Articles | Volume 21, issue 5
https://doi.org/10.5194/acp-21-4149-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-4149-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Processes contributing to cloud dissipation and formation events on the North Slope of Alaska
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
NOAA Global Monitoring Laboratory, Boulder, CO, USA
Adele Igel
Department of Land, Air, and Water Resources, University of California Davis, Davis, CA, USA
Hagen Telg
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
NOAA Global Monitoring Laboratory, Boulder, CO, USA
Related authors
Lucas J. Sterzinger, Joseph Sedlar, Heather Guy, Ryan R. Neely III, and Adele L. Igel
Atmos. Chem. Phys., 22, 8973–8988, https://doi.org/10.5194/acp-22-8973-2022, https://doi.org/10.5194/acp-22-8973-2022, 2022
Short summary
Short summary
Aerosol particles are required for cloud droplets to form, and the Arctic atmosphere often has much fewer aerosols than at lower latitudes. In this study, we investigate whether aerosol concentrations can drop so low as to no longer support a cloud. We use observations to initialize idealized model simulations to investigate a worst-case scenario where all aerosol is removed from the environment instantaneously. We find that this mechanism is possible in two cases and is unlikely in the third.
Simone Pulimeno, Angelo Lupi, Vito Vitale, Claudia Frangipani, Carlos Toledano, Stelios Kazadzis, Natalia Kouremeti, Christoph Ritter, Sandra Graßl, Kerstin Stebel, Vitali Fioletov, Ihab Abboud, Sandra Blindheim, Lynn Ma, Norm O’Neill, Piotr Sobolewski, Pawan Gupta, Elena Lind, Thomas F. Eck, Antti Hyvärinen, Veijo Aaltonen, Rigel Kivi, Janae Csavina, Dmitry Kabanov, Sergey M. Sakerin, Olga R. Sidorova, Robert S. Stone, Hagen Telg, Laura Riihimaki, Raul R. Cordero, Martin Radenz, Ronny Engelmann, Michel Van Roozendal, Anatoli Chaikovsky, Philippe Goloub, Junji Hisamitsu, and Mauro Mazzola
EGUsphere, https://doi.org/10.5194/egusphere-2025-2527, https://doi.org/10.5194/egusphere-2025-2527, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study analyzed aerosols optical properties over the Arctic and Antarctic to measure them even during long periods of darkness. It found that pollution in the Arctic is decreasing, likely due to European emission regulations, while wildfires are becoming a more important source of particles. In Antarctica, particle levels are higher near the coast than inland, and vary by season. These results help us better understand how air pollution and climate are changing at the Earth’s poles.
Nathan H. Pope and Adele L. Igel
Atmos. Chem. Phys., 25, 5433–5444, https://doi.org/10.5194/acp-25-5433-2025, https://doi.org/10.5194/acp-25-5433-2025, 2025
Short summary
Short summary
We used an atmospheric model that simulates a single column to study the sensitivity of marine fog formed through the lowering of the base of a stratus cloud to meteorology and aerosols. We found that higher aerosol concentration reduces the likelihood and duration of fog but leads to denser fog. This overall trend was caused by multiple physical mechanisms depending on conditions.
Lucas J. Sterzinger and Adele L. Igel
Atmos. Chem. Phys., 24, 3529–3540, https://doi.org/10.5194/acp-24-3529-2024, https://doi.org/10.5194/acp-24-3529-2024, 2024
Short summary
Short summary
Using idealized large eddy simulations, we find that clouds forming in the Arctic in environments with low concentrations of aerosol particles may be sustained by mixing in new particles through the cloud top. Observations show that higher concentrations of these particles regularly exist above cloud top in concentrations that are sufficient to promote this sustenance.
Adam C. Varble, Adele L. Igel, Hugh Morrison, Wojciech W. Grabowski, and Zachary J. Lebo
Atmos. Chem. Phys., 23, 13791–13808, https://doi.org/10.5194/acp-23-13791-2023, https://doi.org/10.5194/acp-23-13791-2023, 2023
Short summary
Short summary
As atmospheric particles called aerosols increase in number, the number of droplets in clouds tends to increase, which has been theorized to increase storm intensity. We critically evaluate the evidence for this theory, showing that flaws and limitations of previous studies coupled with unaddressed cloud process complexities draw it into question. We provide recommendations for future observations and modeling to overcome current uncertainties.
