Articles | Volume 21, issue 11
https://doi.org/10.5194/acp-21-8883-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-8883-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Urban aerosol size distributions: a global perspective
Tianren Wu
Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, USA
Ray W. Herrick Laboratories, Center for High Performance Buildings,
Purdue University, 177 South Russell Street, West Lafayette, Indiana 47907, USA
Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, USA
Ray W. Herrick Laboratories, Center for High Performance Buildings,
Purdue University, 177 South Russell Street, West Lafayette, Indiana 47907, USA
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Simulated contrail-processed aviation soot aerosols are poor ice-nucleating particles at cirrus temperatures
Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Quantifying the dust direct radiative effect in the southwestern United States: findings from multiyear measurements
How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Markedly different impacts of primary emissions and secondary aerosol formation on aerosol mixing states revealed by simultaneous measurements of CCNC, H(/V)TDMA, and SP2
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Multi-year gradient measurements of sea spray fluxes over the Baltic Sea and the North Atlantic Ocean
Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires
Attribution of aerosol particle number size distributions to main sources using an 11-year urban dataset
Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals
Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
Measurement report: A comparison of ground-level ice-nucleating-particle abundance and aerosol properties during autumn at contrasting marine and terrestrial locations
Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland
Efficient droplet activation of ambient black carbon particles in a suburban environment
Tropospheric sulfate from Cumbre Vieja (La Palma) observed over Cabo Verde contrasted with background conditions: a lidar case study of aerosol extinction, backscatter, depolarization and lidar ratio profiles at 355, 532 and 1064 nm
Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise
Occurrence, abundance, and formation of atmospheric tarballs from a wide range of wildfires in the western US
The radiative impact of biomass burning aerosols on dust emissions over Namibia and the long-range transport of smoke observed during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) campaign
Ice-nucleating particles active below -24 °C in a Finnish boreal forest and their relationship to bioaerosols
Atmospheric Black Carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sources
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Aerosol Size Distribution Properties Associated with Cold-Air Outbreaks in the Norwegian Arctic
Amazonian aerosol size distributions in a lognormal phase space: characteristics and trajectories
Long range transport of coarse mineral dust: an evaluation of the Met Office Unified Model against aircraft observations
Measurement report: Hygroscopicity of size-selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of chloride aerosol
Measurement report: In-situ vertical profiles of below-cloud aerosol over the central Greenland Ice Sheet
An observation-constrained estimation of brown carbon aerosol direct radiative effects
The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air
Optical properties and simple forcing efficiency of the organic aerosols and black carbon emitted by residential wood burning in rural central Europe
Particle phase state and aerosol liquid water greatly impact secondary aerosol formation: insights into phase transition and its role in haze events
Emerging extreme Saharan-dust events expand northward over the Atlantic and Europe prompting record-breaking PM10 and PM2.5 episodes
Measurement report: Nocturnal subsidence behind the cold front enhances surface particulate matter in plains regions: observations from the mobile multi-lidar system
Increase in precipitation scavenging contributes to long-term reductions of light-absorbing aerosol in the Arctic
Sea spray emissions from the Baltic Sea: comparison of aerosol eddy covariance fluxes and chamber-simulated sea spray emissions
Higher absorption enhancement of black carbon in summer shown by 2-year measurements at the high-altitude mountain site of Pic du Midi Observatory in the French Pyrenees
Variations of the atmospheric polycyclic aromatic hydrocarbon concentrations, sources, and health risk and the direct medical costs of lung cancer around the Bohai Sea against a background of pollution prevention and control in China
Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei and radiative forcing: Results from five-year observations in Central Europe
Characterization of aerosol over the Eastern Mediterranean by polarization sensitive Raman lidar measurements during A-LIFE – aerosol type classification and type separation
Changing optical properties of Black Carbon and Brown Carbon aerosols during long-range transport from the Indo-Gangetic Plain to the equatorial Indian Ocean
Introducing the novel concept of cumulative concentration roses for studying the transport of ultrafine particles from an airport to adjacent residential areas
Significant spatial gradients in new particle formation frequency in Greece during summer
Impact of desert dust on new particle formation events and the cloud condensation nuclei budget in dust-influenced areas
Active thermokarst regions contain rich sources of ice-nucleating particles
Examining the vertical heterogeneity of aerosols over the Southern Great Plains
Drivers controlling black carbon temporal variability in the lower troposphere of the European Arctic
Opinion: The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere
Measurement report: Size-resolved mass concentration of equivalent black carbon-containing particles larger than 700 nm and their role in radiation
Aerosol absorption using in situ filter-based photometers and ground-based sun photometry in the Po Valley urban atmosphere
Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 10409–10424, https://doi.org/10.5194/acp-24-10409-2024, https://doi.org/10.5194/acp-24-10409-2024, 2024
Short summary
Short summary
Aviation soot residuals released from contrails can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates where ice nucleation can occur. Here we show that contrail-processed soot is highly compact but that it remains unable to form ice at a relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that it will not perturb cirrus cloud formation via ice nucleation.
This article is included in the Encyclopedia of Geosciences
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
This article is included in the Encyclopedia of Geosciences
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024, https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over 3 years and during dust storms at a field site in a desert region in the southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
This article is included in the Encyclopedia of Geosciences
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024, https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Short summary
The study combines aerosol particle measurements at the surface and vertical profiling of the atmosphere with a scanning Doppler lidar to investigate how particle transportation together with boundary layer evolution can affect particle and SO2 concentrations at the surface in the Arabian Peninsula region. The instrumentation enabled us to see elevated nucleation mode particle and SO2 concentrations at the surface when air masses transported from polluted areas are mixed in the boundary layer.
This article is included in the Encyclopedia of Geosciences
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024, https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Short summary
Using simultaneous measurements of DMA–CCNC, H(/V)TDMA, and DMA–SP2, impacts of primary emissions and secondary aerosol formations on changes in aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing-state parameters derived from different techniques can help us gain more insight into aerosol physical properties which, in turn, will aid the investigation of emission characteristics and secondary aerosol formation pathways.
This article is included in the Encyclopedia of Geosciences
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
This article is included in the Encyclopedia of Geosciences
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005, https://doi.org/10.5194/acp-24-7983-2024, https://doi.org/10.5194/acp-24-7983-2024, 2024
Short summary
Short summary
The springtime southeast Atlantic atmosphere contains lots of smoke from continental fires. This smoke travels with water vapor; more smoke means more humidity. We use aircraft observations and models to describe how the values change through the season and over the region. We sort the atmosphere into different types by vertical structure and amount of smoke and humidity. Since our work shows how frequently these components coincide, it helps to better quantify heating effects over this region.
This article is included in the Encyclopedia of Geosciences
Piotr Markuszewski, E. Douglas Nilsson, Julika Zinke, E. Monica Mårtensson, Matthew Salter, Przemysław Makuch, Małgorzata Kitowska, Iwona Niedźwiecka-Wróbel, Violetta Drozdowska, Dominik Lis, Tomasz Petelski, Luca Ferrero, and Jacek Piskozub
EGUsphere, https://doi.org/10.5194/egusphere-2024-1254, https://doi.org/10.5194/egusphere-2024-1254, 2024
Short summary
Short summary
Sea spray aerosol whipped up from the sea surface, is an important compound of the atmospheric boundary layer. Our research provides new insights into the study of sea spray emission in the Baltic Sea and North Atlantic. We investigated the impact of environmental factors on sea spray fluxes. We observed that in case of increased marine biological activity in the Baltic Sea, sea spray flux is suppressed. We also observed evidence of sea surface temperature influence on sea spray emission.
This article is included in the Encyclopedia of Geosciences
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
This article is included in the Encyclopedia of Geosciences
Máté Vörösmarty, Philip K. Hopke, and Imre Salma
Atmos. Chem. Phys., 24, 5695–5712, https://doi.org/10.5194/acp-24-5695-2024, https://doi.org/10.5194/acp-24-5695-2024, 2024
Short summary
Short summary
The World Health Organization identified ultrafine particles, which make up most of the particle number concentrations, as a potential risk factor for humans. The sources of particle numbers are very different from those of the particulate matter mass. We performed source apportionment of size-segregated particle number concentrations over the diameter range of 6–1000 nm in Budapest for 11 full years. Six source types were identified, characterized and quantified.
This article is included in the Encyclopedia of Geosciences
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
This article is included in the Encyclopedia of Geosciences
Andreas Petzold, Ulrich Bundke, Anca Hienola, Paolo Laj, Cathrine Lund Myhre, Alex Vermeulen, Angeliki Adamaki, Werner Kutsch, Valerie Thouret, Damien Boulanger, Markus Fiebig, Markus Stocker, Zhiming Zhao, and Ari Asmi
Atmos. Chem. Phys., 24, 5369–5388, https://doi.org/10.5194/acp-24-5369-2024, https://doi.org/10.5194/acp-24-5369-2024, 2024
Short summary
Short summary
Easy and fast access to long-term and high-quality observational data is recognised as fundamental to environmental research and the development of climate forecasting and assessment services. We discuss the potential new directions in atmospheric sciences offered by the atmosphere-centric European research infrastructures ACTRIS, IAGOS, and ICOS, building on their capabilities for standardised provision of data through open access combined with tools and methods of data-intensive science.
This article is included in the Encyclopedia of Geosciences
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
This article is included in the Encyclopedia of Geosciences
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
EGUsphere, https://doi.org/10.5194/egusphere-2024-1272, https://doi.org/10.5194/egusphere-2024-1272, 2024
Short summary
Short summary
Ice nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known concerning the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer, and occasionally reach the free troposphere.
This article is included in the Encyclopedia of Geosciences
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
This article is included in the Encyclopedia of Geosciences
Henriette Gebauer, Athena Augusta Floutsi, Moritz Haarig, Martin Radenz, Ronny Engelmann, Dietrich Althausen, Annett Skupin, Albert Ansmann, Cordula Zenk, and Holger Baars
Atmos. Chem. Phys., 24, 5047–5067, https://doi.org/10.5194/acp-24-5047-2024, https://doi.org/10.5194/acp-24-5047-2024, 2024
Short summary
Short summary
Sulfate aerosol from the volcanic eruption at La Palma in 2021 was observed over Cabo Verde. We characterized the aerosol burden based on a case study of lidar and sun photometer observations. We compared the volcanic case to the typical background conditions (reference case) to quantify the volcanic pollution. We show the first ever measurements of the extinction coefficient, lidar ratio and depolarization ratio at 1064 nm for volcanic sulfate.
This article is included in the Encyclopedia of Geosciences
Rebecca Katharina Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Satoru Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
EGUsphere, https://doi.org/10.5194/egusphere-2024-1224, https://doi.org/10.5194/egusphere-2024-1224, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
This article is included in the Encyclopedia of Geosciences
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
EGUsphere, https://doi.org/10.5194/egusphere-2024-880, https://doi.org/10.5194/egusphere-2024-880, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) during the FIREX-AQ campaign. This study revealed the compositions, abundance, sizes, and mixing states of TBs and showed that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass burning and ages and enhances the knowledge of TB emissions and our understanding of their climate impact.
This article is included in the Encyclopedia of Geosciences
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
This article is included in the Encyclopedia of Geosciences
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
EGUsphere, https://doi.org/10.5194/egusphere-2024-853, https://doi.org/10.5194/egusphere-2024-853, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties, hence it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INP we observe are, at least some of the time, of biological origin.
This article is included in the Encyclopedia of Geosciences
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Widensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
EGUsphere, https://doi.org/10.5194/egusphere-2024-770, https://doi.org/10.5194/egusphere-2024-770, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the southern hemisphere, especially in high-altitude conditions. This study provides insight on the concentration level, variability, and optical properties of BC in the cities of La Paz and El Alto, and at the station GAW Chacaltaya Mountain station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, additionally to biomass and open waste burning.
This article is included in the Encyclopedia of Geosciences
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
This article is included in the Encyclopedia of Geosciences
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
EGUsphere, https://doi.org/10.5194/egusphere-2024-584, https://doi.org/10.5194/egusphere-2024-584, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentration, smaller Hoppel minima, lower effective supersaturations, and accumulation mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol-cloud interactions in order to improve their accurate representation in models.
