Articles | Volume 21, issue 8
https://doi.org/10.5194/acp-21-5777-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-5777-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of prescribed CMIP6 ozone on simulating the Southern Hemisphere atmospheric circulation response to ozone depletion
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Katja Matthes
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Faculty of Mathematics and Natural Sciences, Christian-Albrechts Universität zu Kiel, Kiel, Germany
Sebastian Wahl
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Jan Harlaß
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Arne Biastoch
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Faculty of Mathematics and Natural Sciences, Christian-Albrechts Universität zu Kiel, Kiel, Germany
Related authors
Nele Tim, Eduardo Zorita, Birgit Hünicke, and Ioana Ivanciu
Weather Clim. Dynam., 4, 381–397, https://doi.org/10.5194/wcd-4-381-2023, https://doi.org/10.5194/wcd-4-381-2023, 2023
Short summary
Short summary
As stated by the IPCC, southern Africa is one of the two land regions that are projected to suffer from the strongest precipitation reductions in the future. Simulated drying in this region is linked to the adjacent oceans, and prevailing winds as warm and moist air masses are transported towards the continent. Precipitation trends in past and future climate can be partly attributed to the strength of the Agulhas Current system, the current along the east and south coasts of southern Africa.
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022, https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Short summary
Greenhouse gas concentrations continue to increase, while the Antarctic ozone hole is expected to recover during the twenty-first century. We separate the effects of ozone recovery and of greenhouse gases on the Southern Hemisphere atmospheric and oceanic circulation, and we find that ozone recovery is generally reducing the impact of greenhouse gases, with the exception of certain regions of the stratosphere during spring, where the two effects reinforce each other.
Yannick Wölker, Willi Rath, Matthias Renz, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2025-2782, https://doi.org/10.5194/egusphere-2025-2782, 2025
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is a large current system that helps regulate Earth's climate. Monitoring the AMOC relies on fixed instruments anchored to the seafloor. This study explores in a high-resolution model whether data from Argo floats, autonomous drifters collecting hydrographic profiles, can be used to monitor the AMOC cost-effectively with the help of Machine Learning. Results suggest that Argo floats can extend AMOC monitoring beyond current fixed arrays.
Léo C. Aroucha, Joke F. Lübbecke, Peter Brandt, Franziska U. Schwarzkopf, and Arne Biastoch
Ocean Sci., 21, 661–678, https://doi.org/10.5194/os-21-661-2025, https://doi.org/10.5194/os-21-661-2025, 2025
Short summary
Short summary
The west African coastal region sustains highly productive fisheries and marine ecosystems influenced by sea surface temperature. We use oceanic models to show that the freshwater input from land to ocean strengthens a surface northward (southward) coastal current north (south) of the Congo River mouth, promoting a transfer of cooler (warmer) waters to north (south) of the Congo discharge location. We highlight the significant impact of river discharge on ocean temperatures and circulation.
Wenjuan Huo, Tobias Spiegl, Sebastian Wahl, Katja Matthes, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
Atmos. Chem. Phys., 25, 2589–2612, https://doi.org/10.5194/acp-25-2589-2025, https://doi.org/10.5194/acp-25-2589-2025, 2025
Short summary
Short summary
Uncertainties of the solar signals in the middle atmosphere are assessed based on large ensemble simulations with multiple climate models. Our results demonstrate that the 11-year solar signals in the shortwave heating rate, temperature, and ozone anomalies are significant and robust. The simulated dynamical responses are model-dependent, and solar imprints in the polar night jet are influenced by biases in the model used.
Tobias Schulzki, Franziska U. Schwarzkopf, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2025-571, https://doi.org/10.5194/egusphere-2025-571, 2025
Short summary
Short summary
Exceptionally high ocean temperatures can cause long-lasting damage to marine ecosystems. Most existing knowledge about such temperature extremes is focused on near-surface waters, yet ecosystems also thrive at greater depths. In this study, we present a comprehensive analysis of temperature extremes across the entire Atlantic Ocean, from the surface to the seafloor. Our findings underscore the importance of the ocean circulation in driving extreme temperature events.
Hendrik Großelindemann, Frederic S. Castruccio, Gokhan Danabasoglu, and Arne Biastoch
Ocean Sci., 21, 93–112, https://doi.org/10.5194/os-21-93-2025, https://doi.org/10.5194/os-21-93-2025, 2025
Short summary
Short summary
This study investigates the Agulhas Leakage and examines its role in the global ocean circulation. It utilises a high-resolution Earth system model and a preindustrial climate to look at the response of the Agulhas Leakage to the wind field and the Atlantic Meridional Overturning Circulation (AMOC) and its evolution under climate change. The Agulhas Leakage could influence the stability of the AMOC, whose possible collapse would impact the climate in the Northern Hemisphere.
Kristin Burmeister, Franziska U. Schwarzkopf, Willi Rath, Arne Biastoch, Peter Brandt, Joke F. Lübbecke, and Mark Inall
Ocean Sci., 20, 307–339, https://doi.org/10.5194/os-20-307-2024, https://doi.org/10.5194/os-20-307-2024, 2024
Short summary
Short summary
We apply two different forcing products to a high-resolution ocean model to investigate their impact on the simulated upper-current field in the tropical Atlantic. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current fields. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations.
Tabea Rahm, Robin Pilch Kedzierski, Martje Hänsch, and Katja Matthes
EGUsphere, https://doi.org/10.5194/egusphere-2024-667, https://doi.org/10.5194/egusphere-2024-667, 2024
Preprint archived
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are extreme wintertime events that can impact surface weather. However, a distinct surface response is not observed for every SSW. Here, we classify SSWs that do and do not impact the troposphere in ERA5 reanalysis data. In addition, we evaluate the effects of two kinds of waves: planetary and synoptic-scale. Our findings emphasize that the lower stratosphere and synoptic-scale waves play crucial roles in coupling the SSW signal to the surface.