Lucas J. Sterzinger, Joseph Sedlar, Heather Guy, Ryan R. Neely III, and Adele L. Igel
Atmos. Chem. Phys., 22, 8973–8988, https://doi.org/10.5194/acp-22-8973-2022, https://doi.org/10.5194/acp-22-8973-2022, 2022
Short summary
Short summary
Aerosol particles are required for cloud droplets to form, and the Arctic atmosphere often has much fewer aerosols than at lower latitudes. In this study, we investigate whether aerosol concentrations can drop so low as to no longer support a cloud. We use observations to initialize idealized model simulations to investigate a worst-case scenario where all aerosol is removed from the environment instantaneously. We find that this mechanism is possible in two cases and is unlikely in the third.
Ian Boutle, Wayne Angevine, Jian-Wen Bao, Thierry Bergot, Ritthik Bhattacharya, Andreas Bott, Leo Ducongé, Richard Forbes, Tobias Goecke, Evelyn Grell, Adrian Hill, Adele L. Igel, Innocent Kudzotsa, Christine Lac, Bjorn Maronga, Sami Romakkaniemi, Juerg Schmidli, Johannes Schwenkel, Gert-Jan Steeneveld, and Benoît Vié
Atmos. Chem. Phys., 22, 319–333, https://doi.org/10.5194/acp-22-319-2022, https://doi.org/10.5194/acp-22-319-2022, 2022
Short summary
Short summary
Fog forecasting is one of the biggest problems for numerical weather prediction. By comparing many models used for fog forecasting with others used for fog research, we hoped to help guide forecast improvements. We show some key processes that, if improved, will help improve fog forecasting, such as how water is deposited on the ground. We also showed that research models were not themselves a suitable baseline for comparison, and we discuss what future observations are required to improve them.
Ines Bulatovic, Adele L. Igel, Caroline Leck, Jost Heintzenberg, Ilona Riipinen, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 3871–3897, https://doi.org/10.5194/acp-21-3871-2021, https://doi.org/10.5194/acp-21-3871-2021, 2021
Short summary
Short summary
We use detailed numerical modelling to show that small aerosol particles (diameters ~25–80 nm; so-called Aitken mode particles) significantly influence low-level cloud properties in the clean summertime high Arctic. The small particles can help sustain clouds when the concentration of larger particles is low (<10–20 cm-3). Measurements from four different observational campaigns in the high Arctic support the modelling results as they indicate that Aitken mode aerosols are frequently activated.
Jessie M. Creamean, Gijs de Boer, Hagen Telg, Fan Mei, Darielle Dexheimer, Matthew D. Shupe, Amy Solomon, and Allison McComiskey
Atmos. Chem. Phys., 21, 1737–1757, https://doi.org/10.5194/acp-21-1737-2021, https://doi.org/10.5194/acp-21-1737-2021, 2021
Short summary
Short summary
Arctic clouds play a role in modulating sea ice extent. Importantly, aerosols facilitate cloud formation, and thus it is crucial to understand the interactions between aerosols and clouds. Vertical measurements of aerosols and clouds are needed to tackle this issue. We present results from balloon-borne measurements of aerosols and clouds over the course of 2 years in northern Alaska. These data shed light onto the vertical distributions of aerosols relative to clouds spanning multiple seasons.
Cited articles
ARM: ceil, available at:
https://adc.arm.gov/discovery/#/results/s::nsaceilC1.b1 (last access: 21 May 2019), 2019a.
ARM: hsrl, available at: https://adc.arm.gov/discovery/#/results/s::nsahsrlC1.a1 (last access: 21 May 2019), 2019b.
ARM: arsclkazr1kollias, available at: https://adc.arm.gov/discovery/#/results/s::nsaarsclkazr1kolliasC1 (last access: 18 July 2019), 2019c.
