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Abstract. Severe haze or low-visibility events caused by
abundant atmospheric aerosols have become a serious en-
vironmental issue in many countries. A framework based
on deep convolutional neural networks containing more than
20 million parameters called HazeNet has been developed to
forecast the occurrence of such events in two Asian megac-
ities: Beijing and Shanghai. Trained using time-sequential
regional maps of up to 16 meteorological and hydrologi-
cal variables alongside surface visibility data over the past
41 years, the machine has achieved a good overall perfor-
mance in identifying haze versus non-haze events, and thus
their respective favorable meteorological and hydrological
conditions, with a validation accuracy of 80 % in both the
Beijing and Shanghai cases, exceeding the frequency of non-
haze events or no-skill forecasting accuracy, and an F1 score
specifically for haze events of nearly 0.5. Its performance is
clearly better during months with high haze frequency, i.e.,
all months except dusty April and May in Beijing and from
late autumn through all of winter in Shanghai. Certain valu-
able knowledge has also obtained from the training, such as
the sensitivity of the machine’s performance to the spatial
scale of feature patterns, that could benefit future applica-
tions using meteorological and hydrological data. Further-
more, an unsupervised cluster analysis using features with
a greatly reduced dimensionality produced by the trained
HazeNet has, arguably for the first time, successfully catego-
rized typical regional meteorological–hydrological regimes
alongside local quantities associated with haze and non-haze
events in the two targeted cities, providing substantial in-
sights to advance our understandings of this environmental
extreme. Interesting similarities in associated weather and

hydrological regimes between haze and false alarm clusters
or differences between haze and missing forecasting clus-
ters have also been revealed, implying that factors, such as
energy-consumption variation and long-range aerosol trans-
port, could also influence the occurrence of hazes, even under
unfavorable weather conditions.

1 Introduction

Frequent low-visibility or haze events caused by elevated
abundance of atmospheric aerosols due to fossil fuel and
biomass burning have become a serious environmental issue
in many Asian countries in recent decades, interrupting eco-
nomic and societal activities and causing human health is-
sues (e.g., Chan and Yao, 2008; Silva et al., 2013; Lee et al.,
2017). For example, rapid economic development and urban-
ization in China have caused various pollution-related health
issues, particularly in populated metropolitan area such as the
Beijing–Tianjin region and Yangtze River delta centered in
Shanghai (e.g., Liu et al., 2017). In Singapore, the total eco-
nomic cost caused by severe hazes in 2015 is estimated to be
USD 510 million (0.17 % of the GDP) or USD 643.5 million
based on a wiling-to-pay analysis (Lin et al., 2016). To ulti-
mately prevent this detrimental environmental extreme from
happening requires rigid emission control measures in place
through significant changes in energy consumption and land
and plantation management. Before all of these measures can
finally take place, it would be more practical to develop skills
to accurately predict the occurrence of hazes to allow for mit-
igation measures to be implemented ahead of time.
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Severe haze events arise from the solar radiation extinc-
tion by aerosols in the atmosphere; this mechanism can be
enhanced with the increase of relative humidity that en-
larges the size of particles (e.g., Kiehl and Briegleb, 1993).
Aerosols also need favorable atmospheric transport and mix-
ing conditions to reach places away from their immediate
source locations, while their lifetime in the atmosphere can
be significantly reduced by rainfall removal. In addition, soil
moisture is also a key to dust emissions. Therefore, meteoro-
logical and hydrological conditions are critical to the occur-
rence of haze events in addition to particulate emissions. To
forecast the occurrence of such events using existing atmo-
spheric numerical models developed based on fluid dynamics
and explicit or parameterized representations of physical and
chemical processes, first it is required for the models to ac-
curately predict the concentration of aerosols at a given geo-
graphic location and a given time in order to correctly derive
surface visibility (e.g., Lee et al., 2017, 2018). However, the
propagation of numerical or parameterization errors through
the model integration could easily drift the model away from
the original track, not to mention that a lack of real-time
emission data alone would also handicap such an attempt.
Therefore, a more fundamental issue in practice is whether
these models could reproduce the a posteriori distribution
of the possible outcomes of the targeted low-probability ex-
treme events. Ultimately, lack of knowledge about the ex-
treme events would, in turn, hinder the effort to improve the
forecasting skills.

Differing from the deterministic models, an alternative sta-
tistical prediction approach could be adopted if the predictors
of a targeted event could be identified and a statistical corre-
lation between them could be established with confidence.
However, this is a rather difficult task for the traditional ap-
proaches, because it requires an analysis dealing with a very
large quantity of high-dimensional data to establish and gen-
eralize a likely multi-variate and nonlinear correlation. Nev-
ertheless, such attempts can obviously benefit now from the
fast-growing sectors of machine learning (ML) and deep-
learning (DL) algorithm development (e.g., LeCun et al.,
2015). In addition, technological advancement and contin-
uous investment from governments and other sectors across
the world have led to a rapid increase in quantity and sub-
stantially improved quality of meteorological, oceanic, hy-
drological, land, and atmospheric composition data. These
data might still not be sufficient for evaluating and improv-
ing certain detailed aspects of the deterministic forecasting
models. However, rich information contained in these data
about favored environmental conditions for the occurrence of
extreme events such as hazes could already have great value
for developing alternative forecasting skills.

Many Earth science applications dealing with meteorolog-
ical or hydrological data need a trained machine not only
to forecast values but also to recognize patterns or images.
However, this can easily lead to a curse of dimensionality
for many traditional ML algorithms. Fortunately, deep learn-

ing that directly links a large quantity of raw data with tar-
geted outcomes through deep convolutional neural networks
(CNNs) (Goodfellow et al., 2016) offers a clear advantage
in sufficiently training deep networks suitable for solving
highly nonlinear issues. In doing so, DL can also eliminate
the possible mistakes in data derivation or selection intro-
duced by subjective human opinion regarding a poorly un-
derstood phenomenon. Recently, DL algorithms have been
explored in various applications in atmospheric, climate, and
environmental sciences, ranging from recognizing specific
weather patterns (e.g., Liu et al., 2016; Kurth et al., 2018;
Lagerquist et al., 2019; Chattopadhyay et al., 2020), weather
forecasting, including hailstorm detection (e.g., Grover et al.,
2016; Shi et al., 2015; Gagne et al., 2019), deriving model
parameterizations (e.g., Jiang et al., 2018), and beyond.