This article is included in the Encyclopedia of Geosciences
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
This article is included in the Encyclopedia of Geosciences
Natalie Georgina Ratcliffe, Claire Louise Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Bernadett Weinzierl, Lisa-Maria Wieland, and Josef Gasteiger
EGUsphere, https://doi.org/10.5194/egusphere-2024-806, https://doi.org/10.5194/egusphere-2024-806, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
This article is included in the Encyclopedia of Geosciences
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
This article is included in the Encyclopedia of Geosciences
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
EGUsphere, https://doi.org/10.5194/egusphere-2024-733, https://doi.org/10.5194/egusphere-2024-733, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud-aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
This article is included in the Encyclopedia of Geosciences
Yueyue Cheng, Chao Liu, Jiandong Wang, Jiaping Wang, Zhouyang Zhang, Li Chen, Dafeng Ge, Caijun Zhu, Jinbo Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 3065–3078, https://doi.org/10.5194/acp-24-3065-2024, https://doi.org/10.5194/acp-24-3065-2024, 2024
Short summary
Short summary
Brown carbon (BrC), a light-absorbing aerosol, plays a pivotal role in influencing global climate. However, assessing BrC radiative effects remains challenging because the required observational data are hardly accessible. Here we develop a new BrC radiative effect estimation method combining conventional observations and numerical models. Our findings reveal that BrC absorbs up to a third of the sunlight at 370 nm that black carbon does, highlighting its importance in aerosol radiative effects.
This article is included in the Encyclopedia of Geosciences
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
This article is included in the Encyclopedia of Geosciences
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
This article is included in the Encyclopedia of Geosciences
Xiangxinyue Meng, Zhijun Wu, Jingchuan Chen, Yanting Qiu, Taomou Zong, Mijung Song, Jiyi Lee, and Min Hu
Atmos. Chem. Phys., 24, 2399–2414, https://doi.org/10.5194/acp-24-2399-2024, https://doi.org/10.5194/acp-24-2399-2024, 2024
Short summary
Short summary
Our study revealed that particles predominantly exist in a semi-solid or solid state during clean winter days with RH below 30 %. However, a non-liquid to a liquid phase transition occurred when the aerosol liquid water (ALW) mass fraction surpassed 15 % (dry mass) at transition RH thresholds ranging from 40 % to 60 %. We also provide insights into the increasingly important roles of particle phase state variation and ALW in secondary particulate growth during haze formation in Beijing, China.
This article is included in the Encyclopedia of Geosciences
Sergio Rodríguez and Jessica López-Darias
EGUsphere, https://doi.org/10.5194/egusphere-2023-3083, https://doi.org/10.5194/egusphere-2023-3083, 2024
Short summary
Short summary
Extreme Saharan-dust events have expanded northward to the Atlantic and Europe, prompting the most intense PM10 and PM2.5 events ever recorded in the governmental air quality network of Spain. The events occurred during hemispheric anomalies characterised by subtropical anticyclones shifted to higher latitudes, anomalous low pressures expanding beyond the tropic and a mid-latitude amplified Rossby-waves undulation, resembling the circulation anomalies due to the anthropogenic global warming.
This article is included in the Encyclopedia of Geosciences
Yiming Wang, Haolin Wang, Yujie Qin, Xinqi Xu, Guowen He, Nanxi Liu, Shengjie Miao, Xiao Lu, Haichao Wang, and Shaojia Fan
Atmos. Chem. Phys., 24, 2267–2285, https://doi.org/10.5194/acp-24-2267-2024, https://doi.org/10.5194/acp-24-2267-2024, 2024
Short summary
Short summary
We conducted a vertical measurement of winter PM2.5 using a mobile multi-lidar system in four cities. Combined with the surface PM2.5 data, the ERA5 reanalysis data, and GEOS-Chem simulations during Dec 2018–Feb 2019, we found that transport nocturnal PM2.5 enhancement by subsidence (T-NPES) events widely occurred with high frequencies in plains regions in eastern China but happened less often in basin regions like Xi’an and Chengdu. We propose a conceptual model of the T-NPES events.
This article is included in the Encyclopedia of Geosciences
Dominic Heslin-Rees, Peter Tunved, Johan Ström, Roxana Cremer, Paul Zieger, Ilona Riipinen, Annica M. L. Ekman, Konstantinos Eleftheriadis, and Radovan Krejci
Atmos. Chem. Phys., 24, 2059–2075, https://doi.org/10.5194/acp-24-2059-2024, https://doi.org/10.5194/acp-24-2059-2024, 2024
Short summary
Short summary
Light-absorbing atmospheric particles (e.g. black carbon – BC) exert a warming effect on the Arctic climate. We show that the amount of particle light absorption decreased from 2002 to 2023. We conclude that in addition to reductions in emissions of BC, wet removal plays a role in the long-term reduction of BC in the Arctic, given the increase in surface precipitation experienced by air masses arriving at the site. The potential impact of biomass burning events is shown to have increased.
This article is included in the Encyclopedia of Geosciences
Julika Zinke, Ernst Douglas Nilsson, Piotr Markuszewski, Paul Zieger, Eva Monica Mårtensson, Anna Rutgersson, Erik Nilsson, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 1895–1918, https://doi.org/10.5194/acp-24-1895-2024, https://doi.org/10.5194/acp-24-1895-2024, 2024
Short summary
Short summary
We conducted two research campaigns in the Baltic Sea, during which we combined laboratory sea spray simulation experiments with flux measurements on a nearby island. To combine these two methods, we scaled the laboratory measurements to the flux measurements using three different approaches. As a result, we derived a parameterization that is dependent on wind speed and wave state for particles with diameters 0.015–10 μm. This parameterization is applicable to low-salinity waters.
This article is included in the Encyclopedia of Geosciences
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Thierry Bourrianne, Véronique Pont, François Gheusi, and Emmanuel Leclerc
Atmos. Chem. Phys., 24, 1801–1824, https://doi.org/10.5194/acp-24-1801-2024, https://doi.org/10.5194/acp-24-1801-2024, 2024
Short summary
Short summary
At a French high-altitude site, where many complex interactions between black carbon (BC), radiation, clouds and snow impact climate, 2 years of refractive BC (rBC) and aerosol optical and microphysical measurements have been made. We observed strong seasonal rBC properties variations, with an enhanced absorption in summer compared to winter. The combination of rBC emission sources, transport pathways, atmospheric dynamics and chemical processes explains the rBC light absorption seasonality.
This article is included in the Encyclopedia of Geosciences
Wenwen Ma, Rong Sun, Xiaoping Wang, Zheng Zong, Shizhen Zhao, Zeyu Sun, Chongguo Tian, Jianhui Tang, Song Cui, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 24, 1509–1523, https://doi.org/10.5194/acp-24-1509-2024, https://doi.org/10.5194/acp-24-1509-2024, 2024
Short summary
Short summary
This is the first report of long-term atmospheric PAH monitoring around the Bohai Sea. The results showed that the concentrations of PAHs in the atmosphere around the Bohai Sea decreased from June 2014 to May 2019, especially the concentrations of highly toxic PAHs. This indicates that the contributions from PAH sources changed to a certain extent in different areas, and it also led to reductions in the related health risk and medical costs following pollution prevention and control.
This article is included in the Encyclopedia of Geosciences
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
EGUsphere, https://doi.org/10.5194/egusphere-2023-2359, https://doi.org/10.5194/egusphere-2023-2359, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine, and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. The NPF features differ between site categories, implying the crucial role of local environments such as degree of emissions and meteorological conditions. The results also underscore the importance of the local environments when assessing the impact of NPF on climate in models.
This article is included in the Encyclopedia of Geosciences
Silke Groß, Volker Freudenthaler, Moritz Haarig, Albert Ansmann, Carlos Toledano, David Mateos, Petra Seibert, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Josef Gasteiger, Maximilian Dollner, Anne Tipka, Manuel Schöberl, Marilena Teri, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2024-140, https://doi.org/10.5194/egusphere-2024-140, 2024
Short summary
Short summary
Aerosols contribute to the largest uncertainties in climate change predictions. Especially absorbing aerosols propose difficulties in our understanding. The eastern Mediterranean is a hot spot for aerosols with natural and anthropogenic contributions. We present lidar measurements performed during the A-LIFE field experiment to characterize aerosols and aerosol mixtures. We extend current classification and separation schemes and compare different classification schemes.
This article is included in the Encyclopedia of Geosciences
Krishnakant Budhavant, Mohanan Remani Manoj, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan K. Satheesh, and Orjan Gustafsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-104, https://doi.org/10.5194/egusphere-2024-104, 2024
Short summary
Short summary
The South Asian Pollution Experiment-2018 utilized access to 3 strategically located atmospheric receptor observatories. These observational constraints revealed opposite trends during long-range transport in BC-MAC and BrC-MAC. Models estimating the climate effects of particularly BC aerosols may have underestimated the ambient BC-MAC over distant and extensive receptor areas, which could contribute to the discrepancy between aerosol absorption predicted by models constrained by observations.
This article is included in the Encyclopedia of Geosciences
Julius Seidler, Markus N. Friedrich, Christoph K. Thomas, and Anke C. Nölscher
Atmos. Chem. Phys., 24, 137–153, https://doi.org/10.5194/acp-24-137-2024, https://doi.org/10.5194/acp-24-137-2024, 2024
Short summary
Short summary
Here, we study the transport of ultrafine particles (UFPs) from an airport to two new adjacent measuring sites for 1 year. The number of UFPs in the air and the diurnal variation are typical urban. Winds from the airport show increased number concentrations. Additionally, considering wind frequencies, we estimate that, from all UFPs measured at the two sites, 10 %–14 % originate from the airport and/or other UFP sources from between the airport and site.
This article is included in the Encyclopedia of Geosciences
Andreas Aktypis, Christos Kaltsonoudis, David Patoulias, Panayiotis Kalkavouras, Angeliki Matrali, Christina N. Vasilakopoulou, Evangelia Kostenidou, Kalliopi Florou, Nikos Kalivitis, Aikaterini Bougiatioti, Konstantinos Eleftheriadis, Stergios Vratolis, Maria I. Gini, Athanasios Kouras, Constantini Samara, Mihalis Lazaridis, Sofia-Eirini Chatoutsidou, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 65–84, https://doi.org/10.5194/acp-24-65-2024, https://doi.org/10.5194/acp-24-65-2024, 2024
Short summary
Short summary
Extensive continuous particle number size distribution measurements took place during two summers (2020 and 2021) at 11 sites in Greece for the investigation of the frequency and the spatial extent of new particle formation. The frequency during summer varied from close to zero in southwestern Greece to more than 60 % in the northern, central, and eastern regions. The spatial variability can be explained by the proximity of the sites to coal-fired power plants and agricultural areas.
This article is included in the Encyclopedia of Geosciences
Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Fernando Rejano, Andrea Casans, Gloria Titos, Francisco José Olmo, Lubna Dada, Simo Hakala, Tareq Hussein, Katrianne Lehtipalo, Pauli Paasonen, Antti Hyvärinen, Noemí Pérez, Xavier Querol, Sergio Rodríguez, Nikos Kalivitis, Yenny González, Mansour A. Alghamdi, Veli-Matti Kerminen, Andrés Alastuey, Tuukka Petäjä, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 23, 15795–15814, https://doi.org/10.5194/acp-23-15795-2023, https://doi.org/10.5194/acp-23-15795-2023, 2023
Short summary
Short summary
Here we present the first study of the effect of mineral dust on the inhibition/promotion of new particle formation (NPF) events in different dust-influenced areas. Unexpectedly, we show that the occurrence of NPF events is highly frequent during mineral dust outbreaks, occurring even during extreme dust outbreaks. We also show that the occurrence of NPF events during mineral dust outbreaks significantly affects the potential cloud condensation nuclei budget.
This article is included in the Encyclopedia of Geosciences
Kevin R. Barry, Thomas C. J. Hill, Marina Nieto-Caballero, Thomas A. Douglas, Sonia M. Kreidenweis, Paul J. DeMott, and Jessie M. Creamean
Atmos. Chem. Phys., 23, 15783–15793, https://doi.org/10.5194/acp-23-15783-2023, https://doi.org/10.5194/acp-23-15783-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) are important for the climate due to their influence on cloud properties. To understand potential land-based sources of them in the Arctic, we carried out a survey near the northernmost point of Alaska, a landscape connected to the permafrost (thermokarst). Permafrost contained high concentrations of INPs, with the largest values near the coast. The thermokarst lakes were found to emit INPs, and the water contained elevated concentrations.