ARM: radflux1long, available at: https://adc.arm.gov/discovery/#/results/datastream::nsaradflux1longC1.c1 (last access: 22 May 2019), 2019d.
ARM: sondewnpn, available at: https://adc.arm.gov/discovery/#/results/s::nsasondewnpnC1.b1 (last access: 4 September 2019), 2019e.
ARM: met, available at: https://adc.arm.gov/discovery/#/results/s::nsametC1.b1 (last access: 11 January 2020), 2020.
Avramov, A. and Harrington, J. Y.:
Influence of parameterized ice habit on simulated mixed phase Arctic clouds,
J. Geophys. Res.,
115, D03205, https://doi.org/10.1029/2009JD012108, 2010.
Birch, C. E., Brooks, I. M., Tjernström, M., Shupe, M. D., Mauritsen, T., Sedlar, J., Lock, A. P., Earnshaw, P., Persson, P. O. G., Milton, S. F., and Leck, C.: Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies, Atmos. Chem. Phys., 12, 3419–3435, https://doi.org/10.5194/acp-12-3419-2012, 2012.
Brooks, I. M., Tjernström, M., Persson, P. O. G., Shupe, M. D., Atkinson, R. A., Canut, G., Birch, C. E., Mauritsen, T., Sedlar, J., and Brooks, B. J.:
The Turbulent Structure of the Arctic Summer Boundary Layer During the Arctic Summer Cloud-Ocean Study,
J. Geophys. Res.-Atmos.,
122, 9685–9704, https://doi.org/10.1002/2017JD027234, 2017.
CDS: ERA5 hourly data on pressure levels from 1979 to present, available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview, last access: 3 March 2020.
Creamean, J. M., Maahn, M., de Boer, G., McComiskey, A., Sedlacek, A. J., and Feng, Y.: The influence of local oil exploration and regional wildfires on summer 2015 aerosol over the North Slope of Alaska, Atmos. Chem. Phys., 18, 555–570, https://doi.org/10.5194/acp-18-555-2018, 2018.
Curry, J. A., Rossow, W. B., Randall, D., and Schramm, J. L.:
Overview of Arctic Cloud and Radiation Characteristics,
J. Climate,
9, 1731–1764, 1996.
de Boer, G, Eloranta, E. W., and Shupe, M. D.:
Arctic Mixed-Phase Stratiform Cloud Properties from Multiple Years of Surface-Based Measurements at Two High-Latitude Locations,
J. Atmos. Sci.,
66, 2874–2887, https://doi.org/10.1175/2009JAS3029.1, 2009.
Di Pierro, M., Jaeglé, L., Eloranta, E. W., and Sharma, S.: Spatial and seasonal distribution of Arctic aerosols observed by the CALIOP satellite instrument (2006–2012), Atmos. Chem. Phys., 13, 7075–7095, https://doi.org/10.5194/acp-13-7075-2013, 2013.
Eloranta, E. W.:
High Spectral Resolution Lidar,
in: Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere,
edited by: Weitkamp, K.,
Springer-Verlag, New York, 2005.
Engström, A., Karlsson, J., and Svensson, G.: The Importance of Representing Mixed-Phase Clouds for Simulating Distinctive Atmospheric States in the Arctic, J. Climate, 27, 265–272, https://doi.org/10.1175/JCLI-D-13-00271.1, 2014.
Forbes, R. M. and Ahlgrimm, M.:
On the Representation of High-Latitude Boundary Layer Mixed-Phase Cloud in the ECMWF Global Model,
Mon. Weather. Rev.,
142, 3425–3445, https://doi.org/10.1175/MWR-D-13-00325.1, 2014.
Freud, E., Krejci, R., Tunved, P., Leaitch, R., Nguyen, Q. T., Massling, A., Skov, H., and Barrie, L.: Pan-Arctic aerosol number size distributions: seasonality and transport patterns, Atmos. Chem. Phys., 17, 8101–8128, https://doi.org/10.5194/acp-17-8101-2017, 2017.