Abhishek Savita, Joakim Kjellsson, Robin Pilch Kedzierski, Mojib Latif, Tabea Rahm, Sebastian Wahl, and Wonsun Park
Geosci. Model Dev., 17, 1813–1829, https://doi.org/10.5194/gmd-17-1813-2024, https://doi.org/10.5194/gmd-17-1813-2024, 2024
Short summary
Short summary
The OpenIFS model is used to examine the impact of horizontal resolutions (HR) and model time steps. We find that the surface wind biases over the oceans, in particular the Southern Ocean, are sensitive to the model time step and HR, with the HR having the smallest biases. When using a coarse-resolution model with a shorter time step, a similar improvement is also found. Climate biases can be reduced in the OpenIFS model at a cheaper cost by reducing the time step rather than increasing the HR.
Jake W. Casselman, Joke F. Lübbecke, Tobias Bayr, Wenjuan Huo, Sebastian Wahl, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 471–487, https://doi.org/10.5194/wcd-4-471-2023, https://doi.org/10.5194/wcd-4-471-2023, 2023
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) has remote effects on the tropical North Atlantic (TNA), but the connections' nonlinearity (strength of response to an increasing ENSO signal) is not always well represented in models. Using the Community Earth System Model version 1 – Whole Atmosphere Community Climate Mode (CESM-WACCM) and the Flexible Ocean and Climate Infrastructure version 1, we find that the TNA responds linearly to extreme El Niño but nonlinearly to extreme La Niña for CESM-WACCM.
Nele Tim, Eduardo Zorita, Birgit Hünicke, and Ioana Ivanciu
Weather Clim. Dynam., 4, 381–397, https://doi.org/10.5194/wcd-4-381-2023, https://doi.org/10.5194/wcd-4-381-2023, 2023
Short summary
Short summary
As stated by the IPCC, southern Africa is one of the two land regions that are projected to suffer from the strongest precipitation reductions in the future. Simulated drying in this region is linked to the adjacent oceans, and prevailing winds as warm and moist air masses are transported towards the continent. Precipitation trends in past and future climate can be partly attributed to the strength of the Agulhas Current system, the current along the east and south coasts of southern Africa.
Torge Martin and Arne Biastoch
Ocean Sci., 19, 141–167, https://doi.org/10.5194/os-19-141-2023, https://doi.org/10.5194/os-19-141-2023, 2023
Short summary
Short summary
How is the ocean affected by continued Greenland Ice Sheet mass loss? We show in a systematic set of model experiments that atmospheric feedback needs to be accounted for as the large-scale ocean circulation is more than twice as sensitive to the meltwater otherwise. Coastal winds, boundary currents, and ocean eddies play a key role in redistributing the meltwater. Eddy paramterization helps the coarse simulation to perform better in the Labrador Sea but not in the North Atlantic Current region.
Alan D. Fox, Patricia Handmann, Christina Schmidt, Neil Fraser, Siren Rühs, Alejandra Sanchez-Franks, Torge Martin, Marilena Oltmanns, Clare Johnson, Willi Rath, N. Penny Holliday, Arne Biastoch, Stuart A. Cunningham, and Igor Yashayaev
Ocean Sci., 18, 1507–1533, https://doi.org/10.5194/os-18-1507-2022, https://doi.org/10.5194/os-18-1507-2022, 2022
Short summary
Short summary
Observations of the eastern subpolar North Atlantic in the 2010s show exceptional freshening and cooling of the upper ocean, peaking in 2016 with the lowest salinities recorded for 120 years. Using results from a high-resolution ocean model, supported by observations, we propose that the leading cause is reduced surface cooling over the preceding decade in the Labrador Sea, leading to increased outflow of less dense water and so to freshening and cooling of the eastern subpolar North Atlantic.
Jörg Fröhle, Patricia V. K. Handmann, and Arne Biastoch
Ocean Sci., 18, 1431–1450, https://doi.org/10.5194/os-18-1431-2022, https://doi.org/10.5194/os-18-1431-2022, 2022
Short summary
Short summary
Three deep-water masses pass the southern exit of the Labrador Sea. Usually they are defined by explicit density intervals linked to the formation region. We evaluate this relation in an ocean model by backtracking the paths the water follows for 40 years: 48 % densify without contact to the atmosphere, 24 % densify in contact with the atmosphere, and 19 % are from the Nordic Seas. All three contribute to a similar density range at 53° N with weak specific formation location characteristics.
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024, https://doi.org/10.5194/gmd-15-5987-2022, https://doi.org/10.5194/gmd-15-5987-2022, 2022
Short summary
Short summary
We present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, and air–sea gas exchange of CO2 and O2. As shown by our evaluation, FOCI-MOPS shows an overall adequate performance that makes it an appropriate tool for Earth climate system simulations.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Jens Zinke, Takaaki K. Watanabe, Siren Rühs, Miriam Pfeiffer, Stefan Grab, Dieter Garbe-Schönberg, and Arne Biastoch
Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, https://doi.org/10.5194/cp-18-1453-2022, 2022
Short summary
Short summary
Salinity is an important and integrative measure of changes to the water cycle steered by changes to the balance between rainfall and evaporation and by vertical and horizontal movements of water parcels by ocean currents. However, salinity measurements in our oceans are extremely sparse. To fill this gap, we have developed a 334-year coral record of seawater oxygen isotopes that reflects salinity changes in the globally important Agulhas Current system and reveals its main oceanic drivers.