This article is included in the Encyclopedia of Geosciences
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023, https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
Short summary
We report the vertical profiles of aerosol properties over the Southern Great Plains (SGP), a region influenced by shallow convective clouds, land–atmosphere interactions, boundary layer turbulence, and the aerosol life cycle. We examined the processes that drive the aerosol population and distribution in the lower troposphere over the SGP. This study helps improve our understanding of aerosol–cloud interactions and the model representation of aerosol processes.
This article is included in the Encyclopedia of Geosciences
Stefania Gilardoni, Dominic Heslin-Rees, Mauro Mazzola, Vito Vitale, Michael Sprenger, and Radovan Krejci
Atmos. Chem. Phys., 23, 15589–15607, https://doi.org/10.5194/acp-23-15589-2023, https://doi.org/10.5194/acp-23-15589-2023, 2023
Short summary
Short summary
Models still fail in reproducing black carbon (BC) temporal variability in the Arctic. Analysis of equivalent BC concentrations in the European Arctic shows that BC seasonal variability is modulated by the efficiency of removal by precipitation during transport towards high latitudes. Short-term variability is controlled by synoptic-scale circulation patterns. The advection of warm air from lower latitudes is an effective pollution transport pathway during summer.
This article is included in the Encyclopedia of Geosciences
Markku Kulmala, Anna Lintunen, Hanna Lappalainen, Annele Virtanen, Chao Yan, Ekaterina Ezhova, Tuomo Nieminen, Ilona Riipinen, Risto Makkonen, Johanna Tamminen, Anu-Maija Sundström, Antti Arola, Armin Hansel, Kari Lehtinen, Timo Vesala, Tuukka Petäjä, Jaana Bäck, Tom Kokkonen, and Veli-Matti Kerminen
Atmos. Chem. Phys., 23, 14949–14971, https://doi.org/10.5194/acp-23-14949-2023, https://doi.org/10.5194/acp-23-14949-2023, 2023
Short summary
Short summary
To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as new particle formation and growth, feedback loops and the effect of COVID-19, and what has been learned from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized.
This article is included in the Encyclopedia of Geosciences
Weilun Zhao, Ying Li, Gang Zhao, Song Guo, Nan Ma, Shuya Hu, and Chunsheng Zhao
Atmos. Chem. Phys., 23, 14889–14902, https://doi.org/10.5194/acp-23-14889-2023, https://doi.org/10.5194/acp-23-14889-2023, 2023
Short summary
Short summary
Studies have concentrated on particles containing black carbon (BC) smaller than 700 nm because of technical limitations. In this study, BC-containing particles larger than 700 nm (BC>700) were measured, highlighting their importance to total BC mass and absorption. The contribution of BC>700 to the BC direct radiative effect was estimated, highlighting the necessity to consider the whole size range of BC-containing particles in the model estimation of BC radiative effects.
This article is included in the Encyclopedia of Geosciences
Alessandro Bigi, Giorgio Veratti, Elisabeth Andrews, Martine Collaud Coen, Lorenzo Guerrieri, Vera Bernardoni, Dario Massabò, Luca Ferrero, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 23, 14841–14869, https://doi.org/10.5194/acp-23-14841-2023, https://doi.org/10.5194/acp-23-14841-2023, 2023
Short summary
Short summary
Atmospheric particles include compounds that play a key role in the greenhouse effect and air toxicity. Concurrent observations of these compounds by multiple instruments are presented, following deployment within an urban environment in the Po Valley, one of Europe's pollution hotspots. The study compares these data, highlighting the impact of ground emissions, mainly vehicular traffic and biomass burning, on the absorption of sun radiation and, ultimately, on climate change and air quality.
This article is included in the Encyclopedia of Geosciences
Ghislain Motos, Gabriel Freitas, Paraskevi Georgakaki, Jörg Wieder, Guangyu Li, Wenche Aas, Chris Lunder, Radovan Krejci, Julie Thérèse Pasquier, Jan Henneberger, Robert Oscar David, Christoph Ritter, Claudia Mohr, Paul Zieger, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13941–13956, https://doi.org/10.5194/acp-23-13941-2023, https://doi.org/10.5194/acp-23-13941-2023, 2023
Short summary
Short summary
Low-altitude clouds play a key role in regulating the climate of the Arctic, a region that suffers from climate change more than any other on the planet. We gathered meteorological and aerosol physical and chemical data over a year and utilized them for a parameterization that help us unravel the factors driving and limiting the efficiency of cloud droplet formation. We then linked this information to the sources of aerosol found during each season and to processes of cloud glaciation.
This article is included in the Encyclopedia of Geosciences
Cited articles
Abramson, E., Imre, D., Beránek, J., Wilson, J., and Zelenyuk, A.:
Experimental determination of chemical diffusion within secondary organic
aerosol particles, Phys. Chem. Chem. Phys., 15, 2983–2991,
https://doi.org/10.1039/c2cp44013j, 2013.
Adachi, K. and Tainosho, Y.: Characterization of heavy metal particles
embedded in tire dust, Environ. Int., 30, 1009–1017, 2004.
Agus, E. L., Young, D. T., Lingard, J. J. N., Smalley, R. J., Tate, J. E.,
Goodman, P. S., and Tomlin, A. S.: Factors influencing particle number
concentrations, size distributions and modal parameters at a roof-level and
roadside site in Leicester, UK, Sci. Total Environ., 386, 65–82,
2007.
Allen, J. L., Oberdorster, G., Morris-Schaffer, K., Wong, C., Klocke, C.,
Sobolewski, M., Conrad, K., Mayer-Proschel, M., and Cory-Slechta, D. A.:
Developmental neurotoxicity of inhaled ambient ultrafine particle air
pollution: parallels with neuropathological and behavioral features of
autism and other neurodevelopmental disorders, Neurotoxicology, 59,
140–154, 2017.
Allen, M. D. and Raabe, O. G.: Re-evaluation of Millikan's oil drop data for
the motion of small particles in air, J. Aerosol Sci., 13, 537–547,
1982.
Allen, M. D. and Raabe, O. G.: Slip correction measurements of spherical
solid aerosol particles in an improved Millikan apparatus, Aerosol Sci.
Technol., 4, 269–286, 1985.
Al-Mahmodi, J. N. H.: Measurements and Prediction of Particulate Number
Concentrations and their Chemical Composition over Yanbu Industrial City,
Saudi Arabia, PhD Thesis, The University of Manchester, Manchester, UK, 2011.
Almeida, S. M., Pio, C. A., Freitas, M. C., Reis, M. A., and Trancoso, M. A.:
Source apportionment of atmospheric urban aerosol based on weekdays/weekend
variability: evaluation of road re-suspended dust contribution, Atmos.
Environ., 40, 2058–2067, 2006.
Anderson, J. O., Thundiyil, J. G., and Stolbach, A.: Clearing the Air: A
Review of the Effects of Particulate Matter Air Pollution on Human Health,
J. Med. Toxicol., 8, 166–175, https://doi.org/10.1007/s13181-011-0203-1, 2012.
Apte, J. S., Marshall, J. D., Cohen, A. J., and Brauer, M.: Addressing global
mortality from ambient PM2.5, Environ. Sci. Technol., 49, 8057–8066,
2015.
Asmi, A., Wiedensohler, A., Laj, P., Fjaeraa, A.-M., Sellegri, K., Birmili, W., Weingartner, E., Baltensperger, U., Zdimal, V., Zikova, N., Putaud, J.-P., Marinoni, A., Tunved, P., Hansson, H.-C., Fiebig, M., Kivekäs, N., Lihavainen, H., Asmi, E., Ulevicius, V., Aalto, P. P., Swietlicki, E., Kristensson, A., Mihalopoulos, N., Kalivitis, N., Kalapov, I., Kiss, G., de Leeuw, G., Henzing, B., Harrison, R. M., Beddows, D., O'Dowd, C., Jennings, S. G., Flentje, H., Weinhold, K., Meinhardt, F., Ries, L., and Kulmala, M.: Number size distributions and seasonality of submicron particles in Europe 2008–2009, Atmos. Chem. Phys., 11, 5505–5538, https://doi.org/10.5194/acp-11-5505-2011, 2011.
Azimi, P., Zhao, D., and Stephens, B.: Estimates of HVAC filtration
efficiency for fine and ultrafine particles of outdoor origin, Atmos.
Environ., 98, 337–346, https://doi.org/10.1016/j.atmosenv.2014.09.007, 2014.
Babu, S. S., Kompalli, S. K., and Moorthy, K. K.: Aerosol number size
distributions over a coastal semi urban location: Seasonal changes and
ultrafine particle bursts, Sci. Total Environ., 563–564, 351–365,
https://doi.org/10.1016/j.scitotenv.2016.03.246, 2016.
Barone, T. L., Lall, A. A., Storey, J. M. E., Mulholland, G. W., Prikhodko,
V. Y., Frankland, J. H., Parks, J. E., and Zachariah, M. R.: Size-resolved
density measurements of particle emissions from an advanced combustion
diesel engine: effect of aggregate morphology, Energ. Fuel., 25,
1978–1988, 2011.
Bäumer, D., Vogel, B., Versick, S., Rinke, R., Möhler, O., and
Schnaiter, M.: Relationship of visibility, aerosol optical thickness and
aerosol size distribution in an ageing air mass over South-West Germany,
Atmos. Environ., 42, 989–998, https://doi.org/10.1016/j.atmosenv.2007.10.017, 2008.
Baxla, S. P., Roy, A. A., Gupta, T., Tripathi, S. N., and Bandyopadhyaya, R.:
Analysis of diurnal and seasonal variation of submicron outdoor aerosol mass
and size distribution in a northern indian city and its correlation to black
carbon, Aerosol Air Qual. Res., 9, 458–469,
https://doi.org/10.4209/aaqr.2009.03.0017, 2009.
Beddows, D. C. S., Dall'Osto, M., Harrison, R. M., Dall'Osto, M., Harrison,
R. M., Dall'Osto, M., and Harrison, R. M.: Cluster Analysis of Rural, Urban,
and Curbside Atmospheric Particle Size Data, Environ. Sci. Technol., 43,
4694–4700, https://doi.org/10.1021/es803121t, 2009.
Beddows, D. C. S., Dall'Osto, M., Harrison, R. M., Kulmala, M., Asmi, A., Wiedensohler, A., Laj, P., Fjaeraa, A. M., Sellegri, K., Birmili, W., Bukowiecki, N., Weingartner, E., Baltensperger, U., Zdimal, V., Zikova, N., Putaud, J.-P., Marinoni, A., Tunved, P., Hansson, H.-C., Fiebig, M., Kivekäs, N., Swietlicki, E., Lihavainen, H., Asmi, E., Ulevicius, V., Aalto, P. P., Mihalopoulos, N., Kalivitis, N., Kalapov, I., Kiss, G., de Leeuw, G., Henzing, B., O'Dowd, C., Jennings, S. G., Flentje, H., Meinhardt, F., Ries, L., Denier van der Gon, H. A. C., and Visschedijk, A. J. H.: Variations in tropospheric submicron particle size distributions across the European continent 2008–2009, Atmos. Chem. Phys., 14, 4327–4348, https://doi.org/10.5194/acp-14-4327-2014, 2014.
Bentayeb, M., Wagner, V., Stempfelet, M., Zins, M., Goldberg, M., Pascal,
M., Larrieu, S., Beaudeau, P., Cassadou, S., and Eilstein, D.: Association
between long-term exposure to air pollution and mortality in France: a
25-year follow-up study, Environ. Int., 85, 5–14, 2015.
Bi, X., Dai, Q., Wu, J., Zhang, Q., Zhang, W., Luo, R., Cheng, Y., Zhang, J., Wang, L., Yu, Z., Zhang, Y., Tian, Y., and Feng, Y.: Characteristics of the main primary source profiles of particulate matter across China from 1987 to 2017, Atmos. Chem. Phys., 19, 3223–3243, https://doi.org/10.5194/acp-19-3223-2019, 2019.
Birmili, W., Wiedensohler, A., Heintzenberg, J., and Lehmann, K.: Atmospheric
particle number size distribution in central Europe: Statistical relations
to air masses and meteorology, J. Geophys. Res.-Atmos., 106,
32005–32018, 2001.