In certain applications, the targeted outcomes are the same
features as the input but at a different time, e.g., a given
weather feature(s) such as temperature or pressure at a given
level. The forecasting can thus proceed by using pattern-to-
pattern correlation from a sequential training dataset with
spatial information preserving full CNNs such as U-net
(Ronneberger et al., 2015; Weyn et al., 2020). However, this
is certainly not the case for the applications where the en-
vironmental conditions associated with the targeted outcome
are yet known. For such applications, a possible solution is
to utilize a large quantity of raw data with minimized hu-
man intervention in data selection to train a deep CNN to as-
sociate targeted outcomes with favored environmental con-
ditions. This study represents such an attempt, where a DL
forecast framework is trained to identify the meteorological
and hydrological conditions associated with the occurrences
of severe hazes. The DL framework has been developed to
be initially targeted at the severe hazes in Singapore (Wang,
2020) and now hazes in two megacities of China, Beijing and
Shanghai. In terms of particulate pollutant emissions, all of
these cities share certain sources, including fossil fuel com-
bustion from transportation, domestic, and industries. On the
other hand, each city also has its own unique sources, for in-
stance, desert and perhaps anthropogenic dust for Beijing and
massive biomass burning in Singapore (Liu et al., 2017; Lee
et al., 2017, 2018, 2019). It is obvious that in addition to me-
teorological and hydrological conditions, dynamical patterns
of anthropogenic activities leading to the emissions of partic-
ulate matters are also important factors behind the occurrence
of severe hazes. Nevertheless, the major purpose of this study
is to advance our fundamental knowledge about the weather
conditions favoring the occurrence of hazes and, through an
in-depth analysis on the forecasting results, to identify the
limit of such a machine and thus to provide useful informa-
tion for establishing a more complete forecasting platform
for the task.

In the paper, the architecture involved, as well as the
method and data used for training, are described after this
introduction, followed by a discussion of training and valida-
tion results. Following this, an unsupervised cluster analysis
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that benefited from the trained machine is introduced along
with its results, which further the understanding of the CNN’s
performance and summarize, for the first time, the various
typical meteorological and hydrological regimes associated
with haze versus non-haze situations in the two cities. The
last section concludes the effort and provides its major find-
ings.

2 Network architecture, training methodology, and
data

2.1 Network architecture

The convolutional neural network used in this study, the
HazeNet (Wang, 2020), has been developed by adopting
the general architecture of the CNN developed by the Ox-
ford University’s Visual Geometry Group (VGG-Net) (Si-
monyan and Zisserman, 2015). The actual structure and
hyper-parameters of HazeNet have been adjusted and fine-
tuned based on numerous test training runs. In addition, cer-
tain techniques that were not available when the original
VGG net was developed, e.g., batch normalization (Ioffe and
Szegedy, 2015), have been included as well. The current ver-
sion for haze applications of Beijing and Shanghai, though
trained separately, contains the same number of parameters,
20 507 161 (11 376 non-trainable), owing to it having the
same optimized kernel sizes. Figure 1 shows the general ar-
chitecture of a HazeNet version with 12 convolutional and 4
dense layers (in total 57 layers).

The network has been trained in a standard supervised
learning procedure for classification, where the network
takes input features to produce classification output that are
then compared with known results or labels based on obser-
vations. The coefficients of the network are thereafter opti-
mized in order to minimize the error between the prediction
and the observation or label. The loss function used in op-
timization is cross-entropy (e.g., Goodfellow et al., 2017).
Such a procedure is repeated until the performance of the
network can no longer be improved. In practice, the train-
ing usually lasts about 2000 epochs (each epoch is a training
cycle that uses up the entire training dataset). This proce-
dure is intended to train a deep CNN to recognize and then
associate input features (bundled meteorological and hydro-
logical conditions in this case) with a corresponding class,
i.e., severe haze events or non-haze events. As a result, the
specific knowledge about the favored meteorological and hy-
drological conditions of severe hazes can thus be advanced.

2.2 Training data and methodology

The labels for the training are derived using the observed
daily surface visibility (hereafter referred to as “VIS”)
obtained from the Global Surface Summary Of the Day
(GSOD) dataset consisting of daily observations of meteoro-
logical conditions from tens of thousands of airports around

the globe (Smith et al., 2011). In the cases of Beijing and
Shanghai, data are from observations in the corresponding
airports of these two cities during the time from 1979 to
2019, containing 14 975 samples. For simplicity, the dis-
cussions will be mainly about the two-class training, where
events with VIS ≤ the long-term mean value of the 25th per-
centile or p25 of VIS (6.27 km in Beijing, 5.95 km in Shang-
hai; Fig. 2b; see also Fig. S1 in the Supplement) are defined
as class 1 or severe haze and events are otherwise classified
as class 0 or non-haze cases. Although p25 values vary in-
terannually, their long-term means represent a substantial re-
duction of VIS due to high particulate pollution (e.g., Lee et
al., 2017). Note that unlike in the case of Singapore (Wang,
2020), fog and mist are more common low-visibility events
in Beijing and Shanghai and thus have been excluded from
the labels of severe hazes by following GSOD fog marks.
The number of severe haze events that occurred during 1979–
2019 defined in the above procedure is 3099 and 2999 for
Beijing and Shanghai, indicating a frequency of 20.7 % and
20.0 %, respectively.

The training and validation of HazeNet also need the input
features with the same sample dimension of the labels. These
input data are derived from hourly maps of meteorological
and hydrological variables covering the data collection do-
main (Fig. 2a), obtained from ERA5 reanalysis data pro-
duced by the European Centre for Medium-range Weather
Forecasts or ECMWF (Hersbach et al., 2020). These data are
distributed in a grid system with a horizontal spatial inter-
val of 0.25◦. Up to 16 features are derived from the original
hourly data fields covering the analysis domain for Beijing
(64×96 grids) and Shanghai (64×64 grids), including daily
mean of surface relative humidity (REL), daytime change
and daily standard deviation of 2 m temperature (DT2M and
T2MS, respectively), daily mean of 10 m zonal and merid-
ional wind speed (U10 and V10, respectively), daily mean
of total column water (TCW), daily mean (TCV) and day-
time change (DTCV) of total column water vapor, daily mean
of planetary boundary layer height (BLH), daily mean soil
water volume in soil layer 1 and 2 (SW1 and SW2, respec-
tively), daily mean of total cloud cover (TCC), daily mean
geopotential heights at 500 (Z500) and 850 (Z850) hPa pres-
sure levels and their daytime changes (D500 and D850, re-
spectively). All input features have been normalized into a
range of [−1, +1] (Fig. S2 in the Supplement).

