Articles | Volume 22, issue 2
https://doi.org/10.5194/acp-22-1483-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-1483-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Longwave radiative effect of the cloud–aerosol transition zone based on CERES observations
Departament de Física, Universitat de Girona, Girona, Spain
Hendrik Andersen
Institute of Meteorology and Climate Research, Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany
Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute
of Technology (KIT), Karlsruhe, Germany
Josep Calbó
Departament de Física, Universitat de Girona, Girona, Spain
Josep-Abel González
Departament de Física, Universitat de Girona, Girona, Spain
Jan Cermak
Institute of Meteorology and Climate Research, Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany
Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute
of Technology (KIT), Karlsruhe, Germany
Related authors
Babak Jahani, Steffen Karalus, Julia Fuchs, Tobias Zech, Marina Zara, and Jan Cermak
Atmos. Meas. Tech., 18, 1927–1941, https://doi.org/10.5194/amt-18-1927-2025, https://doi.org/10.5194/amt-18-1927-2025, 2025
Short summary
Short summary
Fog and low stratus (FLS) are both persistent clouds close to the Earth's surface. This study introduces a new machine-learning-based algorithm developed for the Meteosat Second Generation geostationary satellites that can provide a coherent and detailed view of FLS development over large areas over the 24 h day cycle.
Deepanshu Malik, Hendrik Andersen, Jan Cermak, Roland Vogt, and Bianca Adler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2645, https://doi.org/10.5194/egusphere-2025-2645, 2025
Short summary
Short summary
We investigated cloud base height changes in the Namib Desert and developed a method to estimate it using ground-based humidity data. This improves fog monitoring by distinguishing fog from low clouds, which satellites alone cannot reliably do. Our results reveal diurnal patterns and linkages to coastal proximity in the vertical dynamics of fog and low clouds, highlighting key atmospheric processes with potential importance for future research.
Babak Jahani, Steffen Karalus, Julia Fuchs, Tobias Zech, Marina Zara, and Jan Cermak
Atmos. Meas. Tech., 18, 1927–1941, https://doi.org/10.5194/amt-18-1927-2025, https://doi.org/10.5194/amt-18-1927-2025, 2025
Short summary
Short summary
Fog and low stratus (FLS) are both persistent clouds close to the Earth's surface. This study introduces a new machine-learning-based algorithm developed for the Meteosat Second Generation geostationary satellites that can provide a coherent and detailed view of FLS development over large areas over the 24 h day cycle.
Alexandre Mass, Hendrik Andersen, Jan Cermak, Paola Formenti, Eva Pauli, and Julian Quinting
Atmos. Chem. Phys., 25, 491–510, https://doi.org/10.5194/acp-25-491-2025, https://doi.org/10.5194/acp-25-491-2025, 2025
Short summary
Short summary
This study investigates the interaction between smoke aerosols and fog and low clouds (FLCs) in the Namib Desert between June and October. Here, a satellite-based dataset of FLCs, reanalysis data and machine learning are used to systematically analyze FLC persistence under different aerosol loadings. Aerosol plumes are shown to modify local thermodynamics, which increase FLC persistence. But fully disentangling aerosol effects from meteorological ones remains a challenge.
Yichen Jia, Hendrik Andersen, and Jan Cermak
Atmos. Chem. Phys., 24, 13025–13045, https://doi.org/10.5194/acp-24-13025-2024, https://doi.org/10.5194/acp-24-13025-2024, 2024
Short summary
Short summary
We present a near-global observation-based explainable machine learning framework to quantify the response of cloud fraction (CLF) of marine low clouds to cloud droplet number concentration (Nd), accounting for the covariations with meteorological factors. This approach provides a novel data-driven method to analyse the CLF adjustment by assessing the CLF sensitivity to Nd and numerous meteorological factors as well as the dependence of the Nd–CLF sensitivity on the meteorological conditions.