Birmili, W., Tomsche, L., Sonntag, A., Opelt, C., Weinhold, K., Nordmann, S., and Schmidt, W.: Variability of aerosol particles in the urban atmosphere of
Dresden (Germany): Effects of spatial scale and particle size, Meteorol.
Z., 22, 195–211, https://doi.org/10.1127/0941-2948/2013/0395, 2013.
Brines, M., Dall'Osto, M., Beddows, D. C. S., Harrison, R. M., Gómez-Moreno, F., Núñez, L., Artíñano, B., Costabile, F., Gobbi, G. P., Salimi, F., Morawska, L., Sioutas, C., and Querol, X.: Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities, Atmos. Chem. Phys., 15, 5929–5945, https://doi.org/10.5194/acp-15-5929-2015, 2015.
Brüggemann, E., Gerwig, H., Gnauk, T., Müller, K., and Herrmann, H.:
Influence of seasons, air mass origin and day of the week on size-segregated
chemical composition of aerosol particles at a kerbside, Atmos. Environ.,
43, 2456–2463, https://doi.org/10.1016/j.atmosenv.2009.01.054, 2009.
Buonanno, G., Lall, A. A., and Stabile, L.: Temporal size distribution and
concentration of particles near a major highway, Atmos. Environ., 43,
1100–1105, https://doi.org/10.1016/j.atmosenv.2008.11.011, 2009.
Buonanno, G., Fuoco, F. C., and Stabile, L.: Influential parameters on
particle exposure of pedestrians in urban microenvironments, Atmos.
Environ., 45, 1434–1443, 2011.
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A.,
Apte, J. S., Brauer, M., Cohen, A., and Weichenthal, S.: Global estimates of
mortality associated with long-term exposure to outdoor fine particulate
matter, Proc. Natl. Acad. Sci., 115, 9592–9597, 2018.
Burnett, R. T., Pope III, C. A., Ezzati, M., Olives, C., Lim, S. S., Mehta,
S., Shin, H. H., Singh, G., Hubbell, B., and Brauer, M.: An integrated risk
function for estimating the global burden of disease attributable to ambient
fine particulate matter exposure, Environ. Health Perspect., 122,
397–403, 2014.
Cabada, J. C., Rees, S., Takahama, S., Khlystov, A., Pandis, S. N.,
Davidson, C. I., and Robinson, A. L.: Mass size distributions and size
resolved chemical composition of fine particulate matter at the Pittsburgh
supersite, Atmos. Environ., 38, 3127–3141,
https://doi.org/10.1016/j.atmosenv.2004.03.004, 2004.
Cai, R., Yang, D., Fu, Y., Wang, X., Li, X., Ma, Y., Hao, J., Zheng, J., and Jiang, J.: Aerosol surface area concentration: a governing factor in new particle formation in Beijing, Atmos. Chem. Phys., 17, 12327–12340, https://doi.org/10.5194/acp-17-12327-2017, 2017.
Cao, J.-J., Zhu, C.-S., Tie, X.-X., Geng, F.-H., Xu, H.-M., Ho, S. S. H., Wang, G.-H., Han, Y.-M., and Ho, K.-F.: Characteristics and sources of carbonaceous aerosols from Shanghai, China, Atmos. Chem. Phys., 13, 803–817, https://doi.org/10.5194/acp-13-803-2013, 2013.
Charron, A. and Harrison, R. M.: Primary particle formation from vehicle
emissions during exhaust dilution in the roadside atmosphere, Atmos.
Environ., 37, 4109–4119, https://doi.org/10.1016/S1352-2310(03)00510-7, 2003.
Charron, A., Birmili, W., and Harrison, R. M.: Fingerprinting particle
origins according to their size distribution at a UK rural site, J. Geophys.
Res.-Atmos., 113, D07202, https://doi.org/10.1029/2007JD008562, 2008.
Cheng, Z., Luo, L., Wang, S., Wang, Y., Sharma, S., Shimadera, H., Wang, X.,
Bressi, M., de Miranda, R. M., Jiang, J., Zhou, W., Fajardo, O., Yan, N., and
Hao, J.: Status and characteristics of ambient PM2.5 pollution in global
megacities, Environ. Int., 89–90, 212–221,
https://doi.org/10.1016/j.envint.2016.02.003, 2016.
Cheung, K., Daher, N., Kam, W., Shafer, M. M., Ning, Z., Schauer, J. J., and
Sioutas, C.: Spatial and temporal variation of chemical composition and mass
closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles
area, Atmos. Environ., 45, 2651–2662,
https://doi.org/10.1016/j.atmosenv.2011.02.066, 2011.
Costabile, F., Birmili, W., Klose, S., Tuch, T., Wehner, B., Wiedensohler, A., Franck, U., König, K., and Sonntag, A.: Spatio-temporal variability and principal components of the particle number size distribution in an urban atmosphere, Atmos. Chem. Phys., 9, 3163–3195, https://doi.org/10.5194/acp-9-3163-2009, 2009.
Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K. N., Flynn, M., Coe, H., Henning, S., Steinbacher, M., Henne, S., Collaud Coen, M., Petzold, A., and Baltensperger, U.: Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch, Atmos. Chem. Phys., 8, 407–423, https://doi.org/10.5194/acp-8-407-2008, 2008.
Daher, N., Saliba, N. A., Shihadeh, A. L., Jaafar, M., Baalbaki, R., and
Sioutas, C.: Chemical composition of size-resolved particulate matter at
near- freeway and urban background sites in the greater Beirut area, Atmos. Environ., 80, 96–106, 2013.
Dallmann, T. R., Onasch, T. B., Kirchstetter, T. W., Worton, D. R., Fortner, E. C., Herndon, S. C., Wood, E. C., Franklin, J. P., Worsnop, D. R., Goldstein, A. H., and Harley, R. A.: Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer, Atmos. Chem. Phys., 14, 7585–7599, https://doi.org/10.5194/acp-14-7585-2014, 2014.
Dall'Osto, M., Monahan, C., Greaney, R., Beddows, D. C. S., Harrison, R. M., Ceburnis, D., and O'Dowd, C. D.: A statistical analysis of North East Atlantic (submicron) aerosol size distributions, Atmos. Chem. Phys., 11, 12567–12578, https://doi.org/10.5194/acp-11-12567-2011, 2011a.
Dall'Osto, M., Thorpe, A., Beddows, D. C. S., Harrison, R. M., Barlow, J. F., Dunbar, T., Williams, P. I., and Coe, H.: Remarkable dynamics of nanoparticles in the urban atmosphere, Atmos. Chem. Phys., 11, 6623–6637, https://doi.org/10.5194/acp-11-6623-2011, 2011b.
Davies, C. N.: Particle-fluid interaction, J. Aerosol Sci., 10, 477–513,
1979.
DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez,
J. L.: Particle morphology and density characterization by combined mobility
and aerodynamic diameter measurements. Part 1: Theory, Aerosol Sci.
Technol., 38, 1185–1205, 2004.
de Jesus, A. L., Rahman, M. M., Mazaheri, M., Thompson, H., Knibbs, L. D.,
Jeong, C., Evans, G., Nei, W., Ding, A., and Qiao, L.: Ultrafine particles
and PM2.5 in the air of cities around the world: Are they representative of each other?, Environ. Int., 129, 118–135, 2019.
Delfino, R. J., Sioutas, C., and Malik, S.: Potential role of ultrafine
particles in associations between airborne particle mass and cardiovascular
health, Environ. Health Perspect., 113, 934–946, https://doi.org/10.1289/ehp.7938,
2005.
Ding, X. X., Kong, L. D., Du, C. T., Zhanzakova, A., Fu, H. B., Tang, X. F.,
Wang, L., Yang, X., Chen, J. M., and Cheng, T. T.: Characteristics of
size-resolved atmospheric inorganic and carbonaceous aerosols in urban
Shanghai, Atmos. Environ., 167, 625–641,
https://doi.org/10.1016/j.atmosenv.2017.08.043, 2017.
Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H.,
Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B.,
Lopez-Hilfiker, F., Andres, S., Acir, I. H., Rissanen, M., Jokinen, T.,
Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén,
T., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., Canagaratna, M.,
Maso, M. D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V. M.,
Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of
low-volatility secondary organic aerosol, Nature, 506, 476–479,
https://doi.org/10.1038/nature13032, 2014.
Feng, Y., Chen, Y., Guo, H., Zhi, G., Xiong, S., Li, J., Sheng, G., and Fu,
J.: Characteristics of organic and elemental carbon in PM2.5 samples in
Shanghai, China, Atmos. Res., 92, 434–442, 2009.
Fine, P. M., Shen, S., and Sioutas, C.: Inferring the sources of fine and
ultrafine particulate matter at downwind receptor sites in the Los Angeles
Basin using multiple continuous measurements, Aerosol Sci. Technol.,
38, 182–195, https://doi.org/10.1080/02786820390229499, 2004.
Friend, A. J., Ayoko, G. A., Jayaratne, E. R., Jamriska, M., Hopke, P. K., and Morawska, L.: Source apportionment of ultrafine and fine particle
concentrations in Brisbane, Australia, Environ. Sci. Pollut. Res., 19,
2942–2950, 2012.
Fushimi, A., Hasegawa, S., Takahashi, K., Fujitani, Y., Tanabe, K., and
Kobayashi, S.: Atmospheric fate of nuclei-mode particles estimated from the
number concentrations and chemical composition of particles measured at
roadside and background sites, Atmos. Environ., 42, 949–959,
https://doi.org/10.1016/j.atmosenv.2007.10.019, 2008.
Gao, J., Wang, T., Zhou, X., Wu, W., and Wang, W.: Measurement of aerosol
number size distributions in the Yangtze River delta in China: Formation and
growth of particles under polluted conditions, Atmos. Environ., 43,
829–836, 2009.
Gaston, C. J., Riedel, T. P., Zhang, Z., Gold, A., Surratt, J. D., and
Thornton, J. A.: Reactive uptake of an isoprene-derived epoxydiol to
submicron aerosol particles, Environ. Sci. Technol., 48, 11178–11186,
2014.
Gelencsér, A., May, B., Simpson, D., Sánchez-Ochoa, A.,
Kasper-Giebl, A., Puxbaum, H., Caseiro, A., Pio, C. A., and Legrand, M.:
Source apportionment of PM2.5 organic aerosol over Europe:
Primary/secondary, natural/anthropogenic, and fossil/biogenic origin, J.
Geophys. Res.-Atmos., 112, 1–12, https://doi.org/10.1029/2006JD008094, 2007.
Geller, M., Biswas, S., and Sioutas, C.: Determination of Particle Effective
Density in Urban Environments with a Differential Mobility Analyzer and
Aerosol Particle Mass Analyzer, Aerosol Sci. Technol., 40, 709–723,
https://doi.org/10.1080/02786820600803925, 2006.
Gentner, D. R., Jathar, S. H., Gordon, T. D., Bahreini, R., Day, D. A., El Haddad, I., Hayes, P. L., Pieber, S. M, Platt, S. M., De Gouw, J., Goldstein, A. H., Harley, R. A., Jimenez, J. L., Prévôt, A. S. H., and Robinson, A. L.: Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emi ssions, Environmen. Sci. Technol., 51, 1074–1093, 2017.
Gu, J., Pitz, M., Schnelle-Kreis, J., Diemer, J., Reller, A., Zimmermann,
R., Soentgen, J., Stoelzel, M., Wichmann, H.-E., and Peters, A.: Source
apportionment of ambient particles: comparison of positive matrix
factorization analysis applied to particle size distribution and chemical
composition data, Atmos. Environ., 45, 1849–1857, 2011.
Guo, S., Hu, M., Wang, Z. B., Slanina, J., and Zhao, Y. L.: Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional secondary formation, Atmos. Chem. Phys., 10, 947–959, https://doi.org/10.5194/acp-10-947-2010, 2010.
Harrison, R. M., Beddows, D. C. S., and Dall'Osto, M.: PMF analysis of
wide-range particle size spectra collected on a major highway, Environ. Sci.
Technol., 45, 5522–5528, 2011.