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys., 22, 7893–7904, https://doi.org/10.5194/acp-22-7893-2022, https://doi.org/10.5194/acp-22-7893-2022, 2022
Short summary
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry–climate model dataset, we investigate the solar surface signal in the North Atlantic and European region and find that it changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022, https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Short summary
Greenhouse gas concentrations continue to increase, while the Antarctic ozone hole is expected to recover during the twenty-first century. We separate the effects of ozone recovery and of greenhouse gases on the Southern Hemisphere atmospheric and oceanic circulation, and we find that ozone recovery is generally reducing the impact of greenhouse gases, with the exception of certain regions of the stratosphere during spring, where the two effects reinforce each other.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Arne Biastoch, Franziska U. Schwarzkopf, Klaus Getzlaff, Siren Rühs, Torge Martin, Markus Scheinert, Tobias Schulzki, Patricia Handmann, Rebecca Hummels, and Claus W. Böning
Ocean Sci., 17, 1177–1211, https://doi.org/10.5194/os-17-1177-2021, https://doi.org/10.5194/os-17-1177-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) quantifies the impact of the ocean on climate and climate change. Here we show that a high-resolution ocean model is able to realistically simulate ocean currents. While the mean representation of the AMOC depends on choices made for the model and on the atmospheric forcing, the temporal variability is quite robust. Comparing the ocean model with ocean observations, we able to identify that the AMOC has declined over the past two decades.
Christina Schmidt, Franziska U. Schwarzkopf, Siren Rühs, and Arne Biastoch
Ocean Sci., 17, 1067–1080, https://doi.org/10.5194/os-17-1067-2021, https://doi.org/10.5194/os-17-1067-2021, 2021
Short summary
Short summary
We estimate Agulhas leakage, water flowing from the Indian Ocean to the South Atlantic, in an ocean model with two different tools. The mean transport, variability and trend of Agulhas leakage is simulated comparably with both tools, emphasising the robustness of our method. If the experiments are designed differently, the mean transport of Agulhas leakage is altered, but not the trend. Agulhas leakage waters cool and become less salty south of Africa resulting in a density increase.
Josefine Maas, Susann Tegtmeier, Yue Jia, Birgit Quack, Jonathan V. Durgadoo, and Arne Biastoch
Atmos. Chem. Phys., 21, 4103–4121, https://doi.org/10.5194/acp-21-4103-2021, https://doi.org/10.5194/acp-21-4103-2021, 2021
Short summary
Short summary
Cooling-water disinfection at coastal power plants is a known source of atmospheric bromoform. A large source of anthropogenic bromoform is the industrial regions in East Asia. In current bottom-up flux estimates, these anthropogenic emissions are missing, underestimating the global air–sea flux of bromoform. With transport simulations, we show that by including anthropogenic bromoform from cooling-water treatment, the bottom-up flux estimates significantly improve in East and Southeast Asia.
Sabine Haase, Jaika Fricke, Tim Kruschke, Sebastian Wahl, and Katja Matthes
Atmos. Chem. Phys., 20, 14043–14061, https://doi.org/10.5194/acp-20-14043-2020, https://doi.org/10.5194/acp-20-14043-2020, 2020
Short summary
Short summary
Ozone depletion over Antarctica was shown to influence the tropospheric jet in the Southern Hemisphere. We investigate the atmospheric response to ozone depletion comparing climate model ensembles with interactive and prescribed ozone fields. We show that allowing feedbacks between ozone chemistry and model physics as well as including asymmetries in ozone leads to a strengthened ozone depletion signature in the stratosphere but does not significantly affect the tropospheric jet position.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 20, 11569–11592, https://doi.org/10.5194/acp-20-11569-2020, https://doi.org/10.5194/acp-20-11569-2020, 2020
Short summary
Short summary
Rossby wave packet (RWP) dynamics are crucial for weather forecasting, climate change projections and stratosphere–troposphere interactions. Our study is a first attempt to describe RWP behavior in the UTLS with global coverage directly from observations, using GNSS-RO data. Our novel results show an interesting relation of RWP vertical propagation with sudden stratospheric warmings and provide very useful information to improve RWP diagnostics in models and reanalysis.
Cited articles
Abalos, M., Polvani, L., Calvo, N., Kinnison, D., Ploeger, F., Randel, W., and
Solomon, S.: New Insights on the Impact of Ozone-Depleting Substances on the
Brewer-Dobson Circulation, J. Geophys. Res.-Atmos., 124,
2435–2451, https://doi.org/10.1029/2018JD029301, 2019. a, b, c
Biastoch, A., Böning, C. W., Getzlaff, J., Molines, J.-M., and Madec, G.:
Causes of Interannual–Decadal Variability in the Meridional Overturning
Circulation of the Midlatitude North Atlantic Ocean, J. Climate, 21,
6599–6615, https://doi.org/10.1175/2008JCLI2404.1, 2008. a
Biastoch, A., Böning, C. W., Schwarzkopf, F. U., and Lutjeharms, J. R. E.:
Increase in Agulhas leakage due to poleward shift of Southern Hemisphere
westerlies, Nature, 462, 495–498, https://doi.org/10.1038/nature08519, 2009. a
Biastoch, A., Durgadoo, J. V., Morrison, A. K., van Sebille, E., Weijer, W.,
and Griffies, S. M.: Atlantic multi-decadal oscillation covaries with Agulhas
leakage, Nat. Commun., 6, 10082, https://doi.org/10.1038/ncomms10082, 2015. a
Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M., and Gayler, V.: Global
biogeophysical interactions between forest and climate, Geophys. Res.