Before the training, the entire samples of labels alongside
corresponding input features were randomly shuffled first
then split in the following way: two-thirds of the samples
went to the training set, and one-third of the samples went to
the validation set, each is duly used for its designated purpose
throughout the entire training process without switching. The
above procedure treats each event as an independent sample.
For the convenience of being able to compare performance
or restart training based on a saved machine, a saved training
dataset and a holdout validation dataset that has never been
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Figure 1. Architecture of the 12 convolutional plus 4 dense layers of HazeNet. Here “Conv” represents a unit containing zero padding and
then a 2D convolutional layer, followed by a batch normalization layer. There is a flattened layer before the two dense layers. W stands for
width, H stands for height, and N stands for the number of features of the input fields (i.e., 64, 96, and 16 for Beijing and 64, 64, and 16 for
Shanghai.

Figure 2. (a) The input feature defining domains for Beijing (red box and dot, 32.25–48◦ N, 99.25–123◦ E; 64× 96 grids with ERA5 data)
and Shanghai (white box and dot, 26–41.25◦ N, 109.25–125◦ E; 64× 64 grids), made using the Basemap library (a Matplotlib extension).
(b) Annual means (solid curves), 25th percentiles (dashed curves), and 25th percentile means (solid straight lines) of surface visibility in
Beijing (red) and Shanghai (blue) between 1979 and 2019.

used in training were produced following the above proce-
dure and used for the purpose.

The number of samples used in training HazeNet is rather
limited compared to deep-learning standards. However, to as-
sociate 16 joint two-dimensional maps with targeted labels
even with the current number of samples is still a demanding
task that requires a deep CCN to accomplish. Furthermore,
the targeted severe hazes are low-probability events. Their
frequency of appearance is about 20 % in the Beijing and
Shanghai cases. Therefore, a trained machine would easily
bias toward the overwhelming non-haze events. To resolve
these issues, a combination of class weight and batch nor-
malization has been implemented in HazeNet, which both

use corresponding Keras functions. The class weight is used
to change the weight of training loss of each class, normally
by increasing the weight of the low-frequency class. The
class weight coefficient was calculated based on the ratio
of class 0 to class 1 frequency. Batch normalization (Ioffe
and Szegedy, 2015) is an algorithm to renormalize the in-
put distribution at certain step (e.g., for each mini batch) to
eliminate the shift of such distributions during optimization.
The above approaches have effectively reduced the overfit-
ting while overcoming the data imbalance issue, making the
long training of a deep CNN possible (Wang, 2020). Entire
training events have been conducted using a NVIDIA Tesla
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V100-SXM2 GPU cluster, costing 25 and 17 s per epoch for
the machines in Beijing and Shanghai, respectively.

2.3 Kernel size optimization

As in the cases of other CNNs, there are many hyperparam-
eters of HazeNet that need to be determined or optimized.
These have been done through numerous testing training
events. In practice, the deep architecture of HazeNet and the
long training procedure have actually made the performance
less sensitive to many hyperparameters of the network. One
hyperparameter, however, is specifically interesting to ex-
plore in its application using a large quantity of meteorolog-
ical maps, i.e., the kernel size of the first convolutional layer,
where the input data (meteorological and hydrological maps)
are convoluted and then propagated into the subsequent lay-
ers.

Meteorological maps or images often contain character-
istic patterns with different spatial scales. Intuitively, pre-
serving these patterns could be important in predicting the
targeted extremes. Apparently, a larger kernel size produces
smoother output images from the first convolutional layer,
while a smaller kernel size can preserve many spatial details
of the meteorological maps, as demonstrated by the layer out-
put shown in Fig. 3. In practice, however, the patterns pro-
duced by the latter configuration might be too complicated
for the networks to recognize and to perform classification,
whereas patterns resulting from a relatively larger kernel size
for the first convolutional layer might be more suitable for
the task. The actual result suggests that HazeNet configured
with a first-layer kernel size of 20 to 26 or close to 5–6◦ in
spatial resolution consistently produces a better performance
(about a 10 % improvement in F1 score) than that using a
smaller kernel size of 3 or 6. As a result, a kernel size of 20
has been adopted as the default configuration for the first two
convolutional layers in this study.

3 Training and validation results of haze forecasting

Currently, it is still difficult to find any practical score for
forecasting the occurrence of severe hazes for comparison.
Therefore, the performance of HazeNet has mainly been
measured by using certain commonly adopted metrics for
classification that are largely derived from the concept of the
so-called confusion matrix (e.g., Swets, 1988; Table A1), in-
cluding accuracy, precision, recall, F1 score, equitable threat
score (ETS), and Heidke skill score (HSS) (Appendix A).
Unless otherwise indicated, the discussions on the perfor-
mance scores are hereafter referring to the severe haze class
(or class 1) and are obtained from validation rather than train-
ing. In all the cases, the performance metrics referring to
non-haze or class 0 have much better scores. Also note that,
unless otherwise indicated, results shown in this Section are
obtained using 16 features.

In order to train a stable machine, training events with
2000 epochs or longer have been conducted instead of us-
ing certain commonly adopted skills such as early stop. As a
result, the validation performance metrics of the trained ma-
chines all appeared to be stabilized by approaching the end
of training (Fig. 4). These scores were consistent with the
results of ensemble training with the same configuration but
different randomly selected training and validation datasets
and were also comparable among training events with dif-
ferent configurations. Overfitting has been clearly overcome
due to such a long training procedure and the adoption of
class weight and batch normalization. In a two-class classifi-
cation (haze versus non-haze), trained deep HazeNet can al-
ways reach an almost perfect training accuracy (e.g., 0.9956
for Beijing cases) and a validation accuracy of 80 % (fre-
quency of non-haze events or no-skill forecasting accuracy)
in both Beijing and Shanghai cases (Fig. 4a). At the same
time, the performance scores for predicting specifically se-
vere hazes are also very reasonable, e.g., for Beijing cases
either precision or recall exceeds 0.5 (they normally evolve
in opposite directions), leading to a nearly 0.5 F1 score
(Fig. 4c–e). The corresponding scores in training are obvi-
ously much higher, e.g., with precision, recall, and F1 as
0.9804, 0.9980, and 0.9880, respectively for Beijing cases,
owing to the deep and thus powerful CNNs. HazeNet per-
formed slightly better than several known deep CNNs, such
as Inception Net V3 (Szegedy et al., 2015), ResNet50 (He
et al., 2015), and VGG-19 (Simonyan and Zisserman, 2015),
for the same haze forecasting task (Wang, 2020). Neverthe-
less, as indicated previously, a nearly perfect validation per-
formance is not realistic since meteorological and hydrologi-
cal conditions are not the only factors behind the occurrence
of haze events.