Harrington, J. Y., Reisin, T., Cotton, W. R., and Kreidenweis, S. M.:
Cloud resolving simulations of Arctic stratus. Part II: Transition-season clouds,
Atmos. Res.,
51, 45–75, 1999.
Herman, G. and Goody, R.:
Formation and Persistence of Summertime Arctic Stratus Clouds,
J. Atmos. Sci.,
33, 1537–1553, 1976.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horànyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S. Hogan, R. J., Hòlm, E., Janiskovà, M., Keeley, S. Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1990–2049, https://doi.org/10.1002/qj.3803, 2020.
Hines, K. M. and Bromwich, D. H.:
Simulation of Late Summer Arctic Clouds during ASCOS with Polar WRF,
Mon. Weather Rev.,
145, 521–541, https://doi.org/10.1175/MWR-D-16-0079.1, 2017.
Holton, J. R.: An Introduction to Dynamic Meteorology, 3rd Edn., edited by: Dmowska, R., Academic Press, 1992.
Intrieri, J. M., Shupe, M. D., Uttal, T., and McCarty, B. J.: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA, J. Geophys. Res., 107, 8030, https://doi.org/10.1029/2000JC000423, 2002.
Jiang, H., Cotton W. R., Pinto, J. O., Curry, J. A., and Weissbluth, M. J.:
Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection,
J. Atmos. Sci.,
57, 2105–2117, 2000.
Kafle, D. N. and Coulter, R. L.:
Micropulse lidar-derived aerosol optical depth climatology at ARM sites worldwide,
J. Geophys. Res.,
118, 7293–7308, https://doi.org/10.1002/jgrd.50536, 2013.
Kahl, J. D.:
Characteristics of the Low-Level Temperature Inversion Along the Alaskan Arctic Coast,
Int. J. Climatol.,
10, 537–548, 1990.
Kalesse, H., de Boer, G., Solomon, A., Que, M., Ahlgrimm, M., Zhang, D., Shupe, M. D., Luke, E., and Protat, A.:
Understanding Rapid Changes in Phase Partitioning between Cloud Liquid and Ice in Stratiform Mixed-Phase Clouds: An Arctic Case Study,
Mon. Weather Rev.,
144, 4805–4826, https://doi.org/10.1175/MWR-D-16-0155.1, 2016.
Kay, J. E., L'Ecuyer, T., Chepfer, H., Loeb, N, Morrison, A., and Cesana, G.:
Recent Advances in Arctic Cloud and Climate Research,
Curr. Clim. Change Rep.,
2, 159–169, https://doi.org/10.1007/s40641-016-0051-9, 2016.
Klonecki, A., Hess, P. Emmons, L. K., Smith, L., Orlando, J. J., and Blake, D.: Seasonal changes in the transport of pollutants into the Arctic troposphere-model study, J. Geophys. Res.-Atmos., 108, 8367, https://doi.org/10.1029/2002JD002199, 2003.
Kollias, P., Clothiaux, E. E., Ackerman, T. P., Albrecht, B. A., Widener, K. B., Moran, K. P., Luke, E. P., Johnson, K. L., Bharadwaj, N., Mead, J. B., Miller, M. A., Verlinde, J., Marchand, R. T., and Mace, G. G.: Development and Applications of ARM Millimeter-Wavelength Cloud Radars, Chapter 17,
Meteorol. Monogr., 57, 17.1–17.19, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0037.1, 2016.
Korolev, A. and Isaac, G. A.:
Relative Humidity in Liquid, Mixed-Phase, and Ice Clouds,
J. Atmos. Sci.,
63, 2865–2880, 2006.
Loewe, K., Ekman, A. M. L., Paukert, M., Sedlar, J., Tjernström, M., and Hoose, C.: Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS), Atmos. Chem. Phys., 17, 6693–6704, https://doi.org/10.5194/acp-17-6693-2017, 2017.
Long, C. N. and Turner, D. D.:
A method for continuous estimation of clear-sky downwelling longwave radiative flux developed using ARM surface measurements,
J. Geophys. Res.,
113, D18206, https://doi.org/10.1029/2008JD009936, 2008.