Sarah Wilson Kemsley, Paulo Ceppi, Hendrik Andersen, Jan Cermak, Philip Stier, and Peer Nowack
Atmos. Chem. Phys., 24, 8295–8316, https://doi.org/10.5194/acp-24-8295-2024, https://doi.org/10.5194/acp-24-8295-2024, 2024
Short summary
Short summary
Aiming to inform parameter selection for future observational constraint analyses, we incorporate five candidate meteorological drivers specifically targeting high clouds into a cloud controlling factor framework within a range of spatial domain sizes. We find a discrepancy between optimal domain size for predicting locally and globally aggregated cloud radiative anomalies and identify upper-tropospheric static stability as an important high-cloud controlling factor.
Karine Desboeufs, Paola Formenti, Raquel Torres-Sánchez, Kerstin Schepanski, Jean-Pierre Chaboureau, Hendrik Andersen, Jan Cermak, Stefanie Feuerstein, Benoit Laurent, Danitza Klopper, Andreas Namwoonde, Mathieu Cazaunau, Servanne Chevaillier, Anaïs Feron, Cécile Mirande-Bret, Sylvain Triquet, and Stuart J. Piketh
Atmos. Chem. Phys., 24, 1525–1541, https://doi.org/10.5194/acp-24-1525-2024, https://doi.org/10.5194/acp-24-1525-2024, 2024
Short summary
Short summary
This study investigates the fractional solubility of iron (Fe) in dust particles along the coast of Namibia, a critical region for the atmospheric Fe supply of the South Atlantic Ocean. Our results suggest a possible two-way interplay whereby marine biogenic emissions from the coastal marine ecosystems into the atmosphere would increase the solubility of Fe-bearing dust by photo-reduction processes. The subsequent deposition of soluble Fe could act to further enhance marine biogenic emissions.
Hendrik Andersen, Jan Cermak, Alyson Douglas, Timothy A. Myers, Peer Nowack, Philip Stier, Casey J. Wall, and Sarah Wilson Kemsley
Atmos. Chem. Phys., 23, 10775–10794, https://doi.org/10.5194/acp-23-10775-2023, https://doi.org/10.5194/acp-23-10775-2023, 2023
Short summary
Short summary
This study uses an observation-based cloud-controlling factor framework to study near-global sensitivities of cloud radiative effects to a large number of meteorological and aerosol controls. We present near-global sensitivity patterns to selected thermodynamic, dynamic, and aerosol factors and discuss the physical mechanisms underlying the derived sensitivities. Our study hopes to guide future analyses aimed at constraining cloud feedbacks and aerosol–cloud interactions.
Julia Fuchs, Hendrik Andersen, Jan Cermak, Eva Pauli, and Rob Roebeling
Atmos. Meas. Tech., 15, 4257–4270, https://doi.org/10.5194/amt-15-4257-2022, https://doi.org/10.5194/amt-15-4257-2022, 2022
Short summary
Short summary
Two cloud-masking approaches, a local and a regional approach, using high-resolution satellite data are developed and validated for the region of Paris to improve applicability for analyses of urban effects on low clouds. We found that cloud masks obtained from the regional approach are more appropriate for the high-resolution analysis of locally induced cloud processes. Its applicability is tested for the analysis of typical fog conditions over different surface types.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Roland Stirnberg, Jan Cermak, Simone Kotthaus, Martial Haeffelin, Hendrik Andersen, Julia Fuchs, Miae Kim, Jean-Eudes Petit, and Olivier Favez
Atmos. Chem. Phys., 21, 3919–3948, https://doi.org/10.5194/acp-21-3919-2021, https://doi.org/10.5194/acp-21-3919-2021, 2021
Short summary
Short summary
Air pollution endangers human health and poses a problem particularly in densely populated areas. Here, an explainable machine learning approach is used to analyse periods of high particle concentrations for a suburban site southwest of Paris to better understand its atmospheric drivers. Air pollution is particularly excaberated by low temperatures and low mixed layer heights, but processes vary substantially between and within seasons.
Cited articles
Ackerman, S. A. and Frey, R.: MODIS Atmosphere L2 Cloud Mask Product (35_L2), NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MYD35_L2.006,
2015.
Adebiyi, A. A., Zuidema, P., Chang, I., Burton, S. P., and Cairns, B.:
Mid-level clouds are frequent above the southeast Atlantic stratocumulus
clouds, Atmos. Chem. Phys., 20, 11025–11043,
https://doi.org/10.5194/acp-20-11025-2020, 2020.