Lett., 36, L07405, https://doi.org/10.1029/2009GL037543, 2009. a
Cai, W.: Antarctic ozone depletion causes an intensification of the Southern
Ocean super-gyre circulation, Geophys. Res. Lett., 33, L03712,
https://doi.org/10.1029/2005GL024911, 2006. a
Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale disturbances
from the lower into the upper atmosphere, J. Geophys. Res., 66, 83–109, 1961. a
Chiodo, G., Polvani, L. M., Marsh, D. R., Stenke, A., Ball, W., Rozanov, E.,
Muthers, S., and Tsigaridis, K.: The Response of the Ozone Layer to
Quadrupled CO2 Concentrations, J. Climate, 31, 3893–3907,
https://doi.org/10.1175/JCLI-D-17-0492.1, 2018. a, b
Dennison, F., McDonald, A., and Morgenstern, O.: The evolution of zonally asymmetric austral ozone in a chemistry–climate model, Atmos. Chem. Phys., 17, 14075–14084, https://doi.org/10.5194/acp-17-14075-2017, 2017. a, b
Dennison, F. W., McDonald, A. J., and Morgenstern, O.: The effect of ozone
depletion on the Southern Annular Mode and stratosphere-troposphere coupling,
J. Geophys. Res.-Atmos., 120, 6305–6312,
https://doi.org/10.1002/2014JD023009, 2015. a
Dietmüller, S., Ponater, M., and Sausen, R.: Interactive ozone induces a
negative feedback in CO2-driven climate change simulations, J. Geophys. Res.-Atmos., 119, 1796–1805,
https://doi.org/10.1002/2013JD020575, 2014. a
Durgadoo, J. V., Loveday, B. R., Reason, C. J. C., Penven, P., and Biastoch,
A.: Agulhas Leakage Predominantly Responds to the Southern Hemisphere
Westerlies, J. Phys. Oceanogr., 43, 2113–2131,
https://doi.org/10.1175/JPO-D-13-047.1, 2013. a
Durre, I., Vose, R. S., and Wuertz, D. B.: Overview of the Integrated Global
Radiosonde Archive, J. Climate, 19, 53–68,
https://doi.org/10.1175/JCLI3594.1, 2006. a, b
Eyring, V., Arblaster, J. M., Cionni, I., Sedláček, J., Perlwitz, J., Young,
P. J., Bekki, S., Bergmann, D., Cameron-Smith, P., Collins, W. J., Faluvegi,
G., Gottschaldt, K.-D., Horowitz, L. W., Kinnison, D. E., Lamarque, J.-F.,
Marsh, D. R., Saint-Martin, D., Shindell, D. T., Sudo, K., Szopa, S., and
Watanabe, S.: Long-term ozone changes and associated climate impacts in CMIP5
simulations, J. Geophys. Res.-Atmos., 118, 5029–5060,
https://doi.org/10.1002/jgrd.50316, 2013. a, b, c, d, e, f, g
Fichefet, T. and Maqueda, M. A. M.: Sensitivity of a global sea ice model to
the treatment of ice thermodynamics and dynamics, J. Geophys.
Res.-Oceans, 102, 12609–12646, https://doi.org/10.1029/97JC00480, 1997. a
Fogt, R. L., Perlwitz, J., Monaghan, A. J., Bromwich, D. H., Jones, J. M., and
Marshall, G. J.: Historical SAM Variability. Part II: Twentieth-Century
Variability and Trends from Reconstructions, Observations, and the IPCC AR4
Models, J. Climate, 22, 5346–5365, https://doi.org/10.1175/2009JCLI2786.1,
2009. a
Fyfe, J. C., Boer, G. J., and Flato, G. M.: The Arctic and Antarctic
oscillations and their projected changes under global warming, Geophys. Res. Lett., 26, 1601–1604, https://doi.org/10.1029/1999GL900317, 1999. a, b
Gabriel, A., Peters, D., Kirchner, I., and Graf, H.-F.: Effect of zonally
asymmetric ozone on stratospheric temperature and planetary wave propagation,
Geophys. Res. Lett., 34, L06807, https://doi.org/10.1029/2006GL028998, 2007. a, b, c
Garfinkel, C. I., Waugh, D. W., and Polvani, L. M.: Recent Hadley cell
expansion: The role of internal atmospheric variability in reconciling
modeled and observed trends, Geophys. Res. Lett., 42,
10824–10831, https://doi.org/10.1002/2015GL066942, 2015. a
Gerber, E. P., Polvani, L. M., and Ancukiewicz, D.: Annular mode time scales in
the Intergovernmental Panel on Climate Change Fourth Assessment Report
models, Geophys. Res. Lett., 35, L22707, https://doi.org/10.1029/2008GL035712, 2008. a, b
Gerber, E. P., Baldwin, M. P., Akiyoshi, H., Austin, J., Bekki, S., Braesicke,
P., Butchart, N., Chipperfield, M., Dameris, M., Dhomse, S., Frith, S. M.,
Garcia, R. R., Garny, H., Gettelman, A., Hardiman, S. C., Karpechko, A.,
Marchand, M., Morgenstern, O., Nielsen, J. E., Pawson, S., Peter, T.,
Plummer, D. A., Pyle, J. A., Rozanov, E., Scinocca, J. F., Shepherd, T. G.,
and Smale, D.: Stratosphere-troposphere coupling and annular mode variability
in chemistry-climate models, J. Geophys. Res.-Atmos.,
115, D00M06, https://doi.org/10.1029/2009JD013770, 2010. a, b, c, d, e
Gillett, N. P. and Thompson, D. W. J.: Simulation of Recent Southern Hemisphere
Climate Change, Science, 302, 273–275, https://doi.org/10.1126/science.1087440, 2003. a, b, c, d
Grise, K. M., Polvani, L. M., Tselioudis, G., Wu, Y., and Zelinka, M. D.: The
ozone hole indirect effect: Cloud-radiative anomalies accompanying the
poleward shift of the eddy-driven jet in the Southern Hemisphere, Geophys. Res. Lett., 40, 3688–3692, https://doi.org/10.1002/grl.50675, 2013. a
Haase, S., Fricke, J., Kruschke, T., Wahl, S., and Matthes, K.: Sensitivity of the Southern Hemisphere circumpolar jet response to Antarctic ozone depletion: prescribed versus interactive chemistry, Atmos. Chem. Phys., 20, 14043–14061, https://doi.org/10.5194/acp-20-14043-2020, 2020. a, b, c, d, e, f
Haigh, J. D. and Pyle, J. A.: Ozone perturbation experiments in a
two-dimensional circulation model, Q. J. Roy.
