Articles | Volume 21, issue 14
Atmos. Chem. Phys., 21, 11225–11241, 2021
https://doi.org/10.5194/acp-21-11225-2021
Atmos. Chem. Phys., 21, 11225–11241, 2021
https://doi.org/10.5194/acp-21-11225-2021
Research article
27 Jul 2021
Research article | 27 Jul 2021

Comprehensive quantification of height dependence of entrainment mixing between stratiform cloud top and environment

Sinan Gao et al.

Related authors

Self-enhanced aerosol–fog interactions in two successive radiation fog events in the Yangtze River Delta, China: A simulation study
Naifu Shao, Chunsong Lu, Xingcan Jia, Yuan Wang, Yubin Li, Yan Yin, Bin Zhu, Tianliang Zhao, Duanyang Liu, Shengjie Niu, Shuxiang Fan, Shuqi Yan, and Jingjing Lv
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-833,https://doi.org/10.5194/acp-2022-833, 2023
Preprint under review for ACP
Short summary
Aerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022,https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Coupled mesoscale-LES modeling of air quality in a polluted city using WRF-LES-Chem
Yuting Wang, Yong-Feng Ma, Domingo Muñoz-Esparza, Jianing Dai, Cathy W. Y. Li, Pablo Lichtig, Roy C. W. Tsang, Chun-Ho Liu, Tao Wang, and Guy P. Brasseur
EGUsphere, https://doi.org/10.5194/egusphere-2022-1208,https://doi.org/10.5194/egusphere-2022-1208, 2022
Short summary
Influences of an entrainment–mixing parameterization on numerical simulations of cumulus and stratocumulus clouds
Xiaoqi Xu, Chunsong Lu, Yangang Liu, Shi Luo, Xin Zhou, Satoshi Endo, Lei Zhu, and Yuan Wang
Atmos. Chem. Phys., 22, 5459–5475, https://doi.org/10.5194/acp-22-5459-2022,https://doi.org/10.5194/acp-22-5459-2022, 2022
Short summary
The impact of inhomogeneous emissions and topography on ozone photochemistry in the vicinity of Hong Kong Island
Yuting Wang, Yong-Feng Ma, Domingo Muñoz-Esparza, Cathy W. Y. Li, Mary Barth, Tao Wang, and Guy P. Brasseur
Atmos. Chem. Phys., 21, 3531–3553, https://doi.org/10.5194/acp-21-3531-2021,https://doi.org/10.5194/acp-21-3531-2021, 2021
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Examination of aerosol indirect effects during cirrus cloud evolution
Flor Vanessa Maciel, Minghui Diao, and Ryan Patnaude
Atmos. Chem. Phys., 23, 1103–1129, https://doi.org/10.5194/acp-23-1103-2023,https://doi.org/10.5194/acp-23-1103-2023, 2023
Short summary
In situ microphysics observations of intense pyroconvection from a large wildfire
David E. Kingsmill, Jeffrey R. French, and Neil P. Lareau
Atmos. Chem. Phys., 23, 1–21, https://doi.org/10.5194/acp-23-1-2023,https://doi.org/10.5194/acp-23-1-2023, 2023
Short summary
Conditions favorable for secondary ice production in Arctic mixed-phase clouds
Julie Thérèse Pasquier, Jan Henneberger, Fabiola Ramelli, Annika Lauber, Robert Oscar David, Jörg Wieder, Tim Carlsen, Rosa Gierens, Marion Maturilli, and Ulrike Lohmann
Atmos. Chem. Phys., 22, 15579–15601, https://doi.org/10.5194/acp-22-15579-2022,https://doi.org/10.5194/acp-22-15579-2022, 2022
Short summary
Interaction between cloud–radiation, atmospheric dynamics and thermodynamics based on observational data from GoAmazon 2014/15 and a cloud-resolving model
Layrson J. M. Gonçalves, Simone M. S. C. Coelho, Paulo Y. Kubota, and Dayana C. Souza
Atmos. Chem. Phys., 22, 15509–15526, https://doi.org/10.5194/acp-22-15509-2022,https://doi.org/10.5194/acp-22-15509-2022, 2022
Short summary
Snowfall in Northern Finland derives mostly from ice clouds
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022,https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary

Cited articles

Andrejczuk, M., Grabowski, W. W., Malinowski, S. P., and Smolarkiewicz, P. K.: Numerical Simulation of Cloud–Clear Air Interfacial Mixing: Homogeneous versus Inhomogeneous Mixing, J. Atmos. Sci., 66, 2493–2500, https://doi.org/10.1175/2009jas2956.1, 2009. 
Baker, M. and Latham, J.: The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds, J. Atmos. Sci., 36, 1612–1615, 1979. 
Baker, M., Corbin, R., and Latham, J.: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing, Q. J. Roy. Meteor. Soc., 106, 581–598, https://doi.org/10.1002/qj.49710644914, 1980. 
Baker, M., Breidenthal, R., Choularton, T., and Latham, J.: The effects of turbulent mixing in clouds, J. Atmos. Sci., 41, 299–304, https://doi.org/10.1175/1520-0469(1984)041<0299:TEOTMI>2.0.CO;2, 1984. 
Bony, S. and Dufresne, J. L.: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851, 2005. 
Download
Short summary
Only a few studies have been focused on the vertical variation of entrainment mixing with low resolutions which are crucial to cloud-related processes. A sawtooth pattern allows for an examination of mixing with high vertical resolution. A new measure is introduced to estimate entrainment mixing to overcome difficulties in existing measures, where vertical profile indicates that entrainment mixing becomes more homogeneous with decreasing altitudes, consistent with the dynamical measures.
Altmetrics
Final-revised paper
Preprint