Looking into the specific prediction outcomes in reference
to severe haze, the trained machine has produced a consider-
ably higher ratio of true positive (TP) outcomes than in the
Southeast Asian cases (Wang, 2020) despite a number of out-
comes of false positive (FP, i.e., false alarm) and false neg-
ative (FN, i.e., missing forecast). In forecasting the severe
hazes in Beijing, the trained machine performs reasonably
well throughout all months except for April and May (the
major dusty season), producing an F1 score, ETS, and HSS
that all exceed or are near 0.5, as well as the number of TP
outcomes higher than that of FN outcomes (Fig. 5). HazeNet
actually performs better in months with more observed haze
events. For Beijing, the lowest haze season is during the
dusty April and May when all the major performance met-
rics are lower than 0.4, and the machine produces more miss-
ing forecasts than true positive outcomes. The relatively poor
performance in spring suggests that the weather and hydro-
logical features associated with dust-dominated haze events
during this period might differ from the situations in the other
seasons when hazes are mainly caused by local particulate
pollution. For Shanghai cases, HazeNet performs better dur-
ing late autumn and all of winter (from November to Febru-
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Figure 3. (a, d) Weight coefficients of the first filter set (WN,1), (b, e) partial output for each feature (ZN,1), and (c, f) the output (Z) of the
first convolution layer (CONV2d_1) with two selected kernel sizes (ks): (a–c) 20× 20 and (d–f) 3× 3. Here W represents the filters and Z
the output of convolution; the subsets of Z before the feature dimension is merged can be expressed as ZN,i =WN,i (ks,ks) · f TN (ks,ks),
with the order of input features N = 1, . . . 16 and i representing the convolutional layer index, i.e., 1 is the first layer or CONV2d_1. For the
first layer, input feature size is (h,w)= (64,64), the set of filters is 92, and thus the final output Z has a dimension of (h−ks+1, w−ks+1,
92). Shown are the results from the training for Shanghai haze cases.

ary) when haze occurs most frequently (not shown). The
worst performance comes from the monsoon season (July to
October), the season with the fewest haze cases.

Reducing the number of input features

One recognized advantage of deep CNN in practice is its ca-
pacity to directly link the targeted outcome with a large quan-
tity of raw data and thus avoid human misjudgment in select-
ing and abstracting input features due to a lack of knowledge
about the application task. Nevertheless, for an application
such as this one that uses a large number of meteorological
and hydrological variables (or channels in machine learning
terms), reducing the number of input features with a minimal
influence on the performance can still benefit the efforts to
establishing physical or dynamical causal relations and other
features.

There are certain available methods to rank features and
then reduce those found to be unimportant. These do not
work straightforwardly for deep CNNs (e.g., McGovern et
al., 2019). In previous efforts, this has been done by testing
the sensitivity of the full network performance in real train-
ing with either a single feature only or all but one feature

(Wang, 2020), which apparently is also a demanding task.
Here, another attempt has been made to use a trained (then
saved) machine to examine the sensitivity of the network to
various features (Appendix B).

The sensitivity analyses using trained machines for Bei-
jing and Shanghai have obtained largely consistent results,
indicating that the network is more sensitive to the same nine
features compared to the other seven (Fig. S3). However, the
highest-ranking features differ, with daytime change of col-
umn vapor (DTCV) and soil water content in the second soil
layer (SW2) as the most sensitive features for Beijing, while
relative humidity (REL) and planetary boundary layer height
(BLH) are the most sensitive for Shanghai. Most importantly,
training events using only the top nine most sensitive fea-
tures have produced a performance equivalent to or even bet-
ter than the same training event with 16 features (Fig. 4e).
With a reduced number of features, many further analyses
can be conducted with lower workload that produce results
that are easily understood.
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Figure 4. (a, b) Validation accuracy (a) and loss (b) of HazeNet with 16 features for the Beijing and Shanghai cases; kernel size for the first
filter is 20× 20. (c, d) Prediction outcomes in reference to haze events (or class 1) of Beijing and Shanghai with 16 features. TP stands for
true positive, TN stands for true negative, FP stands for false positive, and FN stands for false negative prediction outcomes. (e) Scores of
performance metrics shown as means over the last 100 epochs for Beijing and Shanghai with 16 and 9 features, respectively.

Figure 5. (a) Monthly counts of predicted TP, FP, and FN outcomes and (b) performance scores for each month. All results are taken from
validation of Beijing cases with 16 features.
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4 Identifying and categorizing the typical regional
meteorological and hydrological regimes associated
with haze events

A major purpose of this study is to identify the meteorolog-
ical and hydrological conditions favoring the occurrence of
severe hazes in the targeted cities. When using a dataset with
a large number of samples, this type of analyses could be
better accomplished by applying, e.g., cluster analysis (e.g.,
Steinhaus, 1957), a standard unsupervised ML algorithm that
groups data samples into various clusters in such a way that
samples in the same cluster are more similar to each other
than to those in other clusters. Specifically for this study,
the derived clusters would likely represent various regimes
in terms of combined meteorological and hydrological con-
ditions for associated events. However, applying cluster anal-
ysis directly to a large number of samples, each with a feature
volume of∼ 50000, is not an easy task. A dimensionality re-
duction is apparently needed to reduce the feature volume of
data.

In practice, a trained CNN is actually an excellent tool for
this purpose. It encodes (downscales) the input with large
feature volume into data with a much smaller size in the so-
called latent space (i.e., the output of the layer before the
output layer of the CNN) but equal predictability for the tar-
geted events. This functionality of CNN has been used in de-
veloping various generative DL algorithms from variational
autoencoders (VAEs) to different generative adversarial net-
works (GANs) (e.g., Forest, 2019). Therefore, the trained
HazeNet for Beijing and Shanghai using 9 instead of 16 fea-
tures, which benefited from the effort of reducing the number
of input features as described at the end of Sect. 3, have been
used here to produce data with reduced size suitable for clus-
tering (Fig. 6; see also Appendix C). The new sample feature
set with a size of 14 975×512 produced from this procedure
was then used in cluster analysis.

In order to provide useful information for understanding
the performance of the trained networks, the clustering has
been performed for each of the prediction outcomes rather
than just haze versus non-haze events (Appendix C). In this
configuration, haze-associated regimes are represented by
derived clusters of TP plus FN outcomes, while non-haze
regimes are represented by clusters of TN plus FP outcomes.
Since the clusters were derived using the indices of sam-
ples as the record for members, the actual feature maps of
the members in any cluster can thus be conveniently re-
trieved and used to identify the representative regimes in
terms of combined nine meteorological and hydrological fea-
tures. Here the clustering results have been analyzed using
the feature maps in both normalized (machine native) and
unnormalized (original reanalysis data) format. The charac-
teristics of various regimes can be easily identified from the
former as they represent anomalies to climatological means.
An added benefit is to advance the understanding of the per-
formance of the trained networks. The analysis using the lat-

ter maps aims to better appreciate the conventional regional
and local meteorological and hydrological patterns associ-
ated with various regimes. The feature maps used in both
analyses have been averaged across each cluster for clarity.