Harrison, R. M., Dall'Osto, M., Beddows, D. C. S., Thorpe, A. J., Bloss, W. J., Allan, J. D., Coe, H., Dorsey, J. R., Gallagher, M., Martin, C., Whitehead, J., Williams, P. I., Jones, R. L., Langridge, J. M., Benton, A. K., Ball, S. M., Langford, B., Hewitt, C. N., Davison, B., Martin, D., Petersson, K. F., Henshaw, S. J., White, I. R., Shallcross, D. E., Barlow, J. F., Dunbar, T., Davies, F., Nemitz, E., Phillips, G. J., Helfter, C., Di Marco, C. F., and Smith, S.: Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): an overview of the REPARTEE experiment and its conclusions, Atmos. Chem. Phys., 12, 3065–3114, https://doi.org/10.5194/acp-12-3065-2012, 2012.
Hinds, W. C.: Aerosol technology: properties, behavior, and measurement of
airborne particles, John Wiley & Sons, New York, USA, 2012.
Hitchins, J., Morawska, L., Wolff, R., and Gilbert, D.: Concentrations of
submicrometre particles from vehicle emissions near a major road, Atmos.
Environ., 34, 51–59, 2000.
Hu, M., Peng, J., Sun, K., Yue, D., Guo, S., Wiedensohler, A., and Wu, Z.:
Estimation of size-resolved ambient particle density based on the
measurement of aerosol number, mass, and chemical size distributions in the
winter in Beijing, Environ. Sci. Technol., 46, 9941–9947,
https://doi.org/10.1021/es204073t, 2012.
Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., and Canonaco, F.: High
secondary aerosol contribution to particulate pollution during haze events
in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014.
Hudson, P. K., Gibson, E. R., Young, M. A., Kleiber, P. D., and Grassian, V.
H.: A newly designed and constructed instrument for coupled infrared
extinction and size distribution measurements of aerosols, Aerosol Sci.
Technol., 41, 701–710, https://doi.org/10.1080/02786820701408509, 2007.
Hudson, P. K., Gibson, E. R., Young, M. A., Kleiber, P. D., and Grassian, V.
H.: Coupled infrared extinction and size distribution measurements for
several clay components of mineral dust aerosol, J. Geophys. Res.-Atmos.,
113, 1–11, https://doi.org/10.1029/2007JD008791, 2008.
Hussein, T., Puustinen, A., Aalto, P. P., Mäkelä, J. M., Hämeri, K., and Kulmala, M.: Urban aerosol number size distributions, Atmos. Chem. Phys., 4, 391–411, https://doi.org/10.5194/acp-4-391-2004, 2004.
Hussein, T., Hämeri, K., Aalto, P. P., Paatero, P., and Kulmala, M.:
Modal structure and spatial-temporal variations of urban and suburban
aerosols in Helsinki – Finland, Atmos. Environ., 39, 1655–1668,
https://doi.org/10.1016/j.atmosenv.2004.11.031, 2005.
Hussein, T., Saleh, S. S. A., dos Santos, V. N., Boor, B. E., Koivisto, A.
J., and Löndahl, J.: Regional inhaled deposited dose of urban aerosols in
an eastern Mediterranean city, Atmosphere, 10, 530, https://doi.org/10.3390/atmos10090530, 2019.
Hussein, T., Boor, B. E., and Löndahl, J.: Regional Inhaled Deposited
Dose of Indoor Combustion-Generated Aerosols in Jordanian Urban Homes,
Atmosphere, 11, 1150, https://doi.org/10.3390/atmos11111150, 2020.
Janhäll, S., Andreae, M. O., and Pöschl, U.: Biomass burning aerosol emissions from vegetation fires: particle number and mass emission factors and size distributions, Atmos. Chem. Phys., 10, 1427–1439, https://doi.org/10.5194/acp-10-1427-2010, 2010.
Jiang, J., Oberdörster, G., and Biswas, P.: Characterization of size,
surface charge, and agglomeration state of nanoparticle dispersions for
toxicological studies, J. Nanoparticle Res., 11, 77–89, 2009.
Kaaden, N., Massling, A., Schladitz, A., Müller, T., Kandler, K.,
Schütz, L., Weinzierl, B., Petzold, A., Tesche, M., Leinert, S.,
Deutscher, C., Ebert, M., Weinbruch, S., and Wiedensohler, A.: State of
mixing, shape factor, number size distribution, and hygroscopic growth of
the Saharan anthropogenic and mineral dust aerosol at Tinfou, Morocco,
Tellus, Ser. B Chem. Phys. Meteorol., 61, 51–63,
https://doi.org/10.1111/j.1600-0889.2008.00388.x, 2009.
Kasumba, J., Hopke, P. K., Chalupa, D. C., and Utell, M. J.: Comparison of
sources of submicron particle number concentrations measured at two sites in
Rochester, NY, Sci. Total Environ., 407, 5071–5084, 2009.
Kaul, D. S., Gupta, T., Tripathi, S. N., Tare, V., and Collett Jr, J. L.:
Secondary organic aerosol: a comparison between foggy and nonfoggy days,
Environ. Sci. Technol., 45, 7307–7313, 2011.
Ketzel, M., Wåhlin, P., Berkowicz, R., and Palmgren, F.: Particle and
trace gas emission factors under urban driving conditions in Copenhagen
based on street and roof-level observations, Atmos. Environ., 37,
2735–2749, https://doi.org/10.1016/S1352-2310(03)00245-0, 2003.
Ketzel, M., Wåhlin, P., Kristensson, A., Swietlicki, E., Berkowicz, R., Nielsen, O. J., and Palmgren, F.: Particle size distribution and particle mass measurements at urban,near-city and rural level in the Copenhagen area and Southern Sweden, Atmos. Chem. Phys., 4, 281–292, https://doi.org/10.5194/acp-4-281-2004, 2004.
Kim, E., Hopke, P. K., Larson, T. V., and Covert, D. S.: Analysis of ambient
particle size distributions using unmix and positive matrix factorization,
Environ. Sci. Technol., 38, 202–209, 2004.
Kim, K. H., Choi, G. H., Kang, C. H., Lee, J. H., Kim, J. Y., Youn, Y. H., and Lee, S. R.: The chemical composition of fine and coarse particles in
relation with the Asian Dust events, Atmos. Environ., 37, 753–765,
https://doi.org/10.1016/S1352-2310(02)00954-8, 2003.
Kittelson, D. B., Watts, W. F., and Johnson, J. P.: On-road and laboratory
evaluation of combustion aerosols-Part1: Summary of diesel engine results,
J. Aerosol Sci., 37, 913–930, https://doi.org/10.1016/j.jaerosci.2005.08.005, 2006.
Kleeman, M. J., Schauer, J. J., and Cass, G. R.: Size and composition
distribution of fine particulate matter emitted from motor vehicles,
Environ. Sci. Technol., 34, 1132–1142, 2000.
Koçak, M., Mihalopoulos, N., and Kubilay, N.: Chemical composition of the
fine and coarse fraction of aerosols in the northeastern Mediterranean,
Atmos. Environ., 41, 7351–7368, https://doi.org/10.1016/j.atmosenv.2007.05.011,
2007.
Kodros, J. K., Volckens, J., Jathar, S. H., and Pierce, J. R.: Ambient
particulate matter size distributions drive regional and global variability
in particle deposition in the respiratory tract, GeoHealth, 2, 298–312,
2018.
Kostenidou, E., Pandis, S. N., Pathak, R. K., Pandis, S. N., Kostenidou, E., and Pandis, S. N.: An algorithm for the calculation of secondary organic
aerosol density combining ams and smps data, Aerosol Sci. Technol., 41,
1002–1010, https://doi.org/10.1080/02786820701666270, 2007.
Koulouri, E., Saarikoski, S., Theodosi, C., Markaki, Z., Gerasopoulos, E.,
Kouvarakis, G., Mäkelä, T., Hillamo, R., and Mihalopoulos, N.:
Chemical composition and sources of fine and coarse aerosol particles in the
Eastern Mediterranean, Atmos. Environ., 42, 6542–6550,
https://doi.org/10.1016/j.atmosenv.2008.04.010, 2008.
Kulmala, M.: Build a global Earth observatory, Nature, 553, 21–23, 2018.
Kulmala, M., Petäjä, T., Mönkkönen, P., Koponen, I. K., Dal Maso, M., Aalto, P. P., Lehtinen, K. E. J., and Kerminen, V.-M.: On the growth of nucleation mode particles: source rates of condensable vapor in polluted and clean environments, Atmos. Chem. Phys., 5, 409–416, https://doi.org/10.5194/acp-5-409-2005, 2005.
Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E.,
Nieminen, T., Petaja, T., Sipila, M., Schobesberger, S., Rantala, P.,
Franchin, A., Jokinen, T., Jarvinen, E., Aijala, M., Kangasluoma, J.,
Hakala, J., Aalto, P. P., Paasonen, P., Mikkila, J., Vanhanen, J., Aalto,
J., Hakola, H., Makkonen, U., Ruuskanen, T., Mauldin, R. L., Duplissy, J.,
Vehkamaki, H., Back, J., Kortelainen, A., Riipinen, I., Kurten, T.,
Johnston, M. V., Smith, J. N., Ehn, M., Mentel, T. F., Lehtinen, K. E. J.,
Laaksonen, A., Kerminen, V.-M., and Worsnop, D. R.: Direct Observations of
Atmospheric Aerosol Nucleation, Science, 339, 943–946,
https://doi.org/10.1126/science.1227385, 2013.
Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M.,
Harrison, R. M., Norford, L., and Britter, R.: Ultrafine particles in cities,
Environ. Int., 66, 1–10, 2014.
Levy, M. E., Zhang, R., Khalizov, A. F., Zheng, J., Collins, D. R., Glen, C.
R., Wang, Y., Yu, X. Y., Luke, W., Jayne, J. T., and Olaguer, E.:
Measurements of submicron aerosols in Houston, Texas during the 2009 SHARP
field campaign, J. Geophys. Res.-Atmos., 118, 10518–10534,
https://doi.org/10.1002/jgrd.50785, 2013.
Li, N., Georas, S., Alexis, N., Fritz, P., Xia, T., Williams, M. A., Horner,
E., and Nel, A.: A work group report on ultrafine particles (American Academy
of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered
nanoparticles should receive special attention for possible adverse health
outcomes in human subjects, J. Allergy Clin. Immunol., 138, 386–396,
https://doi.org/10.1016/j.jaci.2016.02.023, 2016.
Li, R., Yang, J., Saffari, A., Jacobs, J., Baek, K. I., Hough, G., Larauche,
M. H., Ma, J., Jen, N., Moussaoui, N., Zhou, B., Kang, H., Reddy, S.,
Henning, S. M., Campen, M. J., Pisegna, J., Li, Z., Fogelman, A. M.,
Sioutas, C., Navab, M., and Hsiai, T. K.: Ambient Ultrafine Particle
Ingestion Alters Gut Microbiota in Association with Increased Atherogenic
Lipid Metabolites, Sci. Rep., 7, 1–12, https://doi.org/10.1038/srep42906,
2017.
Li, X. L., Wang, J. S., Tu, X. D., Liu, W., and Huang, Z.: Vertical
variations of particle number concentration and size distribution in a
street canyon in Shanghai, China, Sci. Total Environ., 378, 306–316,
https://doi.org/10.1016/j.scitotenv.2007.02.040, 2007.
Lide, D. R.: CRC handbook of chemistry and physics, 85th edition, CRC press, Boca Raton, Florida, USA, 2005.
Limbeck, A., Kulmala, M., and Puxbaum, H.: Secondary organic aerosol
formation in the atmosphere via heterogeneous reaction of gaseous isoprene
on acidic particles, Geophys. Res. Lett., 30, 1996, https://doi.org/10.1029/2003GL017738, 2003.
Lin, Y.-H., Zhang, Z., Docherty, K. S., Zhang, H., Budisulistiorini, S. H.,
Rubitschun, C. L., Shaw, S. L., Knipping, E. M., Edgerton, E. S., and
Kleindienst, T. E.: Isoprene epoxydiols as precursors to secondary organic
aerosol formation: acid-catalyzed reactive uptake studies with authentic
compounds, Environ. Sci. Technol., 46, 250–258, 2011.
Mahowald, N.: Aerosol indirect effect on biogeochemical cycles and climate,
Science, 334, 794–796, 2011.
Malloy, Q. G. J., Nakao, S., Qi, L., Austin, R., Stothers, C., Hagino, H., and Cocker, D. R.: Real-Time aerosol density determination utilizing a
modified scanning mobility particle sizer aerosol particle mass analyzer
system, Aerosol Sci. Technol., 43, 673–678,
https://doi.org/10.1080/02786820902832960, 2009.