Lubin, D., Zhang, D., Silber, I., Scott, R. C., Kalogeras, P., Battaglia, A., Bromwich, D. H., Cadeddu, M., Eloranta, E., Fridlind, A., Frossard, A., Hines, K. M., Kneifel, S., Leaitch, W. R., Lin, W., Nicolas, J., Powers, H., Quinn, P. K., Rowe, P., Russell, L. M., Sharma, S., Verlinde, J., and Vogelmann, A. M.: AWARE. The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment, B. Am. Meteorol. Soc., 101, 1069–1091, https://doi.org/10.1175/BAMS-D-18-0278.1, 2020.
Maahn, M., de Boer, G., Creamean, J. M., Feingold, G., McFarquhar, G. M., Wu, W., and Mei, F.: The observed influence of local anthropogenic pollution on northern Alaskan cloud properties, Atmos. Chem. Phys., 17, 14709–14726, https://doi.org/10.5194/acp-17-14709-2017, 2017.
Mauritsen, T., Sedlar, J., Tjernström, M., Leck, C., Martin, M., Shupe, M., Sjogren, S., Sierau, B., Persson, P. O. G., Brooks, I. M., and Swietlicki, E.: An Arctic CCN-limited cloud-aerosol regime, Atmos. Chem. Phys., 11, 165–173, https://doi.org/10.5194/acp-11-165-2011, 2011.
Moran, K. P., Martner, B. E., Post, M. J., Kropfli, R. A., Welsh, D. C., and Widener, K. B.:
An Unattended Cloud-Profiling Radar for Use in Climate Research,
B. Am. Meteorol. Soc.,
79, 443–455, 1998.
Morrison, H., Zuidema, P., Ackerman, A. S., Avramov, A., de Boer, G., Fan, J., Fridlind, A. M., Hashino, T., Harrington, J. Y., Luo, Y., Ovchinnikov, M., and Shipway, B.: Intercomparison fo cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE, J. Adv. Model. Earth Syst., 3, M06003, https://doi.org/10.1029/2011MS000066, 2011.
Morrison, H., de Boer, G., Feingold, G., Harrington, J., Shupe, M. D., and Sulia, K.:
Resilience of persistent Arctic mixed-phase clouds,
Nat. Geosci.,
5, 11–17, https://doi.org/10.1038/NGEO1332, 2012.
NOAA: Global Monitoring Laboratory, Radiation and Aerosols Division, Aerosol Climatologies, available at: https://www.esrl.noaa.gov/gmd/dv/data/index.php?parameter_name=Aerosols&site=BRW (last access: 28 August 2019), 2019.
Persson, P. O. G., Shupe, M. D., Perovich, D., and Solomon, A.:
Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions,
Clim. Dynam.,
49, 1341–1364, https://doi.org/10.1007/s00382-016-3383-1, 2017.
Pinto, J. O., Curry, J. A., and Fairall, C. W.:
Radiative characteristics of the Arctic atmosphere during spring as inferred from ground-based measurements,
J. Geophys. Res.,
102, 6941–6952, 1997.
Pithan, F., Medeiros, B., and Mauritsen, T.:
Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions,
Clim. Dynam.,
43, 289–303, https://doi.org/10.1007/s00382-013-1964-9, 2014.
Quinn, P. K., Miller, T. L., Bates, T. S., Ogren, J. A., Andrews, E., and Shae, G. E.: A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska, J. Geophys. Res., 107, 4130, https://doi.org/10.1029/2001JD001248, 2002.
Ravila, P. and Räsänen, J.: New laser ceilometer using enhanced single lens optics, in: Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface at 84th AMS Annual Meeting, Seattle, WA, avialable at: https://ams.confex.com/ams/84Annual/techprogram/paper_68092.htm (last access: 28 November 2020), 2004.
Sedlar, J.:
Implications of Limited Liquid Water Path on Static Mixing within Arctic Low-Level Clouds,
J. Appl. Meteorol. Clim.,
53, 2775–2789, https://doi.org/10.1175/JAMC-D-14-0065.1, 2014.