4.1 Results based on normalized feature maps

As shown in Fig. 7, the four clusters of true positive (TP)
cases in Beijing exhibit a clear similarity in general fea-
ture patterns closely surrounding Beijing (marked by a navy
dot in the Fig. 7). These common patterns include an iso-
lated small positive relative humidity (REL) center cover-
ing Beijing, associated with mild daytime change (DT2M)
and standard deviation (T2MS) of surface temperature and
zonal wind (U10) and a lower boundary layer height (BLH).
Weatherwise, Beijing and its immediate surrounding area ap-
pear to be located between two sharply different air masses
occupying the northwestern and southeastern part of the do-
main, respectively (weather systems usually progress from
northwest to southeast in this region). When relating this to
the other feature characteristics, it is likely that Beijing and
its nearby area do not experience a drastic weather system
change such as a front when haze occurs; hence, the high
REL – a critical condition for aerosol to effectively scatter
sunlight – can be easily formed, aided by a stable bound-
ary layer with mild surface wind to allow aerosols to be well
mixed vertically near the ground without being significantly
reduced through advection diffusion. In addition, relatively
high soil water content could fuel the humidity in the air, and
thin while stable low clouds, if present (judged based on tem-
perature change), could signal a lack of persistent precipita-
tion. Altogether, these conditions apparently allow the haze
to easily form, persist, and effectively scatter sunlight, thus
reducing visibility. These conditions are also noticeably con-
trast with those associated with non-haze events represented
by TN outcomes (Fig. S4).

Note that as each cluster consists of a collection of 3D data
volumes or images, any two clusters could be sufficiently dif-
ferentiated should only one of their images differ based on
the clustering derivation algorithm, even though statistically
speaking, they very likely belong to the same population (i.e.,
should be tested statistically). As shown in Fig. 7, the dis-
tinctions between TP clusters are largely reflected by the two
different air masses distant from Beijing in both strength and
spatial extent, particularly from DTCV patterns, likely rep-
resenting different types of systems or background regimes.
Specifically, a strong DTCV anomalous center seen in the
cluster 1 and 4 patterns occupies most of the domain west of
Beijing and directly influences Beijing and its nearby area.
In contrast, DTCV distributions in cluster 2 and 3 are much
weaker, where Beijing and its immediate neighboring area
even appear to be more influenced by the southeastern sys-
tem. In addition, surface wind distributions of the first two
clusters clearly differ from those of cluster 3 and 4, and the
patterns of BLH alongside SW1 and SW2 over Beijing and
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Figure 6. A diagram of the cluster analysis procedure. Here 96, 64, and 9 represent the number of longitudinal grids, latitudinal grids, and
features (variables) or the size of the input feature volume of a trained HazeNet for Beijing cases, respectively, while 512 is the size of the
output from the dense layer before the output layer of HazeNet or the size of new feature volume.

its immediate neighboring area of cluster 3 also suggest a
land–atmosphere exchange condition differing from that of
others. The combinations of these differences across vari-
ous TP clusters apparently clearly define the various regimes
of surrounding weather systems and their influence on Bei-
jing. For the TP clusters of Shanghai, the above similarities
and differences among various clusters also exist, except that
clusters 1, 2, and 4 maintain more similarities in their feature
patterns of distant air masses from Shanghai, while cluster 3
offers certain evident diversity in many feature patterns com-
pared to other clusters (Fig. S5). Even more interestingly,
the distribution of the number of members within various
TP clusters evidently does not differ in different months (Ta-
ble S1) (note that the number of haze events itself differs
seasonally; see Fig. 5). Therefore, it is very likely that the
characteristic weather conditions favoring haze occurrence
and being captured by HazeNet cannot be simply differenti-
ated by location (Beijing versus Shanghai) and season.

On the other hand, among three FN clusters (also associ-
ated with haze events but missed in prediction), only the first
cluster (the major cluster of FN) displays certain similarity to
TP clusters across various features. Even for this cluster, the
characters of the air masses distantly surrounding Beijing dif-
fer substantially from those of TP clusters, as seen from the
patterns of temperature (DT2M, T2SM), wind (particularly
V10), and column water (DTCV) that reflect a much weaker
weather system to the west. The patterns of BLH, SW1, and
SW2 also differ from those of TP, indicating a different near-
site boundary layer and hydrological condition. Such differ-
ences appear to be even more evident in the two other (minor)
clusters, e.g., the size and strength of high relative humidity
center covering Beijing are even more different. This result
suggests a possible reason for HazeNet’s inaccurate forecast-
ing of these haze events, i.e., that haze might occur under

unfavorable weather and hydrological conditions owing to,
e.g., certain energy-consumption scenarios. Again, the dis-
tribution of members of these latter two clusters does not ex-
hibit clear seasonality (Table S1). Interestingly, first two of
the four FP clusters display more a clear similarity in their
normalized feature patterns to those of TP than FN in Bei-
jing and its immediate surrounding area (Fig. 7). As in FN
cases, however, two other clusters differ more evidently. All
of these could explain the false alarms reported by the ma-
chine, i.e., the machine could have simply been confused by
such similarities between certain TP and FP members. Nev-
ertheless, these could also suggest an alternative reason be-
hind the incorrect forecasts, i.e., that certain pollution miti-
gation measures could have been in place. The results of FP
clusters and the last FN cluster reported alongside a TP for
Shanghai cases also share some similar characteristics as an-
alyzed here (Figs. S5 and S6).

Therefore, it is worth indicating again that meteorologi-
cal or hydrological conditions are not the only factors de-
termining the occurrence of hazes. Other factors such as ab-
normal energy-consumption events or long-range transport
of aerosols could all cause haze to occur even under unfavor-
able weather and hydrological conditions. This could well
be the reason for some of the missing forecasts (FN out-
comes) when haze occurred under unfavorable conditions,
as suggested above, or for false alarms (FP outcomes) when
low-aerosol events occurred even under a weather condition
favorable to haze. Future improvement of the measurement
skill could benefit from this knowledge.
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Figure 7. Maps of the nine features in a normalized format for four clusters of true positive (TP) outcomes, three clusters of false negative
(FN) outcomes, and four clusters of false positive (FP) outcomes. Here, TP plus FN covers haze events. Results shown are cluster averages
for Beijing cases (location marked by navy dot).

