Articles | Volume 21, issue 17
https://doi.org/10.5194/acp-21-13149-2021
https://doi.org/10.5194/acp-21-13149-2021
Research article
 | 
06 Sep 2021
Research article |  | 06 Sep 2021

Forecasting and identifying the meteorological and hydrological conditions favoring the occurrence of severe hazes in Beijing and Shanghai using deep learning

Chien Wang

Related authors

The Impact of Aerosols on the Stratiform Clouds over southern West Africa: A Large-Eddy Simulation Study
Lambert Delbeke, Chien Wang, Pierre Tulet, Cyrielle Denjean, Maurin Zouzoua, Nicolas Maury, and Adrien Deroubaix
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-856,https://doi.org/10.5194/acp-2022-856, 2023
Revised manuscript under review for ACP
Short summary
Radiative and microphysical responses of clouds to an anomalous increase in fire particles over the Maritime Continent in 2015
Azusa Takeishi and Chien Wang
Atmos. Chem. Phys., 22, 4129–4147, https://doi.org/10.5194/acp-22-4129-2022,https://doi.org/10.5194/acp-22-4129-2022, 2022
Short summary
The impacts of biomass burning activities on convective systems over the Maritime Continent
Hsiang-He Lee and Chien Wang
Atmos. Chem. Phys., 20, 2533–2548, https://doi.org/10.5194/acp-20-2533-2020,https://doi.org/10.5194/acp-20-2533-2020, 2020
Short summary
Impacts on cloud radiative effects induced by coexisting aerosols converted from international shipping and maritime DMS emissions
Qinjian Jin, Benjamin S. Grandey, Daniel Rothenberg, Alexander Avramov, and Chien Wang
Atmos. Chem. Phys., 18, 16793–16808, https://doi.org/10.5194/acp-18-16793-2018,https://doi.org/10.5194/acp-18-16793-2018, 2018
Short summary
Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG
Benjamin S. Grandey, Daniel Rothenberg, Alexander Avramov, Qinjian Jin, Hsiang-He Lee, Xiaohong Liu, Zheng Lu, Samuel Albani, and Chien Wang
Atmos. Chem. Phys., 18, 15783–15810, https://doi.org/10.5194/acp-18-15783-2018,https://doi.org/10.5194/acp-18-15783-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Model-based insights into aerosol perturbation on pristine continental convective precipitation
Mengjiao Jiang, Yaoting Li, Weiji Hu, Yinshan Yang, Guy Brasseur, and Xi Zhao
Atmos. Chem. Phys., 23, 4545–4557, https://doi.org/10.5194/acp-23-4545-2023,https://doi.org/10.5194/acp-23-4545-2023, 2023
Short summary
The impact of using assimilated Aeolus wind data on regional WRF-Chem dust simulations
Pantelis Kiriakidis, Antonis Gkikas, Georgios Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis
Atmos. Chem. Phys., 23, 4391–4417, https://doi.org/10.5194/acp-23-4391-2023,https://doi.org/10.5194/acp-23-4391-2023, 2023
Short summary
On the differences in the vertical distribution of modeled aerosol optical depth over the southeastern Atlantic
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023,https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
A global evaluation of daily to seasonal aerosol and water vapor relationships using a combination of AERONET and NAAPS reanalysis data
Juli I. Rubin, Jeffrey S. Reid, Peng Xian, Christopher M. Selman, and Thomas F. Eck
Atmos. Chem. Phys., 23, 4059–4090, https://doi.org/10.5194/acp-23-4059-2023,https://doi.org/10.5194/acp-23-4059-2023, 2023
Short summary
Local and remote climate impacts of future African aerosol emissions
Christopher D. Wells, Matthew Kasoar, Nicolas Bellouin, and Apostolos Voulgarakis
Atmos. Chem. Phys., 23, 3575–3593, https://doi.org/10.5194/acp-23-3575-2023,https://doi.org/10.5194/acp-23-3575-2023, 2023
Short summary

Cited articles

Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos. Environ., 42, 1–42, 2008. 
Chattopadhyay, A., Nabizadeh, E., and Hassanzadeh, P.: Analog forecasting of extreme-causing weather patterns using deep learning, J. Adv. Model. Earth Sy., 12, e2019MS001958, https://doi.org/10.1029/2019MS001958, 2020. 
Forest, D.: Generative Deep Learning, O'Reilly Media, Inc., Sebastopol, CA, 2019. 
Gagne, D., Haupt, S., and Nychka, D.: Interpretable deep learning for spatial analysis of severe hailstorms, Mon. Weather Rev., 147, 2827–2845, https://doi.org/10.1175/MWR-D-18-0316.1, 2019. 
Gilbert, G. K.: Finley's tornado predictions, Amer. Meteor. J., 1, 166–172, 1884. 
Download
Short summary
Haze caused by abundant atmospheric aerosols has become a serious environmental issue in many countries. An innovative deep-learning machine has been developed to forecast the occurrence of hazes in two Asian megacities (Beijing and Shanghai) and has achieved good overall accuracy. Using this machine, typical regional meteorological and hydrological regimes associated with haze and non-haze events in the two cities have also been, arguably for the first time, successfully categorized.
Altmetrics
Final-revised paper
Preprint