Articles | Volume 21, issue 8
https://doi.org/10.5194/acp-21-6079-2021
https://doi.org/10.5194/acp-21-6079-2021
Research article
 | 
22 Apr 2021
Research article |  | 22 Apr 2021

Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses

Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht

Related authors

The role of point discharge in the historical development of atmospheric electricity
Blair P. S. McGinness, R. Giles Harrison, Karen L. Aplin, and Martin W. Airey
Hist. Geo Space. Sci., 16, 51–63, https://doi.org/10.5194/hgss-16-51-2025,https://doi.org/10.5194/hgss-16-51-2025, 2025
Short summary
Spectral variability of gravity-wave kinetic and potential energy at 69° N: a seven-year lidar study
Mohamed Mossad, Irina Strelnikova, Robin Wing, Gerd Baumgarten, and Michael Gerding
Atmos. Chem. Phys., 25, 14839–14864, https://doi.org/10.5194/acp-25-14839-2025,https://doi.org/10.5194/acp-25-14839-2025, 2025
Short summary
Convection-generated gravity waves in the tropical lower stratosphere from Aeolus wind profiling, GNSS-RO, and ERA5 reanalysis
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, M. Joan Alexander, Alexis Mariaccia, Philippe Keckhut, and Antoine Mangin
Atmos. Chem. Phys., 25, 13769–13798, https://doi.org/10.5194/acp-25-13769-2025,https://doi.org/10.5194/acp-25-13769-2025, 2025
Short summary
Stratospheric gravity waves in three high-resolution models and AIRS satellite observations
Phoebe Noble, Haruka Okui, Joan Alexander, Manfred Ern, Neil P. Hindley, Lars Hoffmann, Laura Holt, Annelize van Niekerk, Riwal Plougonven, Inna Polichtchouk, Claudia C. Stephan, Martina Bramberger, Milena Corcos, William Putnam, Christopher Kruse, and Corwin J. Wright
EGUsphere, https://doi.org/10.5194/egusphere-2025-4878,https://doi.org/10.5194/egusphere-2025-4878, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Assessment of 16-year tropospheric ozone trends from the IASI Climate Data Record
Anne Boynard, Catherine Wespes, Juliette Hadji-Lazaro, Selviga Sinnathamby, Daniel Hurtmans, Pierre-François Coheur, Marie Doutriaux-Boucher, Jacobus Onderwaater, Wolfgang Steinbrecht, Elyse A. Pennington, Kevin Bowman, and Cathy Clerbaux
Atmos. Chem. Phys., 25, 11719–11755, https://doi.org/10.5194/acp-25-11719-2025,https://doi.org/10.5194/acp-25-11719-2025, 2025
Short summary

Cited articles

Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems, IEEE T. Geosci. Remote, 41, 253–264, 2003. a
Bohlinger, P., Sinnhuber, B.-M., Ruhnke, R., and Kirner, O.: Radiative and dynamical contributions to past and future Arctic stratospheric temperature trends, Atmos. Chem. Phys., 14, 1679–1688, https://doi.org/10.5194/acp-14-1679-2014, 2014. a
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and Match, A.: Defining sudden stratospheric warmings, B. Am. Meteorol. Soc., 96, 1913–1928, 2015. a
Cardinali, C. and Healy, S.: Impact of GPS radio occultation measurements in the ECMWF system using adjoint-based diagnostics, Q. J. Roy. Meteorol. Soc., 140, 2315–2320, 2014. a
Download
Short summary
A network of Rayleigh lidars have been used to infer the upper-stratosphere temperature bias in ECMWF ERA-5 and ERA-Interim reanalyses during 1990–2017. Results show that ERA-Interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
Share
Altmetrics
Final-revised paper
Preprint