4.2 Results based on original unnormalized feature
maps

Utilizing feature maps in their original unnormalized for-
mat represented by actual physical quantities could provide
a convenient way to appreciate the conventional regional and
local meteorological and hydrological patterns and imple-
ment additional analysis, if necessary, of the possible im-
pact of seasonality or trends associated with various events.
Note that the visual differences between unnormalized fea-

ture maps, particularly in cluster mean format, might be too
subtle for the naked eye to recognize.

For haze events in Beijing (i.e., TP and FN outcomes;
Fig. 8), the associated cluster mean regional meteorologi-
cal and hydrological patterns of most features except DTCV
contain two regions with sharply contrasting quantities,
roughly separated by a line linking the southwest and north-
east corner of the domain, likely due to the typical progres-
sion direction of weather systems in this region aside from
a meridional variation of general climate. In comparison, the
as same as is shown in the previous analysis using normal-
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Figure 8. Feature maps associated with severe haze events in Beijing represented by four clusters of TP-predicted outcomes (four top rows)
and three clusters of FN-predicted outcomes (three lower rows). Shown are cluster means of unnormalized data of relative humidity (REL)
(ratio), daytime change (DT2M), and daily standard deviation (T2MS) of 2 m temperature (degrees), 10 m winds U10 and V10 (m/s), daytime
change of column water vapor or DTCV (kg/m2), planetary boundary height (BLH) (m), and soil water content in soil level 1 (SW1) and
level 2 (SW2) (kg/m2).

ized feature maps, the patterns of the first FN cluster share
many characteristics with those of TP clusters. The differ-
ences among TP and FN clusters are more evident in DTCV
(specifically cluster 1 and 4 versus cluster 2 and 3), SW1,
SW2, and surface winds, particularly for the second and third
FN clusters. FP clusters also display a similarity to those of
TP clusters (Fig. S7), whereas TN clusters show more visible
differences, particularly in patterns of meridional wind (V10)
and daily change of column water vapor or DTCV (Fig. S8).

The general regional meteorological and hydrological con-
ditions during haze events in the southeastern portion, in con-
trast to the northwestern portion of the domain, include a
higher relative humidity, lower variation of surface temper-
ature, largely northward or northwestward wind, lower plan-
etary boundary layer height, and higher soil water content,
and quantity wise these are all in sharp contrast to the situ-
ation in the other half of the domain. Based on the surface
wind direction, Beijing and its immediate surrounding area
is clearly located between two air masses that both feature
anticyclonic surface winds. The strengths of these two cen-
ters differ, particularly in the last two FN clusters, implying
regimes with systems that have different strengths or that are
in different development phases. Such a difference is also

clearly related to the visually recognizable cross-cluster dif-
ference in DTCV patterns, represented by a strong negative
center in the middle of the domain with varying extent and
strength across different clusters. Consistent with the anal-
ysis result using normalized feature maps, all of these indi-
cate a stable weather condition over Beijing and its neigh-
boring area during haze events while surrounded by two (or
more) different weather systems. It is known that dust can
cause low-visibility events in Beijing. During dust seasons,
the condition of the northwestern half of the domain, rep-
resented by a dominant eastward wind and lower soil water
content, likely favors dust transport from desert to Beijing.
However, the details would need an in-depth analysis since
most clusters have members that are rather well distributed
through different months (Table S1).

The cluster means of nine features for haze events (TP plus
FN) versus non-haze (TN plus FP) at the grid point of Beijing
are also derived and listed in Table 1 for reference. Specifi-
cally, the common local conditions associated with hazes in
Beijing in comparison to those with non-haze events include
a higher humidity, less drastic variations in surface temper-
ature, a northwestward rather than southeastward wind, a
lower planetary boundary layer height, and higher soil wa-
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Table 1. Cluster means of features associated with haze events (TP and FN) in Beijing and Shanghai versus means of all clusters of non-haze
events of TN and FP. The number of cluster members in each cluster is listed in parentheses.

Cluster REL DT2 T2MS U10 V10 DTCV BLH SW1 SW2
(0–1) (◦C) (◦C) (m/s) (m/s) (kg/m2) (m) (kg/m2) (kg/m2)

Beijing

TP1 (848) 0.64 −5.99 3.24 −0.29 0.20 0.04 379.71 0.23 0.22
TP2 (181) 0.65 −5.80 3.14 −0.28 0.19 0.57 378.33 0.23 0.23
TP3 (354) 0.65 −5.39 2.98 −0.45 0.29 0.31 400.20 0.23 0.22
TP4 (1208) 0.64 −5.82 3.18 −0.34 0.28 0.27 381.28 0.23 0.22
FN1 (392) 0.63 −6.24 3.32 −0.25 0.20 0.07 422.60 0.23 0.22
FN2 (90) 0.65 −5.71 3.05 −0.20 0.17 0.19 406.65 0.23 0.22
FN3 (26) 0.69 −5.37 2.94 −0.61 0.39 −0.17 410.95 0.25 0.23
TN mean 0.51 −7.13 3.65 0.15 −0.15 0.36 552.90 0.22 0.21
FP mean 0.65 −5.84 3.15 −0.35 0.25 −0.26 386.27 0.24 0.23

Shanghai

TP1 (1228) 0.81 −3.44 1.79 −0.16 −0.55 −2.25 415.59 0.35 0.35
TP2 (135) 0.81 −3.10 1.71 −0.12 −0.66 −2.08 422.04 0.36 0.36
TP3 (689) 0.81 −2.95 1.59 −0.17 −1.28 −2.29 472.74 0.36 0.35
TP4 (355) 0.81 −3.52 1.82 0.03 −0.57 −2.74 411.96 0.35 0.35
FN1 (372) 0.80 −3.48 1.80 −0.41 −0.42 −0.84 421.13 0.35 0.35
FN2 (113) 0.80 −3.64 1.84 −0.34 −0.51 −1.21 423.09 0.35 0.34
FN3 (107) 0.82 −3.28 1.77 −0.68 −0.49 0.10 422.36 0.35 0.35
TN mean 0.77 −3.29 1.57 −2.86 1.40 0.62 739.75 0.31 0.32
FP mean 0.82 −3.26 1.71 −0.48 −0.85 −2.26 438.55 0.35 0.35

ter content. Again, the most recognizable cross-cluster differ-
ences appear in DTCV (i.e., cluster 1 versus others), followed
by surface wind (cluster 1 and 2 versus 3 and 4). In most of
the local features, variabilities of FN clusters tend to be larger
than those of TP clusters. Notably, such differences in local
feature quantities for FN clusters are not necessarily more ev-
ident than in the regional maps over distant air masses. One
interesting result of the local weather conditions shown in Ta-
ble 1 is that the cluster means of TN are sharply different to
those of TP and FN, while the cluster means of FP and those
of TP+FN are likely to be statistically indifferent outside of
DTCV, providing evidence to support the assumption that FP
outcomes might simply represent the non-haze events caused
by reasons other than weather and hydrological conditions.

