Articles | Volume 21, issue 21
https://doi.org/10.5194/acp-21-16555-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-16555-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Distinct impacts on precipitation by aerosol radiative effect over three different megacity regions of eastern China
Yue Sun
College of Global Change and Earth System Science, and State Key
Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal
University, Beijing, China
College of Global Change and Earth System Science, and State Key
Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal
University, Beijing, China
Related authors
No articles found.
Qiaomin Pei, Chuanfeng Zhao, Yikun Yang, Annan Chen, Zhiyuan Cong, Xin Wan, Haotian Zhang, and Guangming Wu
Atmos. Chem. Phys., 25, 10443–10456, https://doi.org/10.5194/acp-25-10443-2025, https://doi.org/10.5194/acp-25-10443-2025, 2025
Short summary
Short summary
This study investigates the impact of smoke on atmospheric warming over the Himalayas and Tibetan Plateau (HTP) using MODIS fire data, ground-based and satellite aerosol observations, and model simulations. It finds that smoke aerosols, predominantly concentrated between 6 and 8 km in the mid-troposphere over southern HTP, likely alter regional atmospheric stability by modifying the vertical temperature profile, as indicated by a reduced lapse rate.
Jingye Ren, Songjian Zou, Honghao Xu, Guiquan Liu, Zhe Wang, Anran Zhang, Chuanfeng Zhao, Min Hu, Dongjie Shang, Lizi Tang, Ru-Jin Huang, Yele Sun, and Fang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1483, https://doi.org/10.5194/egusphere-2025-1483, 2025
Short summary
Short summary
In this study, a new framework of cloud condensation nuclei (CCN) prediction in polluted region has been developed and it achieves well prediction of hourly-to-yearly scale across North China Plain. The study reveals a significant long-term decreasing trend of CCN concentration at typical supersaturations due to a rapid reduction in aerosol concentrations from 2014 to 2018. This improvement of our new model would be helpful to aerosols climate effect assessment in models.
Runzhuo Fang, Jinfeng Ding, Wenjuan Gao, Xi Liang, Zhuoqi Chen, Chuanfeng Zhao, Haijin Dai, and Lei Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-186, https://doi.org/10.5194/essd-2025-186, 2025
Preprint under review for ESSD
Short summary
Short summary
IMPMCT is a dataset containing a 24-year record (2001–2024) of polar storms in the Nordic Seas. These storms, called Polar Mesoscale Cyclones (PMCs), sometimes cause extreme winds and waves, threatening marine operations. IMPMCT combines remote sensing measurements and reanalysis data to construct a comprehensive PMCs archive. It includes 1,184 PMCs tracks, 16,630 cloud patterns, and 4,373 wind records, providing fundamental data for advancing our understanding of their development mechanisms.
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260, https://doi.org/10.5194/essd-16-3233-2024, https://doi.org/10.5194/essd-16-3233-2024, 2024
Short summary
Short summary
In this study, we employed a machine learning technique to derive daily aerosol optical depth from hourly visibility observations collected at more than 5000 airports worldwide from 1959 to 2021 combined with reanalysis meteorological parameters.
Hao Fan, Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Zhenyao Shen
Atmos. Chem. Phys., 23, 7781–7798, https://doi.org/10.5194/acp-23-7781-2023, https://doi.org/10.5194/acp-23-7781-2023, 2023
Short summary
Short summary
Using 20-year multi-source data, this study shows pronounced regional and seasonal variations in fire activities and emissions. Seasonal variability of fires is larger with increasing latitude. The increase in temperature in the Northern Hemisphere's middle- and high-latitude forest regions was primarily responsible for the increase in fires and emissions, while the changes in fire occurrence in tropical regions were more influenced by the decrease in precipitation and relative humidity.
Lixing Shen, Chuanfeng Zhao, Xingchuan Yang, Yikun Yang, and Ping Zhou
Atmos. Chem. Phys., 22, 419–439, https://doi.org/10.5194/acp-22-419-2022, https://doi.org/10.5194/acp-22-419-2022, 2022
Short summary
Short summary
Using multi-year data, this study reveals the slump of sea land breeze (SLB) at Brisbane during mega fires and investigates the impact of fire-induced aerosols on SLB. Different aerosols have different impacts on sea wind (SW) and land wind (LW). Aerosols cause the decrease of SW, partially offset by the warming effect of black carbon (BC). The large-scale cooling effect of aerosols on sea surface temperature (SST) and the burst of BC contribute to the slump of LW.