Sedlar, J. and Devasthale, A.:
Clear-sky thermodynamic and radiative anomalies over a sea ice sensitive region of the Arctic,
J. Geophys. Res.,
117, D19111, https://doi.org/10.1029/2012JD017754, 2012.
Sedlar, J. and Shupe, M. D.: Characteristic nature of vertical motions observed in Arctic mixed-phase stratocumulus, Atmos. Chem. Phys., 14, 3461–3478, https://doi.org/10.5194/acp-14-3461-2014, 2014.
Sedlar, J., Tjernström, M., Mauritsen, T., Shupe, M. D., Brooks, I. M., Persson, P. O. G., Birch, C. E., Leck, C., Sirevaag, A., and Nicolous, M.:
A transitioning Arctic surface energy budget: the impacs of solar zenith angle, surface albedo and cloud radiative forcing,
Clim. Dynam.,
37, 1643–1660, https://doi.org/10.1007/s00382-010-0937-5, 2011.
Sedlar, J., Tjernström, M., Rinke, A., Orr, A., Cassano, J., Fettweis, X., Heinemann, G., Seefeldt, M., Solomon, A., Matthes, H., Phillips, T., and Webster, S.: Confronting Arctic Troposphere, Clouds, and Surface Energy Budget Representations in Regional Climate Models With Observations,
J. Geophys. Res.-Atmos., 125, e2019JD031783, https://doi.org/10.1029/2019JD031783, 2020.
Shupe, M. D.:
A ground-based multisensory cloud phase classifier,
Geophys. Res. Lett.,
34, L22809, https://doi.org/10.1029/2007GL031008, 2007.
Shupe, M. D.:
Clouds at Arctic Atmospheric Observatories. Part II: Thermodynamic Phase Characteristics,
J. Appl. Meteorol. Clim.,
50, 645–661, https://doi.org/10.1175/2010JAMC2468.1, 2011.
Shupe, M. D. and Intrieri, J. M.:
Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle,
J. Climate,
17, 616–628, 2004.
Shupe, M. D., Kollias, P., Persson, P. O. G., and McFarquhar, G. M.:
Vertical Motions in Arctic Mixed-Phase Stratiform Clouds,
J. Atmos. Sci.,
65, 1304–1322, https://doi.org/10.1175/2007JAS2479.1, 2008.
Shupe, M. D., Walden, V. P., Eloranta, E., Uttal, T., Campbell, J. R., Starkweather, S. M., and Shiobara, M.:
Clouds at Arctic Atmospheric Observatories. Part I: Occurrence and Macrophysical Properties,
J. Appl. Meteorol. Clim.,
50, 626–644, https://doi.org/10.1175/2010JAMC2467.1, 2011.
Shupe, M. D., Persson, P. O. G., Brooks, I. M., Tjernström, M., Sedlar, J., Mauritsen, T., Sjogren, S., and Leck, C.: Cloud and boundary layer interactions over the Arctic sea ice in late summer, Atmos. Chem. Phys., 13, 9379–9399, https://doi.org/10.5194/acp-13-9379-2013, 2013.
Silber, I., Fridlind, A. M., Verlinde, J., Russell, L. M., and Ackerman, A. S.: Nonturbulent Liquid-Bearing Polar Clouds: Observed Frequency of Occurrence and Simulated Sensitivity to Gravity Waves, Geophys. Res. Lett.,
10, e2020GL087099, https://doi.org/10.1029/2020GL087099, 2020.
Solomon, A., Shupe, M. D., Persson, P. O. G., and Morrison, H.: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion, Atmos. Chem. Phys., 11, 10127–10148, https://doi.org/10.5194/acp-11-10127-2011, 2011.
Sotiropoulou, G., Sedlar, J., Tjernström, M., Shupe, M. D., Brooks, I. M., and Persson, P. O. G.: The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface, Atmos. Chem. Phys., 14, 12573–12592, https://doi.org/10.5194/acp-14-12573-2014, 2014.