For the case of Shanghai, the general weather conditions
associated with haze events are likely stable, with characters
similar to the cases of Beijing, except that Shanghai appears
to be located between a northwest air mass with anticyclonic
surface wind and a southeast air mass with cyclonic wind
(Fig. 9). Quantities of most feature patterns display a sharply
southeast versus northwest contrast. DTCV maps display a
negative center over a large area, its distribution and extent
vary significantly among different clusters in particular for
the first two FN clusters. The patterns of soil water con-
tent in both soil layers exhibit a sharp meridional contrast
that is much higher in the southern part of the domain than
in the northern part, areas largely separated by the Yellow

River. Local quantities of all the features associated with
haze events (TP plus FN) in Shanghai display clear differ-
ences with those of non-haze prediction outcomes (TN) (Ta-
ble 1). The most recognizable cross-cluster differences for
TP appear in U10 of cluster 4 and V10 of cluster 3, differing
from the cases of Beijing, and DTCV (particularly for clus-
ter 3) for FN. Like the cases of Beijing, the cluster mean of
the FP outcomes is not statistically different to that of haze
(TP and FN) when compared to predicted non-haze (TN)
events. Again, this result implies that even when a weather
pattern favoring haze appeared and was correctly recognized
by HazeNet, haze still could not to occur due to other factors
such as energy-consumption variations.

It is worth indicating that the current analysis discussed
here is only applied to the included features of cluster-
ing, and the presented figures in cluster-wise averaging for-
mat might have effectively smoothed out certain variability
among members. A full-scale analysis would necessarily go
beyond this to provide further synoptical or large-scale hy-
drological insights and better define different regimes.

5 Summary and conclusions

Following an earlier preliminary attempt at forecasting haze
in Singapore, a deep convolutional neural network contain-
ing more than 20 million parameters, HazeNet, has been fur-
ther developed to test forecasting of the occurrence of severe
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Figure 9. The same as Fig. 8 except for Shanghai with four clusters for TP outcomes and three clusters for FN outcomes.

haze events during 1979–2019 in two metropolitan areas in
Asia, Beijing and Shanghai. By training the machine to rec-
ognize regional patterns of meteorological and hydrological
features associated with haze events, the study advances our
knowledge about this still poorly known environmental ex-
treme. The deep CNN has been trained in a supervised learn-
ing procedure using time-sequential maps of up to 16 meteo-
rological and hydrological variables or features as inputs and
surface visibility observations as the labels.

Even with a rather limited sample size (14 975), the trained
machine has displayed a reasonable performance measured
by commonly adopted validation metrics. Its performance is
clearly better during months with high haze frequency, i.e.,
all months except dusty April and May in Beijing and from
late autumn through all of winter in Shanghai. Relatively
large spatial patterns appear to be more effective than the
smaller ones for influencing the performance of forecasting.
On the other hand, in-depth analysis of performance results

has also indicated certain limitations of the current approach
of solely using meteorological and hydrological data in per-
forming forecasts.

The trained machine has also been used to examine the
sensitivity of the CNN to various input features and thus to
identify and then remove features ineffective to the perfor-
mance of the machine. In addition, to further categorize typ-
ical regional weather and hydrological patterns associated
with severe haze versus non-haze events, an unsupervised
cluster analysis has been subsequently conducted and has
benefited from using features with greatly reduced dimen-
sionality produced by using the trained machine.

The cluster analysis has, arguably for the first time, suc-
cessfully categorized major regional meteorological and hy-
drological patterns associated with severe haze and non-haze
events in Beijing and Shanghai into a limited number of rep-
resentative groups, with the typical feature patterns of these
clustered groups derived. It has been found that the typi-
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cal weather and hydrological regimes of haze events in Bei-
jing and Shanghai are rather stable conditions represented by
anomalously high relative humidity, low planetary bound-
ary layer height, and mild daily temperature change that
are likely associated with a thin low cloud cover over the
haze-occurring regions. The result has further revealed rather
strong similarities in associated meteorological and hydro-
logical regimes between haze and false alarm clusters and
differences between haze and missing forecasting clusters,
implying that factors such as energy-consumption variations,
long-range transport of aerosols could influence the occur-
rence of hazes even under unfavorable weather conditions.

Due to the exploratory nature of this specific effort, several
aspects could be further optimized, including the rather arbi-
trary though statistically meaningful labeling. In addition, an
in-depth analysis of weather regimes would necessarily in-
volve the use of certain features that are not included in the
current clustering; however, this exceeds the extent of this pa-
per and can only be discussed properly in a future work. Nev-
ertheless, this study has demonstrated the potential of apply-
ing deep CNNs with extensive multi-dimensional and time-
sequential environmental images to advance our understand-
ing of poorly known environmental and weather extremes.
Using this methodology, the results and experience obtained
from this study could benefit future improvement efforts re-
garding these skills. Aside from this use, the trained ma-
chines can be used in many other types of machine learning
and deep-learning applications, as has been partially demon-
strated here.

Atmos. Chem. Phys., 21, 13149–13166, 2021 https://doi.org/10.5194/acp-21-13149-2021



C. Wang: Forecasting hazes using deep learning 13163

Appendix A: Performance metrics

Several commonly used performance metrics have been used
in this study. They are largely derived based on the so-called
confusion matrix (Swets, 1988) as defined in the following
Table A1.

Here, “positive” or “negative” is referring to the outcome
of a given event or class in the classification, e.g., severe haze
or non-haze events. Hence, the prediction outcome TP is a
correct forecast of a severe haze, while TN is a correct fore-
cast of a non-haze event, FP represents a false alarm, and
FN represents a missing forecast. The context of outcomes
changes when the designated class is switched. The major
performance metrics used in this paper include

accuracy=
TP+TN
N

, (A1)

precision=
TP

TP+FP
, (A2)

recall=
TP

TP+FN
, (A3)

F1 score= 2 ·
precision · recall
precision+ recall

, (A4)

ETS=
TP−Hitrandom

TP+FP+FN−Hitrandom
, (A5a)

where

Hitrandom =
(TP+FN) · (TP+FP)

N
, (A5b)

HSS=
2 · (TP ·TN−FP ·FN)

(TP+FP) · (FP+TN)+ (TP+FN) · (TP+TN)
.

