Articles | Volume 21, issue 17
https://doi.org/10.5194/acp-21-13149-2021
https://doi.org/10.5194/acp-21-13149-2021
Research article
 | 
06 Sep 2021
Research article |  | 06 Sep 2021

Forecasting and identifying the meteorological and hydrological conditions favoring the occurrence of severe hazes in Beijing and Shanghai using deep learning

Chien Wang

Related authors

LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-946,https://doi.org/10.5194/egusphere-2024-946, 2024
Short summary
Impact of urban land use on mean and heavy rainfall during the Indian summer monsoon
Renaud Falga and Chien Wang
Atmos. Chem. Phys., 24, 631–647, https://doi.org/10.5194/acp-24-631-2024,https://doi.org/10.5194/acp-24-631-2024, 2024
Short summary
The impact of aerosols on stratiform clouds over southern West Africa: a large-eddy-simulation study
Lambert Delbeke, Chien Wang, Pierre Tulet, Cyrielle Denjean, Maurin Zouzoua, Nicolas Maury, and Adrien Deroubaix
Atmos. Chem. Phys., 23, 13329–13354, https://doi.org/10.5194/acp-23-13329-2023,https://doi.org/10.5194/acp-23-13329-2023, 2023
Short summary
Radiative and microphysical responses of clouds to an anomalous increase in fire particles over the Maritime Continent in 2015
Azusa Takeishi and Chien Wang
Atmos. Chem. Phys., 22, 4129–4147, https://doi.org/10.5194/acp-22-4129-2022,https://doi.org/10.5194/acp-22-4129-2022, 2022
Short summary
The impacts of biomass burning activities on convective systems over the Maritime Continent
Hsiang-He Lee and Chien Wang
Atmos. Chem. Phys., 20, 2533–2548, https://doi.org/10.5194/acp-20-2533-2020,https://doi.org/10.5194/acp-20-2533-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024,https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024,https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024,https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024,https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024,https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary

Cited articles

Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos. Environ., 42, 1–42, 2008. 
Chattopadhyay, A., Nabizadeh, E., and Hassanzadeh, P.: Analog forecasting of extreme-causing weather patterns using deep learning, J. Adv. Model. Earth Sy., 12, e2019MS001958, https://doi.org/10.1029/2019MS001958, 2020. 
Forest, D.: Generative Deep Learning, O'Reilly Media, Inc., Sebastopol, CA, 2019. 
Gagne, D., Haupt, S., and Nychka, D.: Interpretable deep learning for spatial analysis of severe hailstorms, Mon. Weather Rev., 147, 2827–2845, https://doi.org/10.1175/MWR-D-18-0316.1, 2019. 
Gilbert, G. K.: Finley's tornado predictions, Amer. Meteor. J., 1, 166–172, 1884. 
Download
Short summary
Haze caused by abundant atmospheric aerosols has become a serious environmental issue in many countries. An innovative deep-learning machine has been developed to forecast the occurrence of hazes in two Asian megacities (Beijing and Shanghai) and has achieved good overall accuracy. Using this machine, typical regional meteorological and hydrological regimes associated with haze and non-haze events in the two cities have also been, arguably for the first time, successfully categorized.
Altmetrics
Final-revised paper
Preprint