Bar-Or, R. Z., Altaratz, O., and Koren, I.: Global analysis of cloud field
coverage and radiative properties, using morphological methods and MODIS
observations, Atmos. Chem. Phys., 11, 191–200,
https://doi.org/10.5194/acp-11-191-2011, 2011.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols,
Clim. Chang. 2013 Phys. Sci. Basis Work. Gr. I Contrib. to Fifth Assess,
Rep. Intergov. Panel Clim. Chang., 9781107057, 571–658,
https://doi.org/10.1017/CBO9781107415324.016, 2013.
Calbó, J., Long, C. N., González, J. A., Augustine, J., and
McComiskey, A.: The thin border between cloud and aerosol: Sensitivity of
several ground based observation techniques, Atmos. Res., 196, 248–260,
https://doi.org/10.1016/j.atmosres.2017.06.010, 2017.
Eytan, E., Koren, I., Altaratz, O., Kostinski, A. B., and Ronen, A.:
Longwave radiative effect of the cloud twilight zone, Nat. Geosci., 13,
669–673, https://doi.org/10.1038/s41561-020-0636-8, 2020.
Fuchs, J. and Cermak, J.: Where Aerosols become clouds-potential for global
analysis based on CALIPSO data, Remote Sens., 7, 4178–4190,
https://doi.org/10.3390/rs70404178, 2015.
Geier, E. B., Green, R. N., Kratz, D. P., Minnis, P., Miller, W. F., Nolan,
S. K., and Franklin, C. B.: CERES data management system: Single Satellite
Footprint TOA/surface fluxes and clouds (SSF) collection document, release
2, version 1, 2003.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2018a.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018b.
Jahani, B., Calbó, J., and González, J. A.: Transition Zone
Radiative Effects in Shortwave Radiation Parameterizations: Case of Weather
Research and Forecasting Model, J. Geophys. Res.-Atmos., 124, 13091–13104,
https://doi.org/10.1029/2019JD031064, 2019.
Jahani, B., Calbó, J., and González, J. A.: Quantifying Transition
Zone Radiative Effects in Longwave Radiation Parameterizations, Geophys.
Res. Lett., 47, e2020GL090408,
https://doi.org/10.1029/2020GL090408, 2020.
Koren, I., Remer, L. A., Kaufman, Y. J., Rudich, Y., and Martins, J. V.: On
the twilight zone between clouds and aerosols, Geophys. Res. Lett., 34,
1–5, https://doi.org/10.1029/2007GL029253, 2007.
Koren, I., Feingold, G., Jiang, H., and Altaratz, O.: Aerosol effects on the
inter-cloud region of a small cumulus cloud field, Geophys. Res. Lett., 36,
1–5, https://doi.org/10.1029/2009GL037424, 2009.
Levy, R. and Hsu, C.: MODIS Atmosphere L2 Aerosol Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MYD04_L2.061, 2015.
Loeb, N. G., Priestley, K. J., Kratz, D. P., Geier, E. B., Green, R. N.,
Wielicki, B. A., O'Rawe Hinton, P., and Noland, S. K.: Determination of
unfiltered radiances from the clouds and the earth's radiant energy system
instrument, J. Appl. Meteorol., 40, 822–835,
https://doi.org/10.1175/1520-0450(2001)040<0822:DOURFT>2.0.CO;2, 2001.
Loeb, N. G., Kato, S., Loukachine, K., Manalo-Smith, N., and Doelling, D.
R.: Angular Distribution Models for Top-of-Atmosphere Radiative Flux
Estimation from the Clouds and the Earth's Radiant Energy System Instrument
on the Terra Satellite, Part I: Methodology, J. Atmos. Ocean. Technol., 22,
338–351, 2005.
Loeb, N. G., Sun, W., Miller, W. F., Loukachine, K., and Davies, R.: Fusion
of CERES, MISR, and MODIS measurements for top-of atmosphere radiative flux
validation, J. Geophys. Res.-Atmos., 111, 1–11,
https://doi.org/10.1029/2006JD007146, 2006.