Meteor. Soc., 108, 551–574,
https://doi.org/10.1002/qj.49710845705, 1982. a
Hardiman, S. C., Andrews, M. B., Andrews, T., Bushell, A. C., Dunstone, N. J.,
Dyson, H., Jones, G. S., Knight, J. R., Neininger, E., O'Connor, F. M.,
Ridley, J. K., Ringer, M. A., Scaife, A. A., Senior, C. A., and Wood, R. A.:
The Impact of Prescribed Ozone in Climate Projections Run With HadGEM3-GC3.1,
J. Adv. Model. Earth Sy., 11, 3443–3453,
https://doi.org/10.1029/2019MS001714, 2019. a
Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J., and Shine,
K. P.: On the “Downward Control” of Extratropical Diabatic Circulations
by Eddy-Induced Mean Zonal Forces, J. Atmos. Sci., 48,
651–678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2, 1991. a, b
Hegglin, M., Kinnison, D., Lamarque, J.-F., and Plummer, D.: CCMI ozone in
support of CMIP6 – version 1.0, Earth System Grid Federation, https://doi.org/10.22033/ESGF/input4MIPs.1115, 2016. a, b, c
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Ivanciu, I.: Ivanciu et al., 2020 – Effects of prescribed CMIP6 ozone on simulating the Southern Hemisphere atmospheric circulation response to ozone depletion [Data set], Zenodo, https://doi.org/10.5281/zenodo.3931507, 2020. a
Ivanciu, I.: Code used in Ivanciu et al., 2021 – Effects of prescribed CMIP6 ozone on simulating the Southern Hemisphere atmospheric circulation response to ozone depletion, Zenodo, https://doi.org/10.5281/zenodo.4680722, 2021. a
Ivy, D. J., Solomon, S., and Rieder, H. E.: Radiative and Dynamical Influences
on Polar Stratospheric Temperature Trends, J. Climate, 29, 4927–4938, https://doi.org/10.1175/JCLI-D-15-0503.1, 2016. a, b, c
Jonsson, A. I., de Grandpré, J., Fomichev, V. I., McConnell, J. C., and
Beagley, S. R.: Doubled CO2-induced cooling in the middle atmosphere:
Photochemical analysis of the ozone radiative feedback, J. Geophys. Res.-Atmos., 109, D24103,
https://doi.org/10.1029/2004JD005093, 2004. a
Kang, S. M., Polvani, L. M., Fyfe, J. C., and Sigmond, M.: Impact of Polar
Ozone Depletion on Subtropical Precipitation, Science, 332, 951–954,
https://doi.org/10.1126/science.1202131, 2011. a
Keeble, J., Hassler, B., Banerjee, A., Checa-Garcia, R., Chiodo, G., Davis, S., Eyring, V., Griffiths, P. T., Morgenstern, O., Nowack, P., Zeng, G., Zhang, J., Bodeker, G., Cugnet, D., Danabasoglu, G., Deushi, M., Horowitz, L. W., Li, L., Michou, M., Mills, M. J., Nabat, P., Park, S., and Wu, T.: Evaluating stratospheric ozone and water vapor changes in CMIP6 models from 1850–2100, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2019-1202, in review, 2020. a, b
Keeley, S. P. E., Gillett, N. P., Thompson, D. W. J., Solomon, S., and Forster,
P. M.: Is Antarctic climate most sensitive to ozone depletion in the middle
or lower stratosphere?, Geophys. Res. Lett., 34, L22812,
https://doi.org/10.1029/2007GL031238, 2007. a
Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R.,
Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess,
P., Orlando, J. J., Tie, X. X., Randel, W., Pan, L. L., Gettelman, A.,
Granier, C., Diehl, T., Niemeier, U., and Simmons, A. J.: Sensitivity of
chemical tracers to meteorological parameters in the MOZART-3 chemical
transport model, J. Geophys. Res.-Atmos., 112, D20302,
https://doi.org/10.1029/2006JD007879, 2007. a
Kushner, P. J., Held, I. M., and Delworth, T. L.: Southern Hemisphere
Atmospheric Circulation Response to Global Warming, J. Climate, 14,
2238–2249, https://doi.org/10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2, 2001. a, b
Langematz, U., Kunze, M., Krüger, K., Labitzke, K., and Roff, G. L.: Thermal
and dynamical changes of the stratosphere since 1979 and their link to ozone
and CO2 changes, J. Geophys. Res.-Atmos., 108, ACL
9-1–ACL 9-13, https://doi.org/10.1029/2002JD002069, 2003. a, b, c, d
Li, F., Newman, P. A., and Stolarski, R. S.: Relationships between the
Brewer-Dobson circulation and the southern annular mode during austral summer
in coupled chemistry-climate model simulations, J. Geophys. Res.-Atmos., 115, D15106, https://doi.org/10.1029/2009JD012876, 2010. a, b
Li, F., Vikhliaev, Y. V., Newman, P. A., Pawson, S., Perlwitz, J., Waugh,
D. W., and Douglass, A. R.: Impacts of Interactive Stratospheric Chemistry on
Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing
System, Version 5 (GEOS-5), J. Climate, 29, 3199–3218,
https://doi.org/10.1175/JCLI-D-15-0572.1, 2016. a, b, c
Li, F., Newman, P., Pawson, S., and Perlwitz, J.: Effects of Greenhouse Gas
Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air
in 1960-2010, J. Geophys. Res.-Atmos., 123, 2098–2110,
https://doi.org/10.1002/2017JD027562, 2018. a
Lin, P., Fu, Q., Solomon, S., and Wallace, J. M.: Temperature Trend Patterns in
Southern Hemisphere High Latitudes: Novel Indicators of Stratospheric Change,
J. Climate, 22, 6325–6341, https://doi.org/10.1175/2009JCLI2971.1, 2009. a, b, c, d
Lin, P., Paynter, D., Polvani, L., Correa, G. J. P., Ming, Y., and Ramaswamy,
V.: Dependence of model-simulated response to ozone depletion on
stratospheric polar vortex climatology, Geophys. Res. Lett., 44,
6391–6398, https://doi.org/10.1002/2017GL073862, 2017. a
Madec, G. and the NEMO team: NEMO ocean engine – version 3.6, Note du Pôle de
modélisation, Institut Pierre-Simon Laplace (IPSL), France, 406, 2016. a
Mahlman, J. D., Umscheid, L. J., and Pinto, J. P.: Transport, Radiative, and
Dynamical Effects of the Antarctic Ozone Hole: A GFDL “SKYHI” Model
Experiment, J. Atmos. Sci., 51, 489–508,
https://doi.org/10.1175/1520-0469(1994)051<0489:TRADEO>2.0.CO;2, 1994. a, b, c, d
Marshall, G. J.: Trends in the Southern Annular Mode from Observations and
Reanalyses, J. Climate, 16, 4134–4143,
https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2, 2003. a
Marshall, G. J., Stott, P. A., Turner, J., Connolley, W. M., King, J. C., and
Lachlan-Cope, T. A.: Causes of exceptional atmospheric circulation changes in
the Southern Hemisphere, Geophys. Res. Lett., 31, L14205,
https://doi.org/10.1029/2004GL019952, 2004. a
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017. a, b
Matthes, K., Biastoch, A., Wahl, S., Harlaß, J., Martin, T., Brücher, T., Drews, A., Ehlert, D., Getzlaff, K., Krüger, F., Rath, W., Scheinert, M., Schwarzkopf, F. U., Bayr, T., Schmidt, H., and Park, W.: The Flexible Ocean and Climate Infrastructure version 1 (FOCI1): mean state and variability, Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, 2020. a, b, c, d
McLandress, C. and Shepherd, T. G.: Simulated Anthropogenic Changes in the
Brewer–Dobson Circulation, Including Its Extension to High Latitudes,
J. Climate, 22, 1516–1540, https://doi.org/10.1175/2008JCLI2679.1, 2009. a
McLandress, C., Jonsson, A. I., Plummer, D. A., Reader, M. C., Scinocca, J. F.,
and Shepherd, T. G.: Separating the Dynamical Effects of Climate Change and
Ozone Depletion. Part I: Southern Hemisphere Stratosphere, J. Climate, 23, 5002–5020, https://doi.org/10.1175/2010JCLI3586.1, 2010. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
McLandress, C., Shepherd, T. G., Scinocca, J. F., Plummer, D. A., Sigmond, M.,
Jonsson, A. I., and Reader, M. C.: Separating the Dynamical Effects of
Climate Change and Ozone Depletion. Part II: Southern Hemisphere Troposphere,
J. Climate, 24, 1850–1868, https://doi.org/10.1175/2010JCLI3958.1, 2011. a, b
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R.: Historical greenhouse gas concentrations for climate modelling (CMIP6), Geosci. Model Dev., 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017, 2017. a
Min, S.-K. and Son, S.-W.: Multimodel attribution of the Southern Hemisphere
Hadley cell widening: Major role of ozone depletion, J. Geophys. Res.-Atmos., 118, 3007–3015, https://doi.org/10.1002/jgrd.50232, 2013. a
Morgenstern, O.: The Southern Annular Mode in 6th Coupled Model Intercomparison
Project Models, J. Geophys. Res.-Atmos., 126,
e2020JD034161, https://doi.org/10.1029/2020JD034161, 2021. a
Neely, R. R., Marsh, D. R., Smith, K. L., Davis, S. M., and Polvani, L. M.:
Biases in southern hemisphere climate trends induced by coarsely specifying
the temporal resolution of stratospheric ozone, Geophys. Res. Lett.,
41, 8602–8610, https://doi.org/10.1002/2014GL061627, 2014. a, b, c, d
North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J.: Sampling Errors in
the Estimation of Empirical Orthogonal Functions, Mon. Weather Rev.,
110, 699–706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2, 1982. a
Nowack, P. J., Luke Abraham, N., Maycock, A. C., Braesicke, P., Gregory, J. M.,
Joshi, M. M., Osprey, A., and Pyle, J. A.: A large ozone-circulation feedback