(A6)

Here, F1 score is the F score with β = 1 (van Rijsbergen,
1974), ETS represents equitable threat score (or Gilbert skill
score; Gilbert, 1884; range = [−1/3,1]), HSS represents
Heidke skill score (Heidke, 1926; range = [−∞,1]), and N
is the number of total outcomes. Note that “accuracy” has the
same value for all the classes and thus is a good metric for
the overall classification. The values of all the other metrics
differ depending on the referred class.

Table A1. Confusion matrix for measuring the prediction outcomes
of a given class.

Observed

Positive Negative

Predicted Positive True positive or TP False positive or FP
Negative False negative or FN True negative or TN

Appendix B: Examining the network’s sensitivity to
features using trained machine

A method has been adopted in this study to use a trained ma-
chine to examine the sensitivity of the network to a random
perturbation applied to the values of different features. The
saved machine contains all the coefficients in different net-
work layers and can be used to predict output from any of
these layers using the same input features for training or val-
idation. The sensitivity of the network to a given feature is
determined by comparing the prediction using input feature
maps containing random perturbation applied to the map of
this feature with the prediction using original input feature
maps. The sensitivity is measured by the content loss be-
tween these two predictions, with img1 with M ×N pixels
as the unperturbed and img2 as perturbed network output:

content loss=
1

M ×N

∑M,N

i,j
(img1i,j − img2i,j )

2. (B1)

The perturbation is applied as random patches with the addi-
tion of −0.2 or 0.2 to 10 % of the pixels of the input map
of the targeted feature in each sample, while maps of all
the other features remain unperturbed. To reduce the work-
load, only the validation input set corresponding to the class
1 events (about 1020 samples) is used. Therefore, the sen-
sitivity tested here is actually the sensitivity of the network
to a given feature in predicting class 1 events. To preserve
the spatial information of the perturbed field, the output of
the 9th layer, or the “MaxPooling” layer following the sec-
ond convolutional layer (Fig. 1), is used as the prediction. It
has a size of (15, 31, 92) for Beijing cases and (15, 15, 92)
for Shanghai cases when a kernel size of 20× 20 is adopted.
A higher content loss resulting from Eq. (B1) represents a
higher sensitivity.

Appendix C: Cluster analysis

The cluster analysis of this study was conducted in the fol-
lowing three steps (see also Fig. 6).

i. Firstly, the trained and saved HazeNet for both the Bei-
jing and Shanghai cases with nine input features have
been used to perform prediction using the entire 14 975
input samples in the original raw data format, i.e., with
a feature volume size of 64× 96× 9 for Beijing and
64×64×9 for Shanghai for each sample. The prediction
results were then summarized into various outcomes,
i.e., as true positive (TP), true negative (TN), false posi-
tive (FP), or false negative (FN), in referring to the haze
class. In the meantime, the output of the second dense
layer just before the output layer or the latent space (see
Figs. 1 and 6) was further used to form a new data of
each sample with a reduced feature volume of 512. This
new dataset, with a size of 14 975 by 512, was then
ready for clustering.
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ii. The second step is to perform clustering using the new
dataset with reduced size resulting from the previous
step. For this purpose, it should be conducted sepa-
rately for different types of samples or events, e.g.,
categorizing all the samples for haze into characteris-
tic groups with similarities and identical features, and
the same for all samples of non-haze events. In or-
der to provide additional information to further the un-
derstanding of the network’s performance, the clus-
tering was actually conducted for different prediction
outcomes, by taking corresponding samples from the
new dataset. In this case, TP plus FN would lead
to haze events, and TN plus FP would lead to non-
haze events. The clustering calculations were done
by directly using the k-mean (Steinhaus, 1957) func-
tion of the scikit-learn library (https://scikit-learn.org/
stable/modules/clustering.html#clustering, last access:
2 September 2021). For Beijing cases, the trained ma-
chine with nine features produced 2591 TP, 11368 TN,
508 FP, and 508 FN outcomes, and it produced 2407 TP,
11 484 TN, 492 FP, and 592 FN outcomes for Shanghai.
The cluster analysis was performed separately for each
of these outcomes in an unsupervised learning proce-
dure to let the machine categorize corresponding sam-
ples into groups based on similarities among them. In
practice, similarity is judged by the so-called inertia for
a cluster with members of xi and mean of µ:

inertia=
∑N

i
(‖xi −µ‖)

2. (C1)

The clustering is to seek a grouping with minimized
inertia within each cluster. The overall measure is the
summation inertia that decreases almost exponentially
with the increase of number of clusters. In practice, the
cluster analysis was first tested with various given num-
ber of clusters ranging from 1 to 100 to examine the val-
ues alongside decay of the inertia. This provided a base
to identify the smallest possible number of cluster cen-
ters with reasonably low inertia in actual cluster analy-
sis. This has actually been decided by using square root
of the inertia weighted by the number of samples to put
the varying number of samples across various outcomes
in consideration. An optimized number of clusters was
chosen with a weighted inertia lower than 1/e of that of
the single-cluster case. For TN, due to the large sample
number, this criterion was set to be half of 1/e. As a re-
sult, the optimized number of clusters for TP, FN, FP,
and TN outcomes is 4, 3, 4, and 15 for Beijing and 4, 3
3, and 10 for Shanghai, respectively.

iii. The members of each cluster derived from step (ii) were
recorded by the actual sample indices with the date in-
cluded. Therefore, actual samples of input data grouped
into various clusters can be conveniently identified with
corresponding feature maps retrieved, either in a nor-
malized or unnormalized format (i.e., in original quan-

tity as in reanalysis dataset), and used for further anal-
yses. In practice, cluster-averaged maps for various fea-
tures were performed beforehand.
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Code and data availability. The Python script for network archi-
tecture, training, and validation is rather straightforward and sim-
ple, basically consisting of directly adopted function calls from
Keras interface library (https://github.com/keras-team/keras, last
access: 2 September 2021) with a TensorFlow-GPU (https://www.
tensorflow.org, last access: 2 September 2021) as the backend
or from scikit-learn library (https://scikit-learn.org/, last access:
2 September 2021). All the data used here for the analyses are pub-
licly available: GSOD data from https://www.ncei.noaa.gov/access/
metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516, last ac-
cess: 2 September 2021; ERA5 reanalysis data from https://climate.
copernicus.eu/climate-reanalysis, last access: 2 September 2021.

Supplement. The supplement related to this article is available on-
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