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021, https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
Short summary
A convective cloud identification process is developed using geostationary satellite data from Himawari-8.
Convective cloud fraction is generally larger before noon and smaller in the afternoon under polluted conditions, but megacities and complex topography can influence the pattern.
A robust relationship between convective cloud and aerosol loading is found. This pattern varies with terrain height and is modulated by varying thermodynamic, dynamical, and humidity conditions during the day.
Yikun Yang, Chuanfeng Zhao, Quan Wang, Zhiyuan Cong, Xingchuan Yang, and Hao Fan
Atmos. Chem. Phys., 21, 4849–4868, https://doi.org/10.5194/acp-21-4849-2021, https://doi.org/10.5194/acp-21-4849-2021, 2021
Short summary
Short summary
The occurrence frequency of different aerosol types and aerosol optical depth over the Arctic, Antarctic and Tibetan Plateau (TP) show distinctive spatiotemporal differences. The aerosol extinction coefficient in the Arctic and TP has a broad vertical distribution, while that of the Antarctic has obvious seasonal differences. Compared with the Antarctic, the Arctic and TP are vulnerable to surrounding pollutants, and the source of air masses has obvious seasonal variations.
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Hao Fan
Atmos. Chem. Phys., 21, 3803–3825, https://doi.org/10.5194/acp-21-3803-2021, https://doi.org/10.5194/acp-21-3803-2021, 2021
Short summary
Short summary
We investigate the spatiotemporal distributions of aerosol optical properties and major aerosol types, along with the vertical distribution of the major aerosol types over Australia based on multi-source data. The results of this study provide significant information on aerosol optical properties in Australia, which can help to understand their characteristics and potential climate impacts.
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, Xing Yan, and Hao Fan
Atmos. Chem. Phys., 21, 3833–3853, https://doi.org/10.5194/acp-21-3833-2021, https://doi.org/10.5194/acp-21-3833-2021, 2021
Short summary
Short summary
Using long-term multi-source data, this study shows significant impacts of fire events on aerosol properties over Australia. The contribution of carbonaceous aerosols to the total was 26 % of the annual average but larger (30–43 %) in September–December; smoke and dust are the two dominant aerosol types at different heights in southeastern Australia for the 2019 fire case. These findings are helpful for understanding aerosol climate effects and improving climate modeling in Australia in future.
Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang
Geosci. Model Dev., 14, 205–221, https://doi.org/10.5194/gmd-14-205-2021, https://doi.org/10.5194/gmd-14-205-2021, 2021
Short summary
Short summary
The spin-up in GRAPES_GFS, under different initial fields, goes through a dramatic adjustment in the first half-hour of integration and slow dynamic and thermal adjustments afterwards. It lasts for at least 6 h, with model adjustment gradually completed from lower to upper layers in the model. Thus, the forecast results, at least in the first 6 h, should be avoided when used. In addition, the spin-up process should repeat when the model simulation is interrupted.
Cited articles
Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J.,
Ramanathan, V., and Welton, E. J.: Reduction of Tropical Cloudiness by Soot,
Science, 288, 1042, https://doi.org/10.1126/science.288.5468.1042, 2000.
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.
An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi,
Z., Han, Y., and Gu, Z.: Severe haze in northern China: A synergy of
anthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci.
USA, 116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P.,
Longo, K. M., and Silva-Dias, M. A. F.: Smoking Rain Clouds over the Amazon,
Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779, 2004.
Boucher, O. and Quaas, J.: Water vapour affects both rain and aerosol
optical depth, Nat. Geosci., 6, 4–5,
https://doi.org/10.1038/ngeo1692, 2012.
Che, H., Qi, B., Zhao, H., Xia, X., Eck, T. F., Goloub, P., Dubovik, O., Estelles, V., Cuevas-Agulló, E., Blarel, L., Wu, Y., Zhu, J., Du, R., Wang, Y., Wang, H., Gui, K., Yu, J., Zheng, Y., Sun, T., Chen, Q., Shi, G., and Zhang, X.: Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China, Atmos. Chem. Phys., 18, 405–425, https://doi.org/10.5194/acp-18-405-2018, 2018.