and its implications for global warming assessments, Nat. Clim. Change,
5, 41–45, https://doi.org/10.1038/nclimate2451, 2015. a
Oberländer-Hayn, S., Meul, S., Langematz, U., Abalichin, J., and Haenel, F.: A
chemistry-climate model study of past changes in the Brewer-Dobson
circulation, J. Geophys. Res.-Atmos., 120, 6742–6757,
https://doi.org/10.1002/2014JD022843, 2015. a, b, c
Oehrlein, J., Chiodo, G., and Polvani, L. M.: The effect of interactive ozone chemistry on weak and strong stratospheric polar vortex events, Atmos. Chem. Phys., 20, 10531–10544, https://doi.org/10.5194/acp-20-10531-2020, 2020. a, b
Orr, A., Bracegirdle, T. J., Hosking, J. S., Jung, T., Haigh, J. D., Phillips,
T., and Feng, W.: Possible Dynamical Mechanisms for Southern Hemisphere
Climate Change due to the Ozone Hole, J. Atmos. Sci.,
69, 2917–2932, https://doi.org/10.1175/JAS-D-11-0210.1, 2012. a
Orr, A., Bracegirdle, T. J., Hosking, J. S., Feng, W., Roscoe, H. K., and
Haigh, J. D.: Strong Dynamical Modulation of the Cooling of the Polar
Stratosphere Associated with the Antarctic Ozone Hole, J. Climate,
26, 662–668, https://doi.org/10.1175/JCLI-D-12-00480.1, 2013. a, b
Peters, D. H. W., Schneidereit, A., Bügelmayer, M., Zülicke, C., and
Kirchner, I.: Atmospheric Circulation Changes in Response to an Observed
Stratospheric Zonal Ozone Anomaly, Atmosphere-Ocean, 53, 74–88,
https://doi.org/10.1080/07055900.2013.878833, 2015. a, b
Polvani, L. M., Abalos, M., Garcia, R., Kinnison, D., and Randel, W. J.:
Significant Weakening of Brewer-Dobson Circulation Trends Over the 21st
Century as a Consequence of the Montreal Protocol, Geophys. Res. Lett., 45, 401–409, https://doi.org/10.1002/2017GL075345, 2018. a, b, c
Randel, W. J. and Wu, F.: Cooling of the Arctic and Antarctic Polar
Stratospheres due to Ozone Depletion, J. Climate, 12, 1467–1479,
https://doi.org/10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2, 1999. a
Randel, W. J., Shine, K. P., Austin, J., Barnett, J., Claud, C., Gillett,
N. P., Keckhut, P., Langematz, U., Lin, R., Long, C., Mears, C., Miller, A.,
Nash, J., Seidel, D. J., Thompson, D. W. J., Wu, F., and Yoden, S.: An update
of observed stratospheric temperature trends, J. Geophys. Res.-Atmos., 114, D02107, https://doi.org/10.1029/2008JD010421, 2009. a
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of
natural and anthropogenic land cover change in MPI-ESM, J. Adv. Model. Earth Sy., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013. a
Sassi, F., Boville, B. A., Kinnison, D., and Garcia, R. R.: The effects of
interactive ozone chemistry on simulations of the middle atmosphere,
Geophys. Res. Lett., 32, L07811, https://doi.org/10.1029/2004GL022131, 2005. a, b, c
Schultz, M. G., Stadtler, S., Schröder, S., Taraborrelli, D., Franco, B., Krefting, J., Henrot, A., Ferrachat, S., Lohmann, U., Neubauer, D., Siegenthaler-Le Drian, C., Wahl, S., Kokkola, H., Kühn, T., Rast, S., Schmidt, H., Stier, P., Kinnison, D., Tyndall, G. S., Orlando, J. J., and Wespes, C.: The chemistry–climate model ECHAM6.3-HAM2.3-MOZ1.0, Geosci. Model Dev., 11, 1695–1723, https://doi.org/10.5194/gmd-11-1695-2018, 2018. a
Schwarzkopf, F. U., Biastoch, A., Böning, C. W., Chanut, J., Durgadoo, J. V., Getzlaff, K., Harlaß, J., Rieck, J. K., Roth, C., Scheinert, M. M., and Schubert, R.: The INALT family – a set of high-resolution nests for the Agulhas Current system within global NEMO ocean/sea-ice configurations, Geosci. Model Dev., 12, 3329–3355, https://doi.org/10.5194/gmd-12-3329-2019, 2019. a
Seviour, W. J. M., Waugh, D. W., Polvani, L. M., Correa, G. J. P., and
Garfinkel, C. I.: Robustness of the Simulated Tropospheric Response to Ozone
Depletion, J. Climate, 30, 2577–2585,
https://doi.org/10.1175/JCLI-D-16-0817.1, 2017. a, b
Simpson, I. R., Hitchcock, P., Shepherd, T. G., and Scinocca, J. F.:
Stratospheric variability and tropospheric annular-mode timescales,
Geophys. Res. Lett., 38, L20806, https://doi.org/10.1029/2011GL049304, 2011. a, b, c
Solomon, S.: Stratospheric ozone depletion: A review of concepts and history,
Rev. Geophys., 37, 275–316, https://doi.org/10.1029/1999RG900008, 1999. a
Solomon, S., Kinnison, D., Bandoro, J., and Garcia, R.: Simulation of polar
ozone depletion: An update, J. Geophys. Res.-Atmos.,
120, 7958–7974, https://doi.org/10.1002/2015JD023365, 2015. a