Maricq, M. M., Podsiadlik, D. H., and Chase, R. E.: Size distributions of
motor vehicle exhaust PM: a comparison between ELPI and SMPS measurements,
Aerosol Sci. Technol., 33, 239–260, 2000.
Martin, R. V, Brauer, M., van Donkelaar, A., Shaddick, G., Narain, U., and
Dey, S.: No one knows which city has the highest concentration of fine
particulate matter, Atmos. Environ., 3, 100040, https://doi.org/10.1016/j.aeaoa.2019.100040, 2019.
Massoli, P., Fortner, E. C., Canagaratna, M. R., Williams, L. R., Zhang, Q.,
Sun, Y., Schwab, J. J., Trimborn, A., Onasch, T. B., Demerjian, K. L., Kolb,
C. E., Worsnop, D. R., and Jayne, J. T.: Pollution gradients and chemical
characterization of particulatematter from vehicular traffic near major
roadways: Results from the 2009 queens college air quality study in NYC,
Aerosol Sci. Technol., 46, 1201–1218, https://doi.org/10.1080/02786826.2012.701784,
2012.
McMurry, P. H., Wang, X., Park, K., and Ehara, K.: The relationship between
mass and mobility for atmospheric particles: A new technique for measuring
particle density, Aerosol Sci. Technol., 36, 227–238,
https://doi.org/10.1080/027868202753504083, 2002.
Mejía, J. F., Morawska, L., and Mengersen, K.: Spatial variation in particle number size distributions in a large metropolitan area, Atmos. Chem. Phys., 8, 1127–1138, https://doi.org/10.5194/acp-8-1127-2008, 2008.
Meldrum, K., Guo, C., Marczylo, E. L., Gant, T. W., Smith, R., and Leonard,
M. O.: Mechanistic insight into the impact of nanomaterials on asthma and
allergic airway disease, Part. Fibre Toxicol., 14, 1–35,
https://doi.org/10.1186/s12989-017-0228-y, 2017.
Meyer, N. K. and Ristovski, Z. D.: Ternary nucleation as a mechanism for the
production of diesel nanoparticles: Experimental analysis of the volatile
and hygroscopic properties of diesel exhaust using the volatilization and
humidification tandem differential mobility analyzer, Environ. Sci.
Technol., 41, 7309–7314, 2007.
Mikhailov, E., Vlasenko, S., Rose, D., and Pöschl, U.: Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake, Atmos. Chem. Phys., 13, 717–740, https://doi.org/10.5194/acp-13-717-2013, 2013.
Mishra, V. K., Kumar, P., Van Poppel, M., Bleux, N., Frijns, E., Reggente,
M., Berghmans, P., Panis, L. I., and Samson, R.: Wintertime spatio-temporal
variation of ultrafine particles in a Belgian city, Sci. Total Environ.,
431, 307–313, 2012.
Misra, A., Gaur, A., Bhattu, D., Ghosh, S., Dwivedi, A. K., Dalai, R., Paul,
D., Gupta, T., Tare, V., Mishra, S. K., Singh, S., and Tripathi, S. N.: An
overview of the physico-chemical characteristics of dust at Kanpur in the
central Indo-Gangetic basin, Atmos. Environ., 97, 386–396,
https://doi.org/10.1016/j.atmosenv.2014.08.043, 2014.
Moffet, R. C., de Foy, B., Molina, L. T., Molina, M. J., and Prather, K. A.: Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry, Atmos. Chem. Phys., 8, 4499–4516, https://doi.org/10.5194/acp-8-4499-2008, 2008.
Moise, T. and Rudich, Y.: Reactive uptake of ozone by aerosol-associated
unsaturated fatty acids: kinetics, mechanism, and products, J. Phys. Chem.
A, 106, 6469–6476, 2002.
Mönkkönen, P., Koponen, I. K., Lehtinen, K. E. J., Hämeri, K., Uma, R., and Kulmala, M.: Measurements in a highly polluted Asian mega city: observations of aerosol number size distribution, modal parameters and nucleation events, Atmos. Chem. Phys., 5, 57–66, https://doi.org/10.5194/acp-5-57-2005, 2005.
Morawska, L., Thomas, S., Bofinger, N., Wainwright, D., and Neale, D.:
Comprehensive characterization of aerosols in a subtropical urban
atmosphere: Particle size distribution and correlation with gaseous
pollutants, Atmos. Environ., 32, 2467–2478,
https://doi.org/10.1016/S1352-2310(98)00023-5, 1998.
Morawska, L., Ristovski, Z., Jayaratne, E. R., Keogh, D. U., and Ling, X.:
Ambient nano and ultrafine particles from motor vehicle emissions:
Characteristics, ambient processing and implications on human exposure,
Atmos. Environ., 42, 8113–8138, https://doi.org/10.1016/j.atmosenv.2008.07.050,
2008.
Motlagh, N. H., Lagerspetz, E., Nurmi, P., Li, X., Varjonen, S., Mineraud, J., Siekkinen, M., Rebeiro-Hargrave, A., Hussein, T., and Petaja, T.: Toward massive scale air quality monitoring, IEEE Commun. Mag., 58, 54–59, 2020.
Nakao, S., Tang, P., Tang, X., Clark, C. H., Qi, L., Seo, E., Asa-Awuku, A., and Cocker III, D.: Density and elemental ratios of secondary organic
aerosol: Application of a density prediction method, Atmos. Environ., 68,
273–277, 2013.
Neusüß, C., Wex, H., Birmili, W., Wiedensohler, A., Koziar, C.,
Busch, B., Brüggemann, E., Gnauk, T., Ebert, M., and Covert, D. S.:
Characterization and parameterization of atmospheric particle number-,
mass-, and chemical-size distributions in central Europe during LACE 98 and
MINT, J. Geophys. Res.-Atmos., 107, 1–13, https://doi.org/10.1029/2001JD000514,
2002.
Nieto, P. J. G., García, B. A., Diaz, J. M. F., and Brana, M. A. R.:
Parametric study of selective removal of atmospheric aerosol by below-cloud
scavenging, Atmos. Environ., 28, 2335–2342, 1994.
Ning, Z., Hudda, N., Daher, N., Kam, W., Herner, J., Kozawa, K., Mara, S., and Sioutas, C.: Impact of roadside noise barriers on particle size
distributions and pollutants concentrations near freeways, Atmos. Environ.,
44, 3118–3127, https://doi.org/10.1016/j.atmosenv.2010.05.033, 2010.
Oberdörster, G.: Pulmonary effects of inhaled ultrafine particles, Int.
Arch. Occup. Environ. Health, 74, 1–8, https://doi.org/10.1007/s004200000185, 2001.
Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R.,
Kreyling, W., and Cox, C.: Translocation of inhaled ultrafine particles to
the brain, Inhal. Toxicol., 16, 437–445,
https://doi.org/10.1080/08958370490439597, 2004.
Oberdörster, G., Oberdörster, E., and Oberdörster, J.:
Nanotoxicology: An emerging discipline evolving from studies of ultrafine
particles, Environ. Health Perspect., 113, 823–839,
https://doi.org/10.1289/ehp.7339, 2005.
Oberdürster, G.: Toxicology of ultrafine particles: in vivo studies,
Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci., 358,
2719–2740, 2000.
Ogulei, D., Hopke, P. K., Ferro, A. R., and Jaques, P. A.: Factor analysis of
submicron particle size distributions near a major United States–Canada
trade bridge, J. Air Waste Manag. Assoc., 57, 190–203,
https://doi.org/10.1080/10473289.2007.10465316, 2007.
Olfert, J. S., Symonds, J. P. R., and Collings, N.: The effective density and
fractal dimension of particles emitted from a light-duty diesel vehicle with
a diesel oxidation catalyst, J. Aerosol Sci., 38, 69–82,
https://doi.org/10.1016/j.jaerosci.2006.10.002, 2007.
Pagels, J., Khalizov, A. F., McMurry, P. H., and Zhang, R. Y.: Processing of
soot by controlled sulphuric acid and water condensation mass and mobility
relationship, Aerosol Sci. Technol., 43, 629–640,
https://doi.org/10.1080/02786820902810685, 2009.
Pajunoja, A., Malila, J., Hao, L., Joutsensaari, J., Lehtinen, K. E. J., and
Virtanen, A.: Estimating the viscosity range of SOA particles based on their
coalescence time, Aerosol Sci. Technol., 48, i–iv,
https://doi.org/10.1080/02786826.2013.870325, 2014.
Pakkanen, T. A., Loukkola, K., Korhonen, C. H., Aurela, M., Mäkelä,
T., Hillamo, R. E., Aarnio, P., Koskentalo, T., Kousa, A., and Maenhaut, W.:
Sources and chemical composition of atmospheric fine and coarse particles in
the Helsinki area, Atmos. Environ., 35, 5381–5391,
https://doi.org/10.1016/S1352-2310(01)00307-7, 2001.
Pant, P. and Harrison, R. M.: Estimation of the contribution of road traffic
emissions to particulate matter concentrations from field measurements: A
review, Atmos. Environ., 77, 78–97, https://doi.org/10.1016/j.atmosenv.2013.04.028,
2013.
Park, K., Cao, F., Kittelson, D. B., and McMurry, P. H.: Relationship between
particle mass and mobility for diesel exhaust particles, Environ. Sci.
Technol., 37, 577–583, https://doi.org/10.1021/es025960v, 2003.
Peng, J. F., Hu, M., Wang, Z. B., Huang, X. F., Kumar, P., Wu, Z. J., Guo, S., Yue, D. L., Shang, D. J., Zheng, Z., and He, L. Y.: Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production, Atmos. Chem. Phys., 14, 10249–10265, https://doi.org/10.5194/acp-14-10249-2014, 2014.
Pieters, N., Koppen, G., van Poppel, M., de Prins, S., Cox, B., Dons, E.,
Nelen, V., Panis, L. I., Plusquin, M., Schoeters, G., and Nawrot, T. S.:
Blood pressure and same-day exposure to air pollution at school:
Associations with nano-sized to coarse PM in children, Environ. Health
Perspect., 123, 737–742, https://doi.org/10.1289/ehp.1408121, 2015.
Pietropaoli, A. P., Frampton, M. W., Hyde, R. W., Morrow, P. E.,
Oberdörster, G., Cox, C., Speers, D. M., Frasier, L. M., Chalupa, D. C.,
Huang, L. S., and Utell, M. J.: Pulmonary function, diffusing capacity, and
inflammation in healthy and asthmatic subjects exposed to ultrafine
particles, Inhal. Toxicol., 16, 59–72,
https://doi.org/10.1080/08958370490443079, 2004.
Pitz, M., Birmili, W., Schmid, O., Peters, A., Wichmann, H. E., and Cyrys,
J.: Quality control and quality assurance for particle size distribution
measurements at an urban monitoring station in Augsburg, Germany, J.
Environ. Monit., 10, 1017–1024, https://doi.org/10.1039/b807264g, 2008a.
Pitz, M., Schmid, O., Heinrich, J., Birmili, W., Maguhn, J., Zimmermann, R.,
Wichmann, H. E., Peters, A., and Cyrys, J.: Seasonal and diurnal variation of
PM2.5 apparent particle density in urban air in Augsburg, Germany, Environ.
Sci. Technol., 42, 5087–5093, 2008b.
Qi, X. M., Ding, A. J., Nie, W., Petäjä, T., Kerminen, V.-M., Herrmann, E., Xie, Y. N., Zheng, L. F., Manninen, H., Aalto, P., Sun, J. N., Xu, Z. N., Chi, X. G., Huang, X., Boy, M., Virkkula, A., Yang, X.-Q., Fu, C. B., and Kulmala, M.: Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station, Atmos. Chem. Phys., 15, 12445–12464, https://doi.org/10.5194/acp-15-12445-2015, 2015.
Qiao, K., Wu, Z., Pei, X., Liu, Q., Shang, D., Zheng, J., Du, Z., Zhu, W.,
Wu, Y., Lou, S., Guo, S., Chan, C. K., Pathak, R. K., Hallquist, M., and Hu,
M.: Size-resolved effective density of submicron particles during summertime
in the rural atmosphere of Beijing, China, J. Environ. Sci. (China), 73, 69–77, https://doi.org/10.1016/j.jes.2018.01.012, 2018.