Chen, H. Q., Lu, D. K., Zhou, Z. H., Zhu, Z. W., Ren, Y. J., and Yong, B.: An
overview of assessments on global precipitation measurement (GPM)
precipitation products, Water Resour. Protect., 35, 27–34,
https://doi.org/10.3880/j.issn.1004-6933.2019.01.006, 2019 (in Chinese).
Chen, S., Huang, J., Kang, L., Wang, H., Ma, X., He, Y., Yuan, T., Yang, B., Huang, Z., and Zhang, G.: Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi deserts: comparison of measurements and model results, Atmos. Chem. Phys., 17, 2401–2421, https://doi.org/10.5194/acp-17-2401-2017, 2017.
Chen, T., Li, Z., Kahn, R. A., Zhao, C., Rosenfeld, D., Guo, J., Han, W., and Chen, D.: Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China, Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021, 2021.
Chen, W. D., Fu, D. H., Miao, S. G., and Zhang, Y. Z.: Impacts of aerosols
from Beijing and the surrounding areas on urban precipitation, Chin. Sci.
Bull., 60, 2124–2135, https://doi.org/10.1360/N972015-00217,
2015 (in Chinese).
Ding, A., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Xu, Z., Xie, Y., Qi, X., Shen, Y., Sun, P., Wang, J., Wang, L., Sun, J., Yang, X.-Q., Qin, W., Zhang, X., Cheng, W., Liu, W., Pan, L., and Fu, C.: Significant reduction of PM2.5 in eastern China due to regional-scale emission control: evidence from SORPES in 2011–2018, Atmos. Chem. Phys., 19, 11791–11801, https://doi.org/10.5194/acp-19-11791-2019, 2019.
Edenhofer, O. and Seyboth, K.: Intergovernmental Panel on Climate Change
(IPCC), Encyclopedia of Energy, Natural Resource, and Environ. Econ.,
1, 48–56, https://doi.org/10.1016/B978-0-12-375067-9.00128-5,
2013.
Fan, H., Wang, Y., Zhao, C., Yang, Y., Yang, X., Sun, Y., and Jiang, S.: The
role of primary emission and transboundary transport in the air quality
changes during and after the COVID-19 lockdown in China, Geophys. Res.
Lett., 48, e2020GL091065, https://doi.org/10.1029/2020GL091065,
2021a.
Fan, H., Zhao, C., Yang, Y., and Yang, X.: Spatio-Temporal Variations of the
PM2.5/PM10 Ratios and Its Application to Air Pollution Type
Classification in China, Front. Environ. Sci., 9, 692440, https://doi.org/10.3389/fenvs.2021.692440, 2021b.
Fan, J., Yuan, T., Comstock, J. M., Ghan, S., Khain, A., Leung, L. R., Li,
Z., Martins, V. J. and Ovchinnikov, M.: Dominant role by vertical wind shear
in regulating aerosol effects on deep convective clouds, J. Geophys. Res.-Atmos., 114, D22206, https://doi.org/10.1029/2009JD012352, 2009.
Fan, J., Rosenfeld, D., Ding, Y., Leung, L. R., and Li, Z.: Potential aerosol
indirect effects on atmospheric circulation and radiative forcing through
deep convection, Geophys. Res. Lett., 39, L09806, https://doi.org/10.1029/2012GL051851, 2012.
Fan, J., Leung, L. R., Rosenfeld, D., Chen, Q., Li, Z., Zhang, J., and Yan,
H.: Microphysical effects determine macrophysical response for aerosol
impacts on deep convective clouds, P. Natl. Acad. Sci. USA, 110,
E4581, https://doi.org/10.1073/pnas.1316830110, 2013.
Fan, J., Rosenfeld, D., Yang, Y., Zhao, C., Leung, L. R., and Li, Z.:
Substantial contribution of anthropogenic air pollution to catastrophic
floods in Southwest China, Geophys. Res. Lett., 42, 6066–6075,
https://doi.org/10.1002/2015GL064479, 2015.
Garrett, T. J. and Zhao. C.: Increased Arctic cloud longwave emissivity
associated with pollution from mid-latitudes, Nature, 440, 787–789,
https://doi.org/10.1038/nature04636, 2006.
Guo, J., Deng, M., Lee, S. S., Wang, F., Li, Z., Zhai, P., Liu, H., Lv, W.,
Yao, W., and Li, X.: Delaying precipitation and lightning by air pollution
over the Pearl River Delta. Part I: Observational analyses, J. Geophys. Res.-Atmos., 121, 6472–6488, https://doi.org/10.1002/2015JD023257,
2016.