Loeb, N. G., Su, W., Doelling, D. R., Wong, T., Minnis, P., Thomas, S., and
Miller, W. F.: 5.03 – Earth's top-of-atmosphere radiation budget,
Compr. Remote Sens., 5, 67–84,
https://doi.org/10.1016/B978-0-12-409548-9.10367-7, 2018.
Minnis, P., Sun-Mack, S., Chen, Y., Khaiyer, M. M., Yi, Y., Ayers, J. K.,
Brown, R. R., Dong, X., Gibson, S. C., Heck, P. W., Lin, B., Nordeen, M. L.,
Nguyen, L., Palikonda, R., Smith, W. L., Spangenberg, D. A., Trepte, Q. Z.,
and Xi, B.: CERES edition-2 cloud property retrievals using TRMM VIRS and
Terra and Aqua MODIS data-Part II: Examples of average results and
comparisons with other data, IEEE Trans. Geosci. Remote Sens., 49,
4401–4430, https://doi.org/10.1109/TGRS.2011.2144602, 2011.
MODIS Characterization Support Team (MCST): MODIS Geolocation Fields Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MOD03.061, 2017.
Mokhov, I. I. and Akperov, M. G.: Tropospheric lapse rate and its relation
to surface temperature from reanalysis data, Izv.-Atmos. Ocean Phys., 42,
430–438, https://doi.org/10.1134/S0001433806040037, 2006.
Platnick, S., King, M., and Wind, G.: MODIS Atmosphere L2 Cloud Product (06_L2), NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MOD06_L2.006, 2015.
Priestley, K. J., Smith, G. L., Thomas, S., Cooper, D., Lee, R. B.,
Walikainen, D., Hess, P., Szewczyk, Z. P., and Wilson, R.: Radiometric
performance of the CERES earth radiation budget climate record sensors on
the EOS Aqua and Terra spacecraft through April 2007, J. Atmos. Ocean.
Technol., 28, 3–21, https://doi.org/10.1175/2010JTECHA1521.1, 2011.
Ricchiazzi, P., Yang, S., Gautier, C., and Sowle, D.: SBDART: A Research and
Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's
Atmosphere, Bull. Am. Meteorol. Soc., 79, 2101–2114,
https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2, 1998.
Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., Leeuw, G. de, Donovan, D.
P., Kahn, R., Kinne, S., Kivekäs, N., Kulmala, M., Lau, W., Schmidt, K.
S., Suni, T., Wagner, T., Wild, M., and Quaas, J.: Global observations of
aerosol-cloud-precipitation-climate interactions, Rev. Geophys. Rev., 52,
750–808, https://doi.org/10.1002/2013RG000441, 2014.
Schwarz, K., Cermak, J., Fuchs, J., and Andersen, H.: Mapping the twilight
zone-What we are missing between clouds and aerosols, Remote Sens., 9,
1–10, https://doi.org/10.3390/rs9060577, 2017.
Várnai, T. and Marshak, A.: Global CALIPSO observations of aerosol
changes near clouds, IEEE Geosci. Remote Sens. Lett., 8, 19–23,
https://doi.org/10.1109/LGRS.2010.2049982, 2011.
Várnai, T., Marshak, A., and Yang, W.: Multi-satellite aerosol
observations in the vicinity of clouds, Atmos. Chem. Phys., 13, 3899–39808,
https://doi.org/10.5194/acp-13-3899-2013, 2013.
Wacker, S., Gröbner, J., Emde, C., Vuilleumier, L., Mayer, B., and
Rozanov, E.: Comparison of Measured and Modeled Nocturnal Clear Sky Longwave
Downward Radiation at Payerne, Switzerland, AIP Conf. Proc., 1100, 589–592,
https://doi.org/10.1063/1.3117055, 2009.
Short summary
The change in the state of sky from cloudy to cloudless (or vice versa) comprises an additional phase called
transition zonewith characteristics laying between those of aerosols and clouds. This study presents an approach for the quantification of the broadband longwave radiative effects of the cloud–aerosol transition zone at the top of the atmosphere during daytime over the ocean based on satellite observations and radiative transfer simulations.
The change in the state of sky from cloudy to cloudless (or vice versa) comprises an additional...
Altmetrics
Final-revised paper
Preprint