Rawat, V. K., Buckley, D. T., Kimoto, S., Lee, M. H., Fukushima, N., and
Hogan, C. J.: Two dimensional size-mass distribution function inversion from
differential mobility analyzer-aerosol particle mass analyzer (DMA-APM)
measurements, J. Aerosol Sci., 92, 70–82,
https://doi.org/10.1016/j.jaerosci.2015.11.001, 2016.
Reid, J. S. and Hobbs, P. V: Physical and optical properties of young smoke
from individual biomass fires in Brazil, J. Geophys. Res.-Atmos., 103,
32013–32030, 1998.
Reid, J. S., Jonsson, H. H., Maring, H. B., Smirnov, A., Savoie, D. L.,
Cliff, S. S., Reid, E. A., Livingston, J. M., Meier, M. M., Dubovik, O., and
Tsay, S.-C.: Comparison of size and morphological measurements of coarse
mode dust particles from Africa, J. Geophys. Res., 108, 8593,
https://doi.org/10.1029/2002JD002485, 2003.
Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799–825, https://doi.org/10.5194/acp-5-799-2005, 2005.
Riemer, N., Ault, A. P., West, M., Craig, R. L., and Curtis, J. H.: Aerosol
Mixing State: Measurements, Modeling, and Impacts, Rev. Geophys., 57, 187–249, https://doi.org/10.1029/2018RG000615, 2019.
Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P., and Andreae, M. O.: Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia, Atmos. Chem. Phys., 6, 471–491, https://doi.org/10.5194/acp-6-471-2006, 2006.
Rissler, J., Messing, M. E., Malik, A. I., Nilsson, P. T., Nordin, E. Z.,
Bohgard, M., Sanati, M., and Pagels, J. H.: Effective density
characterization of soot agglomerates from various sources and comparison to
aggregation theory, Aerosol Sci. Technol., 47, 792–805,
https://doi.org/10.1080/02786826.2013.791381, 2013.
Rissler, J., Nordin, E. Z., Eriksson, A. C., Nilsson, P. T., Frosch, M.,
Sporre, M. K., Wierzbicka, A., Svenningsson, B., Löndahl, J., Messing,
M. E., Sjogren, S., Hemmingsen, J. G., Loft, S., Pagels, J. H., and
Swietlicki, E.: Effective density and mixing state of aerosol particles in a
near-traffic urban environment, Environ. Sci. Technol., 48, 6300–6308,
https://doi.org/10.1021/es5000353, 2014.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B.
R. T.: Sources of fine organic aerosol. 3. Road dust, tire debris, and
organometallic brake lining dust: roads as sources and sinks, Environ. Sci.
Technol., 27, 1892–1904, 1993.
Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity, Atmos. Chem. Phys., 10, 3365–3383, https://doi.org/10.5194/acp-10-3365-2010, 2010.
Rychlik, K. A., Secrest, J. R., Lau, C., Pulczinski, J., Zamora, M. L.,
Leal, J., Langley, R., Myatt, L. G., Raju, M., and Chang, R. C.-A.: In utero
ultrafine particulate matter exposure causes offspring pulmonary
immunosuppression, Proc. Natl. Acad. Sci., 116, 3443–3448, 2019.
Saari, S. E., Niemi, J., Rönkkö, T., Kuuluvainen, H., Järvinen,
A., Pirjola, L., Aurela, M., Hillamo, R., and Keskinen, J.: Seasonal and
diurnal variations of fluorescent bioaerosol concentration and size
distribution in the urban environment, Aerosol Air Qual. Res., 15, 572–581, https://doi.org/10.4209/aaqr.2014.10.0258, 2015.
Sakamoto, K. M., Laing, J. R., Stevens, R. G., Jaffe, D. A., and Pierce, J. R.: The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization, Atmos. Chem. Phys., 16, 7709–7724, https://doi.org/10.5194/acp-16-7709-2016, 2016.
Salma, I., Borsós, T., Weidinger, T., Aalto, P., Hussein, T., Dal Maso, M., and Kulmala, M.: Production, growth and properties of ultrafine atmospheric aerosol particles in an urban environment, Atmos. Chem. Phys., 11, 1339–1353, https://doi.org/10.5194/acp-11-1339-2011, 2011.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from
air pollution to climate change, John Wiley & Sons, New York, USA, 2012.
Shen, X., Sun, J., Zhang, X., Zhang, Y., Zhang, L., and Fan, R.: Key features
of new particle formation events at background sites in China and their
influence on cloud condensation nuclei, Front. Environ. Sci. Eng., 10, 5, https://doi.org/10.1007/s11783-016-0833-2,
2016a.
Shen, X. J., Sun, J. Y., Zhang, X. Y., Zhang, Y. M., Zhang, L., Fan, R. X.,
Zhang, Z. X., Zhang, X. L., Zhou, H. G., and Zhou, L. Y.: The influence of
emission control on particle number size distribution and new particle
formation during China's V-Day parade in 2015, Sci. Total Environ., 573,
409–419, 2016b.
Shi, J. P. and Harrison, R. M.: Investigation of ultrafine particle
formation during diesel exhaust dilution, Environ. Sci. Technol., 33,
3730–3736, 1999.
Shi, J. P., Khan, A. A., and Harrison, R. M.: Measurements of ultrafine
particle concentration and size distribution in the urban atmosphere, Sci.
Total Environ., 235, 51–64, https://doi.org/10.1016/S0048-9697(99)00189-8, 1999.
Shi, J. P., Harrison, R. M., and Evans, D.: Comparison of ambient particle
surface area measurement by epiphaniometer and SMPS/APS, Atmos. Environ.,
35, 6193–6200, https://doi.org/10.1016/S1352-2310(01)00382-X, 2001.
Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C. J., Fushimi, A.,
Enami, S., Arangio, A. M., Fröhlich-Nowoisky, J., Fujitani, Y.,
Furuyama, A., Lakey, P. S. J., Lelieveld, J., Lucas, K., Morino, Y.,
Pöschl, U., Takahama, S., Takami, A., Tong, H., Weber, B., Yoshino, A., and Sato, K.: Aerosol health effects from molecular to global scales,
Environ. Sci. Technol., 51, 13545–13567, https://doi.org/10.1021/acs.est.7b04417, 2017.
Sioutas, C., Delfino, R. J., and Singh, M.: Exposure assessment for
atmospheric Ultrafine Particles (UFPs) and implications in epidemiologic
research, Environ. Health Perspect., 113, 947–955, https://doi.org/10.1289/ehp.7939,
2005.
Song, S., Wu, Y., Jiang, J., Yang, L., Cheng, Y., and Hao, J.: Chemical
characteristics of size-resolved PM2.5at a roadside environment in Beijing, China, Environ. Pollut., 161, 215–221, https://doi.org/10.1016/j.envpol.2011.10.014,
2012.
Sowlat, M. H., Hasheminassab, S., and Sioutas, C.: Source apportionment of ambient particle number concentrations in central Los Angeles using positive matrix factorization (PMF), Atmos. Chem. Phys., 16, 4849–4866, https://doi.org/10.5194/acp-16-4849-2016, 2016.
Stanier, C. O., Khlystov, A. Y., and Pandis, S. N.: Nucleation events during
the Pittsburgh Air Quality Study: description and relation to key
meteorological, gas phase, and aerosol parameters special issue of aerosol
science and technology on findings from the fine particulate matter
supersites program, Aerosol Sci. Technol., 38, 253–264, 2004.
Swietlicki, E., Hansson, H. C., Hämeri, K., Svenningsson, B., Massling,
A., Mcfiggans, G., Mcmurry, P. H., Petäjä, T., Tunved, P., Gysel,
M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J.,
Wiedensohler, A., and Kulmala, M.: Hygroscopic properties of submicrometer
atmospheric aerosol particles measured with H-TDMA instruments in various
environments – A review, Tellus, Ser. B Chem.
Phys. Meteorol., 60B,
432–469, https://doi.org/10.1111/j.1600-0889.2008.00350.x, 2008.
Tang, I. N.: Chemical and size effects of hygroscopic aerosols on light
scattering coefficients, J. Geophys. Res.-Atmos., 101, 19245–19250,
1996.
Tang, M. J., Thieser, J., Schuster, G., and Crowley, J. N.: Uptake of NO3 and N2O5 to Saharan dust, ambient urban aerosol and soot: a relative rate study, Atmos. Chem. Phys., 10, 2965–2974, https://doi.org/10.5194/acp-10-2965-2010, 2010.
Thimmaiah, D., Hovorka, J., and Hopke, P. K.: Source apportionment of winter
submicron Prague aerosols from combined particle number size distribution
and gaseous composition data, Aerosol Air Qual. Resarch, 9, 209–236,
2009.
Thorpe, A. and Harrison, R. M.: Sources and properties of non-exhaust
particulate matter from road traffic: A review, Sci. Total Environ.,
400, 270–282, https://doi.org/10.1016/j.scitotenv.2008.06.007, 2008.
Thunis, P., Degraeuwe, B., Pisoni, E., Trombetti, M., Peduzzi, E., Belis, C.
A., Wilson, J., and Vignati, E.: Urban PM2.5 atlas – air quality in European cities, Publications Office of the European Union, Luxembourg, JRC108595, https://doi.org/10.2760/336669, 2017.
Tröstl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni,
U., Ahlm, L., Frege, C., Bianchi, F., and Wagner, R.: The role of
low-volatility organic compounds in initial particle growth in the
atmosphere, Nature, 533, 527–531, https://doi.org/10.1038/nature18271, 2016.
Tseng, E., Ho, W.-C., Lin, M.-H., Cheng, T.-J., Chen, P.-C., and Lin, H.-H.:
Chronic exposure to particulate matter and risk of cardiovascular mortality:
cohort study from Taiwan, BMC Public Health, 15, 936, https://doi.org/10.1186/s12889-015-2272-6, 2015.
Tsiouri, V., Kakosimos, K. E., and Kumar, P.: Concentrations, sources and
exposure risks associated with particulate matter in the Middle East
Area – a review, Air Qual. Atmos. Heal., 8, 67–80,
https://doi.org/10.1007/s11869-014-0277-4, 2015.
Tuch, T. M., Wehner, B., Pitz, M., Cyrys, J., Heinrich, J., Kreyling, W. G.,
Wichmann, H. E., and Wiedensohler, A.: Long-term measurements of
size-segregated ambient aerosol in two German cities located 100 km apart,
Atmos. Environ., 37, 4687–4700, https://doi.org/10.1016/j.atmosenv.2003.07.010,
2003.
Tuch, T. M., Herbarth, O., Franck, U., Peters, A., Wehner, B., Wiedensohler,
A., and Heintzenberg, J.: Weak correlation of ultrafine aerosol particle
concentrations < 800 nm between two sites within one city, J. Expo.
Sci. Environ. Epidemiol., 16, 486–490, https://doi.org/10.1038/sj.jes.7500469, 2006.
Tunved, P., Ström, J., and Hansson, H.-C.: An investigation of processes controlling the evolution of the boundary layer aerosol size distribution properties at the Swedish background station Aspvreten, Atmos. Chem. Phys., 4, 2581–2592, https://doi.org/10.5194/acp-4-2581-2004, 2004.
Väkevä, M., Hämeri, K., Puhakka, T., Nilsson, E. D., Hohti, H., and Mäkelä, J. M.: Effects of meteorological processes on aerosol
particle size distribution in an urban background area, J. Geophys. Res.-Atmos., 105, 9807–9821, https://doi.org/10.1029/1999JD901143, 2000.
Valavanidis, A., Fiotakis, K., and Vlachogianni, T.: Airborne particulate
matter and human health: Toxicological assessment and importance of size and
composition of particles for oxidative damage and carcinogenic mechanisms,
J. Environ. Sci. Heal. – Part C Environ. Carcinog. Ecotoxicol. Rev., 26,
339–362, https://doi.org/10.1080/10590500802494538, 2008.
Van Donkelaar, A., Martin, R. V, Brauer, M., Kahn, R., Levy, R., Verduzco,
C., and Villeneuve, P. J.: Global estimates of ambient fine particulate
matter concentrations from satellite-based aerosol optical depth:
development and application, Environ. Health Perspect., 118, 847–855,
2010.