He, X., Lu, C. S., and Zhu, J.: A study of the spatiotemporal variation in
aerosol types and their radiation effect in China, Acta Scientiae
Circumstantiae, 40, 4070–4080 https://doi.org/10.13671/j.hjkxxb.2020.0100, 2020 (in Chinese).
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2018.
Hoffmann, L., Günther, G., Li, D., Stein, O., Wu, X., Griessbach, S., Heng, Y., Konopka, P., Müller, R., Vogel, B., and Wright, J. S.: From ERA-Interim to ERA5: the considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations, Atmos. Chem. Phys., 19, 3097–3124, https://doi.org/10.5194/acp-19-3097-2019, 2019.
Huang, J., Lin, B., Minnis, P., Wang, T., Wang, X., Hu, Y., Yi, Y., and
Ayers, J. K.: Satellite-based assessment of possible dust aerosols
semi-direct effect on cloud water path over East Asia, Geophys. Res. Lett.,
33, L19802, https://doi.org/10.1029/2006GL026561, 2006a.
Huang, J., Minnis, P., Lin, B., Wang, T., Yi, Y., Hu, Y., Sun-Mack, S., and
Ayers, K.: Possible influences of Asian dust aerosols on cloud properties
and radiative forcing observed from MODIS and CERES, Geophys. Res. Lett.,
33, L06824 https://doi.org/10.1029/2005GL024724, 2006b.
Huang, J., Minnis, P., Yan, H., Yi, Y., Chen, B., Zhang, L., and Ayers, J. K.: Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements, Atmos. Chem. Phys., 10, 6863–6872, https://doi.org/10.5194/acp-10-6863-2010, 2010.
Iguchi, T. and Meneghini, R.: GPM DPR Precipitation Profile L2A 1.5 hours 5 km V06, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/GPM/DPR/GPM/2A/06, 2017.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT) [data set], available at: https://srtm.csi.cgiar.org (last access: 1 November 2021), 2008.
Jiao, M. Y. and Bi, B. G.: Mesoscale structure analysis of
topography-induced heavy rainfall in Beijing in summer, Meteorology, 31, 9–14, https://doi.org/10.3969/j.issn.1000-0526.2005.06.002,
2005 (in Chinese).
Khain, A., Rosenfeld, D., and Pokrovsky, A.: Aerosol impact on the dynamics
and microphysics of deep convective clouds, Q. J. R. Meteorol. Soc.,
131, 2639–2663, https://doi.org/10.1256/qj.04.62, 2005.
Klein, S. A.: Synoptic variability of low-cloud properties and
meteorological parameters in the subtropical trade wind boundary layer, J.
Climate, 10, 2018–2039, https://doi.org/10.1175/1520-0442(1997)010<2018:svolcp>2.0.co;2, 1997.
Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A., and Rudich, Y.:
Aerosol invigoration and restructuring of Atlantic convective clouds,
Geophys. Res. Lett., 32, L14828, https://doi.org/10.1029/2005GL023187, 2005.
Le, M. and Chandrasekar, V.: Precipitation Type Classification Method for
Dual-Frequency Precipitation Radar (DPR) Onboard the GPM, IEEE Trans.
Geosci. Remote Sens., 51, 1784–1790, https://doi.org/10.1109/TGRS.2012.2205698, 2013.
Le, M., Chandrasekar, V., and Lim, S.: Microphysical retrieval from dual frequency precipitation radar board GPM, Proc. IEEE IGARSS, 11686330, 3482–3485, https://doi.org/10.1109/IGARSS.2010.5652487, 2010.
Lebo, Z. and Morrison, H.: Dynamical Effects of Aerosol Perturbations on
Simulated Idealized Squall Lines, Mon. Weather Rev., 142, 991–1009,
https://doi.org/10.1175/MWR-D-13-00156.1, 2014.
Lee, S. S., Guo, J., and Li, Z.: Delaying precipitation by air pollution over
the Pearl River Delta: 2. Model simulations, J. Geophys. Res.-Atmos., 121,
11739–11760, https://doi.org/10.1002/2015JD024362, 2016.
Li, Z., Niu, F., Fan, J., Liu, Y., Rosenfeld, D., and Ding, Y.: Long-term
impacts of aerosols on the vertical development of clouds and precipitation,
Nat. Geosci., 4, 888–894, https://doi.org/10.1038/ngeo1313,
2011.
Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu, X. F., Zhao, W., Tian, Q. J., Deng, R. R., Su, X. L., Huang, B., Qiao,Y. L., Cui, W. Y., Hu, Y., Gong, C. L., Wang, Y. Q., Wang, X. F., Wang, J. P., Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprehensive study of optical, physical, chemical, and radiative properties of total columnar atmospheric aerosols over China: an overview of sun-sky radiometer observation network (SONET) measurements, B. Am. Meteorol. Soc., 99, 739–755, https://doi.org/10.1175/BAMS-D-17-0133.1, 2018.
Lin, J. C., Matsui, T., Pielke Sr., R. A., and Kummerow, C.: Effects of
biomass-burning-derived aerosols on precipitation and clouds in the Amazon
Basin: a satellite-based empirical study, J. Geophys. Res.-Atmos., 111, D19204, https://doi.org/10.1029/2005JD006884, 2006.
Liu, Y., Li, Y., Huang, J., Zhu, Q., and Wang, S.: Attribution of the Tibetan
Plateau to northern drought, Natl. Sci. Rev., 7, 489–492, https://doi.org/10.1093/nsr/nwz191, 2020.
Liu, Y. Z., Hua, S., Jia, R., and Huang, J. P.: Effect of aerosols on the ice
cloud properties over the Tibetan Plateau, J. Geophys. Res.-Atmos., 124,
9594–9608, https://doi.org/10.1029/2019JD030463, 2019.
Niu, F. and Li, Z.: Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics, Atmos. Chem. Phys., 12, 8491–8498, https://doi.org/10.5194/acp-12-8491-2012, 2012.
Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., and Lu, X.:
Observational quantification of aerosol invigoration for deep convective
cloud lifecycle properties based on geostationary satellite, J. Geophys.
Res.-Atmos., 126, e2020JD034275, https://doi.org/10.1029/2020JD034275, 2021.
Pincus, R. and Baker, M. B.: Effect of precipitation on the albedo
susceptibility of clouds in the marine boundary layer, Nature,
372, 250–252, https://doi.org/10.1038/372250a0, 1994.
Qiu, Y., Zhao, C., Guo, J., and Li, J.: 8 Year ground-based observational
analysis about the seasonal variation of the aerosol-cloud droplet effective
radius relationship at SGP site, Atmos. Environ., 164, 139–146, https://doi.org/10.1016/j.atmosenv.2017.06.002, 2017.
Rosenfeld, D.: Suppression of Rain and Snow by Urban and Industrial Air
Pollution, Science, 287, 1793, https://doi.org/10.1126/science.287.5459.1793, 2000.
Rosenfeld, D., Lohmann, U., Raga, G. B., Dowd, C. D., Kulmala, M., Fuzzi,
S., Reissell, A., and Andreae, M. O.: Flood or Drought: How Do Aerosols
Affect Precipitation?, Science, 321, 1309, https://doi.org/10.1126/science.1160606, 2008.
Shen, Y., Zhao, P., Pan, Y., and Yu, J.: A high spatiotemporal
gauge-satellite merged precipitation analysis over China, J. Geophys. Res.-Atmos., 119, 3063–3075, https://doi.org/10.1002/2013JD020686,
2014 (data available at: http://data.cma.cn/, last access: 4 November 2021).
Shi, R., Wang, T. J., Li, S., Zhuang, B. L., Jiang, Z. Q., Liao, J. B., and Yin,
C. Q.: The Spatial and Temporal Characteristics of
Aerosol-Cloud-Precipitation Interactions during Summer in East Asia, Chinese
J. Atmos. Sci., 39, 12–22, https://doi.org/10.3878/j.issn.1006-9895.1404.13276, 2015 (in Chinese).
Shi, X., Zhao, C., Jiang, J. H., Wang, C., Yang, X., and Yung, Y. L.:
Spatial Representativeness of PM2.5 Concentrations Obtained Using
Reduced Number of Network Stations, J. Geophys. Res.-Atmos., 123,
3145–3158, https://doi.org/10.1002/2017JD027913, 2018.
Slingo, J. M.: A cloud parametrization scheme derived from gate data for use
with a numerical model, Q. J. R. Meteorol. Soc., 106, 747–770 https://doi.org/10.1002/qj.49710645008, 1980.