Son, S.-W., Polvani, L. M., Waugh, D. W., Akiyoshi, H., Garcia, R., Kinnison,
D., Pawson, S., Rozanov, E., Shepherd, T. G., and Shibata, K.: The Impact of
Stratospheric Ozone Recovery on the Southern Hemisphere Westerly Jet,
Science, 320, 1486–1489, https://doi.org/10.1126/science.1155939, 2008. a
Son, S.-W., Polvani, L. M., Waugh, D. W., Birner, T., Akiyoshi, H., Garcia,
R. R., Gettelman, A., Plummer, D. A., and Rozanov, E.: The Impact of
Stratospheric Ozone Recovery on Tropopause Height Trends, J. Climate,
22, 429–445, https://doi.org/10.1175/2008JCLI2215.1, 2009. a
Son, S.-W., Gerber, E. P., Perlwitz, J., Polvani, L. M., Gillett, N. P., Seo,
K.-H., Eyring, V., Shepherd, T. G., Waugh, D., Akiyoshi, H., Austin, J.,
Baumgaertner, A., Bekki, S., Braesicke, P., Brühl, C., Butchart, N.,
Chipperfield, M. P., Cugnet, D., Dameris, M., Dhomse, S., Frith, S., Garny,
H., Garcia, R., Hardiman, S. C., Jöckel, P., Lamarque, J. F., Mancini, E.,
Marchand, M., Michou, M., Nakamura, T., Morgenstern, O., Pitari, G., Plummer,
D. A., Pyle, J., Rozanov, E., Scinocca, J. F., Shibata, K., Smale, D.,
Teyssèdre, H., Tian, W., and Yamashita, Y.: Impact of stratospheric ozone on
Southern Hemisphere circulation change: A multimodel assessment, J. Geophys. Res.-Atmos., 115, D00M07, https://doi.org/10.1029/2010JD014271, 2010. a, b, c
Son, S.-W., Han, B.-R., Garfinkel, C. I., Kim, S.-Y., Park, R., Abraham, N. L.,
Akiyoshi, H., Archibald, A. T., Butchart, N., Chipperfield, M. P., Dameris,
M., Deushi, M., Dhomse, S. S., Hardiman, S. C., Jöckel, P., Kinnison, D.,
Michou, M., Morgenstern, O., O'Connor, F. M., Oman, L. D., Plummer, D. A.,
Pozzer, A., Revell, L. E., Rozanov, E., Stenke, A., Stone, K., Tilmes, S.,
Yamashita, Y., and Zeng, G.: Tropospheric jet response to Antarctic ozone
depletion: An update with Chemistry-Climate Model Initiative (CCMI) models,
Environ. Res. Lett., 13, 054024, https://doi.org/10.1088/1748-9326/aabf21,
2018. a, b
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: Atmospheric component of the MPI-M Earth System Model: ECHAM6,
J. Adv. Model. Earth Sy., 5, 146–172,
https://doi.org/10.1002/jame.20015, 2013. a
Stolarski, R. S., Douglass, A. R., Newman, P. A., Pawson, S., and Schoeberl,
M. R.: Relative Contribution of Greenhouse Gases and Ozone-Depleting
Substances to Temperature Trends in the Stratosphere: A Chemistry–Climate
Model Study, J. Climate, 23, 28–42, https://doi.org/10.1175/2009JCLI2955.1,
2010. a, b, c, d, e
Swart, N. C. and Fyfe, J. C.: Observed and simulated changes in the Southern
Hemisphere surface westerly wind-stress, Geophys. Res. Lett., 39, L16711,
https://doi.org/10.1029/2012GL052810, 2012. a, b
Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M.,
and Karoly, D. J.: Signatures of the Antarctic ozone hole in Southern
Hemisphere surface climate change, Nat. Geosci., 4, 741–749,
https://doi.org/10.1038/ngeo1296, 2011. a, b, c
Waugh, D. W., Randel, W. J., Pawson, S., Newman, P. A., and Nash, E. R.:
Persistence of the lower stratospheric polar vortices, J. Geophys.
Res.-Atmos., 104, 27191–27201, https://doi.org/10.1029/1999JD900795,
1999. a, b
Waugh, D. W., Oman, L., Newman, P. A., Stolarski, R. S., Pawson, S., Nielsen,
J. E., and Perlwitz, J.: Effect of zonal asymmetries in stratospheric ozone
on simulated Southern Hemisphere climate trends, Geophys. Res. Lett., 36, L18701, https://doi.org/10.1029/2009GL040419, 2009. a, b, c, d
Waugh, D. W., Garfinkel, C. I., and Polvani, L. M.: Drivers of the Recent
Tropical Expansion in the Southern Hemisphere: Changing SSTs or Ozone
Depletion?, J. Climate, 28, 6581–6586,
https://doi.org/10.1175/JCLI-D-15-0138.1, 2015.
a
Yang, X.-Y., Huang, R. X., and Wang, D. X.: Decadal Changes of Wind Stress over
the Southern Ocean Associated with Antarctic Ozone Depletion, J. Climate, 20, 3395–3410, https://doi.org/10.1175/JCLI4195.1, 2007. a
Young, P. J., Butler, A. H., Calvo, N., Haimberger, L., Kushner, P. J., Marsh,
D. R., Randel, W. J., and Rosenlof, K. H.: Agreement in late twentieth
century Southern Hemisphere stratospheric temperature trends in observations
and CCMVal-2, CMIP3, and CMIP5 models, J. Geophys. Res.-Atmos., 118, 605–613, https://doi.org/10.1002/jgrd.50126, 2013. a, b
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere...
Altmetrics
Final-revised paper
Preprint