933, 2020. a
Zhang, R.: Latitudinal Dependence of Atlantic Meridional Overturning
Circulation (AMOC) Variations, Geophys. Res. Lett., 37, L16703,
https://doi.org/10.1029/2010GL044474, 2010. a
Short summary
This study examines interactions between variations in the strength of polar stratospheric winds and circulation in the North Atlantic in a climate model simulation. It finds that the Atlantic Meridional Overturning Circulation (AMOC) responds with oscillations to sets of consecutive Northern Hemisphere winters, which show all strong or all weak polar vortex conditions. The study also shows that a set of strong vortex winters in the 1990s contributed to the recent slowdown in the observed AMOC.
This study examines interactions between variations in the strength of polar stratospheric winds...
Altmetrics
Final-revised paper
Preprint