Slingo, J. M.: The Development and Verification of A Cloud Prediction Scheme
For the Ecmwf Model, Q. J. R. Meteorol. Soc., 113, 899–927, https://doi.org/10.1002/qj.49711347710, 1987.
Song, C., He, J., Wu, L., Jin, T., Chen, X., Li, R., Ren, P., Zhang, L., and
Mao, H.: Health burden attributable to ambient PM2.5 in China, Environ.
Pollut., 223, 575–586, https://doi.org/10.1016/j.envpol.2017.01.060, 2017.
Speirs, P., Gabella, M., and Berne, A.: A comparison between the GPM
dual-frequency precipitation radar and ground-based radar precipitation rate
estimates in the Swiss Alps and Plateau, J. Hydrol., 18, 1247–1269,
https://doi.org/10.1175/JHM-D-16-0085.1, 2017.
Stier, P.: Limitations of passive remote sensing to constrain global cloud condensation nuclei, Atmos. Chem. Phys., 16, 6595–6607, https://doi.org/10.5194/acp-16-6595-2016, 2016.
Sun, Y., Zhao, C., Su, Y., Ma, Z. S., Li, J. M., Letu, H., Yang, Y. K., and
Fan, H.: Distinct impacts of light and heavy precipitation on PM2.5
mass concentration in Beijing, Earth Space Sci., 6, 1915–1925 https://doi.org/10.1029/2019EA000717, 2019 (data available at: http://beijingair.sinaapp.com, last access: 4 November 2021).
Tao, W.-K., Li, X., Khain, A., Matsui, T., Lang, S., and Simpson, J.: Role
of atmospheric aerosol concentration on deep convective precipitation:
Cloud-resolving model simulations, J. Geophys. Res., 112, D24S18, https://doi.org/10.1029/2007JD008728, 2007.
Tao, W. K., Chen, J. P., Li, Z., Wang, C. E., and Zhang, C. D.: Impact of
aerosols on convective clouds and precipitation, Rev. Geophys., 50,
RG2001, https://doi.org/10.1029/2011RG000369, 2012.
Teller, A. and Levin, Z.: The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model, Atmos. Chem. Phys., 6, 67–80, https://doi.org/10.5194/acp-6-67-2006, 2006.
Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds, J.
Atmos. Sci., 34, 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
Urraca, R., Huld, T., Gracia-Amillo, A., Martinez-de-Pison, F. J., Kaspar,
F., and Sanz-Garcia, A.: Evaluation of global horizontal irradiance
estimates from ERA5 and COSMO-REA6 reanalyses using ground and
satellite-based data, Sol. Energy, 164, 339–354, https://doi.org/10.1016/j.solener.2018.02.059, 2018.
Wang, C.: A modeling study of the response of tropical deep convection to
the increase of cloud condensation nuclei concentration: 1. Dynamics and
microphysics, J. Geophys. Res.-Atmos., 110, D21211, https://doi.org/10.1029/2004JD005720, 2005.
Wang, J., Xing, J., Mathur, R., Pleim, J. E., Wang, S., Hogrefe, C., Gan, C.
M., Wong, D. C., and Hao, J. M.: Historical Trends in PM2.5-Related
Premature Mortality during 1990–2010 across the Northern Hemisphere,
Environ. Health Perspect., 125, 400–408, https://doi.org/10.1289/EHP298, 2017.
Wang, W., Huang, J., Minnis, P., Hu, Y., Li, J., Huang, Z., Ayers, J., and
Wang, T.: Dusty cloud properties and radiative forcing over dust source and
downwind regions derived from A-Train data during the Pacific Dust
Experiment, J. Geophys. Res.-Atmos., 115, D00H35, https://doi.org/10.1029/2010JD014109, 2010.
Wang, Y. H., Gao, W. K., Wang, S. A., Song, T., Gong, Z. Y., Ji, D. S.,
Wang, L. L., Liu, Z. R., Tang, G. Q., Huo, Y. F., Tian, S. L., Li, J. Y.,
Li, M. G., Yang, Y., Chu, B. W., Petäjä, T., Kerminen, V.-M., He, H., Hao, J. M., Kulmala, M., Wang, Y. S., and
Zhang, Y. H.: Contrasting trends of PM2.5 and surface-ozone concentrations
in China from 2013 to 2017, Natl. Sci. Rev., 7, 1331–1339, https://doi.org/10.1093/nsr/nwaa032, 2020.