Venecek, M. A., Yu, X., and Kleeman, M. J.: Predicted ultrafine particulate matter source contribution across the continental United States during summertime air pollution events, Atmos. Chem. Phys., 19, 9399–9412, https://doi.org/10.5194/acp-19-9399-2019, 2019.
Virtanen, A., Rönkkö, T., Kannosto, J., Ristimäki, J., Mäkelä, J. M., Keskinen, J., Pakkanen, T., Hillamo, R., Pirjola, L., and Hämeri, K.: Winter and summer time size distributions and densities of traffic-related aerosol particles at a busy highway in Helsinki, Atmos. Chem. Phys., 6, 2411–2421, https://doi.org/10.5194/acp-6-2411-2006, 2006.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirilä, P.,
Leskinen, J., Mäkelä, J. M., Holopainen, J. K., Pöschl, U.,
Kulmala, M., Worsnop, D. R., and Laaksonen, A.: An amorphous solid state of
biogenic secondary organic aerosol particles, Nature, 467, 824–827,
https://doi.org/10.1038/nature09455, 2010.
Vu, T. V., Delgado-Saborit, J. M., and Harrison, R. M.: Review: Particle
number size distributions from seven major sources and implications for
source apportionment studies, Atmos. Environ., 122, 114–132,
https://doi.org/10.1016/j.atmosenv.2015.09.027, 2015.
Wang, L., Khalizov, A. F., Zheng, J., Xu, W., Ma, Y., Lal, V., and Zhang, R.:
Atmospheric nanoparticles formed from heterogeneous reactions of organics,
Nat. Geosci., 3, 238–242, https://doi.org/10.1038/ngeo778, 2010.
Wang, Z. B., Hu, M., Sun, J. Y., Wu, Z. J., Yue, D. L., Shen, X. J., Zhang, Y. M., Pei, X. Y., Cheng, Y. F., and Wiedensohler, A.: Characteristics of regional new particle formation in urban and regional background environments in the North China Plain, Atmos. Chem. Phys., 13, 12495–12506, https://doi.org/10.5194/acp-13-12495-2013, 2013a.
Wang, Z. B., Hu, M., Wu, Z. J., Yue, D. L., He, L. Y., Huang, X. F., Liu, X. G., and Wiedensohler, A.: Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing, Atmos. Chem. Phys., 13, 10159–10170, https://doi.org/10.5194/acp-13-10159-2013, 2013b.
Watson, J. G., Chow, J. C., Lowenthal, D. H., Stolzenburg, M. R., Kreisberg,
N. M., and Hering, S. V.: Particle size relationships at the Fresno
Supersite, J. Air Waste Manag. Assoc., 52, 822–827,
https://doi.org/10.1080/10473289.2002.10470817, 2002.
Wehner, B. and Wiedensohler, A.: Long term measurements of submicrometer urban aerosols: statistical analysis for correlations with meteorological conditions and trace gases, Atmos. Chem. Phys., 3, 867–879, https://doi.org/10.5194/acp-3-867-2003, 2003.
Wehner, B., Birmili, W., Gnauk, T., and Wiedensohler, A.: Particle number
size distributions in a street canyon and their transformation into the
urban background: Measurements and a simple model study, Atmos. Environ.,
36, 2215–2223, https://doi.org/10.1016/S1352-2310(02)00174-7, 2002.
Wehner, B., Philippin, S., Wiedensohler, A., Scheer, V., and Vogt, R.:
Variability of non-volatile fractions of atmospheric aerosol particles with
traffic influence, Atmos. Environ., 38, 6081–6090,
https://doi.org/10.1016/j.atmosenv.2004.08.015, 2004a.
Wehner, B., Wiedensohler, A., Tuch, T. M., Wu, Z. J., Hu, M., Slanina, J., and Kiang, C. S.: Variability of the aerosol number size distribution in
Beijing, China: New particle formation, dust storms, and high continental
background, Geophys. Res. Lett., 31, 1–4, https://doi.org/10.1029/2004GL021596,
2004b.
Wehner, B., Birmili, W., Ditas, F., Wu, Z., Hu, M., Liu, X., Mao, J., Sugimoto, N., and Wiedensohler, A.: Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004–2006, Atmos. Chem. Phys., 8, 6155–6168, https://doi.org/10.5194/acp-8-6155-2008, 2008.
Weichenthal, S., Bai, L., Hatzopoulou, M., Van Ryswyk, K., Kwong, J. C.,
Jerrett, M., Van Donkelaar, A., Martin, R. V., Burnett, R. T., Lu, H., and
Chen, H.: Long-term exposure to ambient ultrafine particles and respiratory
disease incidence in in Toronto, Canada: A cohort study, Environ. Heal. A
Glob. Access Sci. Source, 16, 1–11, https://doi.org/10.1186/s12940-017-0276-7, 2017.
Weingartner, E., Burtscher, H., and Baltensperger, U.: Hygroscopic properties
of carbon and diesel soot particles, Atmos. Environ., 31, 2311–2327,
1997.
West, J. J., Cohen, A., Dentener, F., Brunekreef, B., Zhu, T., Armstrong,
B., Bell, M. L., Brauer, M., Carmichael, G., and Costa, D. L.: What we
breathe impacts our health: improving understanding of the link between air
pollution and health, Environ. Sci. Technol., 50, 4895–4904, https://doi.org/10.1021/acs.est.5b03827, 2016.
Wong, C. M., Lai, H. K., Tsang, H., Thach, T. Q., Thomas, G. N., Lam, K. B.
H., Chan, K. P., Yang, L., Lau, A. K. H., and Ayres, J. G.: Satellite-based
estimates of long-term exposure to fine particles and association with
mortality in elderly Hong Kong residents, Environ. Health Perspect.,
123, 1167–1172, 2015.
Wu, Z., Hu, M., Lin, P., Liu, S., Wehner, B., and Wiedensohler, A.: Particle
number size distribution in the urban atmosphere of Beijing, China, Atmos.
Environ., 42, 7967–7980, https://doi.org/10.1016/j.atmosenv.2008.06.022, 2008.
Xiao, S., Wang, M. Y., Yao, L., Kulmala, M., Zhou, B., Yang, X., Chen, J. M., Wang, D. F., Fu, Q. Y., Worsnop, D. R., and Wang, L.: Strong atmospheric new particle formation in winter in urban Shanghai, China, Atmos. Chem. Phys., 15, 1769–1781, https://doi.org/10.5194/acp-15-1769-2015, 2015.
Xie, Y., Ye, X., Ma, Z., Tao, Y., Wang, R., Zhang, C., Yang, X., Chen, J., and Chen, H.: Insight into winter haze formation mechanisms based on aerosol hygroscopicity and effective density measurements, Atmos. Chem. Phys., 17, 7277–7290, https://doi.org/10.5194/acp-17-7277-2017, 2017.
Yang, F., Chen, H., Du, J., Yang, X., Gao, S., Chen, J., and Geng, F.:
Evolution of the mixing state of fine aerosols during haze events in
Shanghai, Atmos. Res., 104, 193–201, 2012.
Ye, X., Ma, Z., Hu, D., Yang, X., and Chen, J.: Size-resolved hygroscopicity
of submicrometer urban aerosols in Shanghai during wintertime, Atmos. Res.,
99, 353–364, https://doi.org/10.1016/j.atmosres.2010.11.008, 2011.
Yin, Z., Ye, X., Jiang, S., Tao, Y., Shi, Y., Yang, X., and Chen, J.:
Size-resolved effective density of urban aerosols in Shanghai, Atmos.
Environ., 100, 133–140, https://doi.org/10.1016/j.atmosenv.2014.10.055, 2015.
Yu, F., Wang, Q., Yan, Q., Jiang, N., Wei, J., Wei, Z., and Yin, S.: Particle
size distribution, chemical composition and meteorological factor analysis:
A case study during wintertime snow cover in Zhengzhou, China, Atmos. Res.,
202, 140–147, https://doi.org/10.1016/j.atmosres.2017.11.016, 2018.
Yue, D., Hu, M., Wu, Z., Wang, Z., Guo, S., Wehner, B., Nowak, A., Achtert,
P., Wiedensohler, A., Jung, J., Kim, Y. J., and Liu, S.: Characteristics of
aerosol size distributions and new particle formation in the summer in
Beijing, J. Geophys. Res.-Atmos., 114, 1–13, https://doi.org/10.1029/2008JD010894,
2009.
Yue, D. L., Hu, M., Wu, Z. J., Guo, S., Wen, M. T., Nowak, A., Wehner, B., Wiedensohler, A., Takegawa, N., Kondo, Y., Wang, X. S., Li, Y. P., Zeng, L. M., and Zhang, Y. H.: Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes, Atmos. Chem. Phys., 10, 9431–9439, https://doi.org/10.5194/acp-10-9431-2010, 2010.
Yue, D. L., Hu, M., Wang, Z. B., Wen, M. T., Guo, S., Zhong, L. J.,
Wiedensohler, A., and Zhang, Y. H.: Comparison of particle number size
distributions and new particle formation between the urban and rural sites
in the PRD region, China, Atmos. Environ., 76, 181–188,
https://doi.org/10.1016/j.atmosenv.2012.11.018, 2013.
Zelenyuk, A., Yang, J., Song, C., Zaveri, R. A., and Imre, D.: A new
real-time method for determining particles' sphericity and density:
application to secondary organic aerosol formed by ozonolysis of α-pinene, Environ. Sci. Technol., 42, 8033–8038, 2008.
Zhang, H., Hu, D., Chen, J., Ye, X., Wang, S. X., Hao, J. M., Wang, L.,
Zhang, R., and An, Z.: Particle size distribution and polycyclic aromatic
hydrocarbons emissions from agricultural crop residue burning, Environ. Sci.
Technol., 45, 5477–5482, 2011.
Zhang, K., O'Donnell, D., Kazil, J., Stier, P., Kinne, S., Lohmann, U., Ferrachat, S., Croft, B., Quaas, J., Wan, H., Rast, S., and Feichter, J.: The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations, Atmos. Chem. Phys., 12, 8911–8949, https://doi.org/10.5194/acp-12-8911-2012, 2012.
Zhang, K. M., Wexler, A. S., Zhu, Y. F., Hinds, W. C., and Sioutas, C.:
Evolution of particle number distribution near roadways. Part II: the
“Road-to-Ambient” process, Atmos. Environ., 38, 6655–6665, 2004.
Zhang, W., Zhuang, G., Guo, J., Xu, D., Wang, W., Baumgardner, D., Wu, Z., and Yang, W.: Sources of aerosol as determined from elemental composition
and size distributions in Beijing, Atmos. Res., 95, 197–209, 2010.
Zheng, X., Liu, X., Zhao, F., Duan, F., Yu, T., and Cachier, H.: Seasonal
characteristics of biomass burning contribution to Beijing aerosol, Sci.
China Ser. B Chem., 48, 481–488, 2005.
Zhu, Y., Hinds, W. C., Kim, S., and Sioutas, C.: Concentration and size
distribution of ultrafine particles near a major highway, J. Air Waste
Manag. Assoc., 52, 1032–1042, https://doi.org/10.1080/10473289.2002.10470842, 2002a.
Zhu, Y., Hinds, W. C., Kim, S., Shen, S., and Sioutas, C.: Study of ultrafine
particles near a major highway with heavy-duty diesel traffic, Atmos.
Environ., 36, 4323–4335, 2002b.
Zwozdziak, A., Gini, M. I., Samek, L., Rogula-Kozlowska, W., Sowka, I., and
Eleftheriadis, K.: Implications of the aerosol size distribution modal
structure of trace and major elements on human exposure, inhaled dose and
relevance to the PM2.5 and PM10 metrics in a European pollution hotspot
urban area, J. Aerosol Sci., 103, 38–52, 2017.
Download
- Article
(6702 KB) - Full-text XML
Short summary
Urban air pollution is a major global environmental health challenge. Establishing associations between exposure to urban aerosols and human health outcomes requires reliable aerosol measurements. Of particular importance are measurements of urban aerosol particle size distributions. This review critically analyzes global trends in urban aerosol particle size distributions in order to provide insights into air pollution in cities and guidance for the future for air quality monitoring networks.
Urban air pollution is a major global environmental health challenge. Establishing associations...
Altmetrics
Final-revised paper
Preprint