Sotiropoulou, G., Tjernström, M., Sedlar, J., Achtert, P., Brooks, B. J., Brooks, I. M., Persson, P. O. G., Prytherch, J., Salisbury, D. J., Shupe, M. D., Johnston, P. E., and Wolfe, D.:
Atmospheric Conditions during the Arctic Clouds in Summer Experiment (ACSE): Contrasting Open Water and Sea Ice Surfaces during Melt and Freeze-Up Seasons,
J. Climate,
29, 8721–8744, https://doi.org/10.1175/JCLI-D-16-0211.1, 2016.
Stevens, R. G., Loewe, K., Dearden, C., Dimitrelos, A., Possner, A., Eirund, G. K., Raatikainen, T., Hill, A. A., Shipway, B. J., Wilkinson, J., Romakkaniemi, S., Tonttila, J., Laaksonen, A., Korhonen, H., Connolly, P., Lohmann, U., Hoose, C., Ekman, A. M. L., Carslaw, K. S., and Field, P. R.: A model intercomparison of CCN-limited tenuous clouds in the high Arctic, Atmos. Chem. Phys., 18, 11041–11071, https://doi.org/10.5194/acp-18-11041-2018, 2018.
Stramler, K., Del Genio, A. D., and Rossow, W. B.:
Synoptically Driven Arctic Winter States,
J. Climate,
24, 1747–1762, https://doi.org/10.1175/2010JCLI3817.1, 2011.
Telg, H., Murphy, D. M., Bates, T. S., Johnson, J. E., Quinn, P. K., Giardi, F., and Gao, R.-S.:
A practical set of miniaturized instruments for vertical profiling of aerosol physical properties,
Aerosol Sci. Tech.,
51, 715–723, https://doi.org/10.1080/02786826.2017.1296103, 2017.
Tjernström, M., Shupe, M. D., Brooks, I. M., Persson, P. O. G., Prytherch, J., Salisbury, D. J., Sedlar, J., Achtert, P., Brooks, B. J., Johnston, P. E., Sotiropoulou, G., and Wolfe, D.: Warm-ari advection, air mass transformation and fog causes rapid ice melt, Geophys. Res. Lett., 42, 5594–5602, https://doi.org/10.1002/2015GL064373, 2015.
Tjernström, M., Shupe, M. D., Brooks, I. M., Achtert, P., Prytherch, J., and Sedlar, J.:
Arctic Summer Airmass Transformation, Surface Inversions, and the Surface Energy Budget,
J. Climate,
32, 769–789, https://doi.org/10.1175/JCLI-D-18-0216.1, 2019.
Vessey, A. F., Hodges, K. I., Shaffrey, L. C., and Day, J. J.:
An inter-comparison of Arctic synoptic scale storms between four global reanalysis datasets,
Clim. Dynam.,
54, 2777–2795, https://doi.org/10.1007/s00382-020-05142-4, 2020.
Walsh, J. E. and Chapman, W. L.:
Arctic Cloud-Radiation-Temperature Associations in Observational Data and Atmospheric Reanalysis,
J. Climate,
11, 3030–3045, 1998.
Wang, X. and Key, J. R.:
Arctic Surface, Cloud, and Radiation Properties Based on the AVHRR Polar Pathfinder Dataset. Part I: Spatial and Temporal Characteristics,
J. Climate,
18, 2558–2574, 2005.
Wexler, H.:
Cooling in the lower atmosphere and the structure of polar continental air,
Mon. Weather Rev.,
64, 122–136, 1936.
Willis, M., Leaitch, R., and Abbatt, J.: Atmospheric aerosol in the changing Arctic, Eos Trans. Am. Geophys. Union, 99, https://doi.org/10.1029/2018EO108619, 2018.
Young, G., Connolly, P. J., Dearden, C., and Choularton, T. W.: Relating large-scale subsidence to convection development in Arctic mixed-phase marine stratocumulus, Atmos. Chem. Phys., 18, 1475–1494, https://doi.org/10.5194/acp-18-1475-2018, 2018.
Altmetrics
Final-revised paper
Preprint