Wood, R. and Bretherton C. S.: On the relationship between stratiform low
cloud cover and lower-tropospheric stability, J. Clim., 19, 6425–6432,
https://doi.org/10.1175/jcli3988.1, 2006.
Wu, G. X., Li, Z. Q., Fu, C. B., Zhang, X. Y., Zhang, R. Y., Zhang, R. H., Zhou, T. J., Li, J. P., Li, J. D., Zhou, D. G., Wu, L., Zhou, L. T., He, B., and Huang, R. H.: Advances in studying interactions between aerosols and monsoon in China, Sci. China Earth Sci., 59, 1–16, https://doi.org/10.1007/s11430-015-5198-z, 2016.
Yang, T. J., Liu, Y. D., and Sui, M.: Impacts of different concentrations of
anthropogenic pollutants on a rainstorm, Chinese J. Atmos. Sci., 41, 882–896, https://doi.org/10.3878/j.issn.1006-9895.1702.16235,
2017 (in Chinese).
Yang, X., Zhao, C., Zhou, L., Wang, Y., and Liu, X.: Distinct impact of
different types of aerosols on surface solar radiation in China, J. Geophys.
Res.-Atmos., 121, 6459–6471, https://doi.org/10.1002/2016JD024938, 2016.
Yang, X., Zhou, L., Zhao, C., and Yang, J.: Impact of aerosols on tropical
cyclone induced precipitation over the mainland of China, Clim. Change, 148,
173–185, https://doi.org/10.1007/s10584-018-2175-5, 2018.
Yang, X., Zhao, C., Yang, Y., and Fan, H.: Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia, Atmos. Chem. Phys., 21, 3803–3825, https://doi.org/10.5194/acp-21-3803-2021, 2021.
Zhang, A. Q. and Fu, Y. F.: The structural characteristics of precipitation
cases detected by dual-frequency radar of GPM satellite, Chinese J.
Atmos. Sci., 42, 33–51, https://doi.org/10.3878/j.issn.1006-9895.1705.16220, 2018 (in Chinese).
Zhang, F., Wang, Y., Peng, J., Chen, L., Sun, Y., Duan, L., Ge, X., Li, Y., Zhao, J., Liu, C., Zhang, X., Zhang, G., Pan, Y., Wang, Y., Zhang, A. L., Ji, Y., Wang, G., Hu, M., Molina, M. J., and Zhang, R.: An unexpected catalyst dominates formation and radiative forcing of regional haze, Proc. Natl. Acad. Sci. U.S.A., 117, 3960–3966, https://doi.org/10.1073/pnas.1919343117, 2020.
Zhao, C. and Garrett, T.: Effects of Arctic haze on surface cloud radiative
forcing, Geophys. Res. Lett., 42, 557–564, https://doi.org/10.1002/2014GL062015, 2015.
Zhao, C., Lin, L., Wu, F., Wang, Y., Li, Z., Rosenfeld, D., and Wang, Y.:
Enlarging rainfall area of tropical cyclones by atmospheric aerosols,
Geophys. Res. Lett., 45, 8604–8611, https://doi.org/10.1029/2018GL079427, 2018.
Zhao, C., Yang, Y., Fan, H., Huang, J., Fu, Y., Zhang, X., Kang, S., Cong,
Z., Letu, H., and Menenti, M.: Aerosol characteristics and impacts on
weather and climate over Tibetan Plateau, Natl. Sci. Rev., 7, 492–495,
https://doi.org/10.1093/nsr/nwz184, 2020.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zhou, S., Yang, J., Wang, W.-C., Zhao, C., Gong, D., and Shi, P.: An observational study of the effects of aerosols on diurnal variation of heavy rainfall and associated clouds over Beijing–Tianjin–Hebei, Atmos. Chem. Phys., 20, 5211–5229, https://doi.org/10.5194/acp-20-5211-2020, 2020.
Short summary
Using high-resolution multi-year warm season data, the influence of aerosol on precipitation time over the North China Plain (NCP), Yangtze River Delta (YRD), and Pearl River Delta (PRD) is investigated. Aerosol amount and type have significant influence on precipitation time: precipitation start time is advanced by 3 h in the NCP, delayed 2 h in the PRD, and negligibly changed in the YRD. Aerosol impact on precipitation is also influenced by precipitation type and meteorological conditions.
Using high-resolution multi-year warm season data, the influence of aerosol on precipitation...
Altmetrics
Final-revised paper
Preprint