Articles | Volume 20, issue 11
https://doi.org/10.5194/acp-20-6395-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-6395-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Regional-scale modelling for the assessment of atmospheric particulate matter concentrations at rural background locations in Europe
Goran Gašparac
CORRESPONDING AUTHOR
Croatia Control Ltd., Zagreb, Croatia
Climatology Department, Climate Modelling, Climate Change Monitoring and Biometeorology Division, Croatian Meteorological and Hydrological Service, Zagreb, Croatia
Amela Jeričević
Croatia Control Ltd., Zagreb, Croatia
Prashant Kumar
Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
Branko Grisogono
Department of Geophysics, Faculty of Science, University of Zagreb, Zagreb, Croatia
Related authors
No articles found.
Gabriella Lükő, Péter Torma, Tamás Krámer, Tamás Weidinger, Zeljko Vecenaj, and Branko Grisogono
Adv. Sci. Res., 17, 175–182, https://doi.org/10.5194/asr-17-175-2020, https://doi.org/10.5194/asr-17-175-2020, 2020
Short summary
Short summary
This paper proposes new relationships for momentum exchange through the air–water interface for medium size lakes. High-resolution wind and wave measurements were performed simultaneously in onshore and offshore stations in Lake Balaton. Our results show that the surface drag is remarkably higher compared to open ocean conditions due to the very young wave state which is a typical feature of midsize freshwater lakes.
Mona Kurppa, Antti Hellsten, Pontus Roldin, Harri Kokkola, Juha Tonttila, Mikko Auvinen, Christoph Kent, Prashant Kumar, Björn Maronga, and Leena Järvi
Geosci. Model Dev., 12, 1403–1422, https://doi.org/10.5194/gmd-12-1403-2019, https://doi.org/10.5194/gmd-12-1403-2019, 2019
Short summary
Short summary
This paper describes the implementation of a sectional aerosol module, SALSA, into the PALM model system 6.0. The first evaluation study shows excellent agreements with measurements. Furthermore, we show that ignoring the dry deposition of aerosol particles can overestimate aerosol number concentrations by 20 %, whereas condensation and dissolutional growth increase the total aerosol mass by over 10 % in this specific urban environment.
Guilherme Martins Pereira, Kimmo Teinilä, Danilo Custódio, Aldenor Gomes Santos, Huang Xian, Risto Hillamo, Célia A. Alves, Jailson Bittencourt de Andrade, Gisele Olímpio da Rocha, Prashant Kumar, Rajasekhar Balasubramanian, Maria de Fátima Andrade, and Pérola de Castro Vasconcellos
Atmos. Chem. Phys., 17, 11943–11969, https://doi.org/10.5194/acp-17-11943-2017, https://doi.org/10.5194/acp-17-11943-2017, 2017
Short summary
Short summary
São Paulo, Brazil, has relatively relaxed regulations for ambient air pollution standards and often presents high air pollution levels due to emissions of airborne particles from local sources and long-range transport of biomass burning smoke. High risks associated with particulate matter exposure were observed in most samples. The results highlighted the contribution of vehicular emissions and the significant input from biomass combustion in the dry season.
Carlos Eduardo Souto-Oliveira, Maria de Fátima Andrade, Prashant Kumar, Fábio Juliano da Silva Lopes, Marly Babinski, and Eduardo Landulfo
Atmos. Chem. Phys., 16, 14635–14656, https://doi.org/10.5194/acp-16-14635-2016, https://doi.org/10.5194/acp-16-14635-2016, 2016
Short summary
Short summary
The Metropolitan Area of São Paulo is the biggest megacity of South America, with over 20 million inhabitants. In recent years, the region has been facing a modification in rain patterns. In this study, we evaluated the effects of local and remote sources of air pollution on cloud-condensation nuclei activation properties. Our results showed that the local vehicular traffic emission products presented more negative effects on cloud-condensation nuclei activation than the remote sources.
A Vara-Vela, M. F. Andrade, P. Kumar, R. Y. Ynoue, and A. G. Muñoz
Atmos. Chem. Phys., 16, 777–797, https://doi.org/10.5194/acp-16-777-2016, https://doi.org/10.5194/acp-16-777-2016, 2016
Short summary
Short summary
This study provides a first step to understand the impact of vehicular emissions on the formation of secondary particles as well as the feedback between these particles and meteorology in the Sao Paulo Metropolitan Area (SPMA). Among the main research findings are:
- The emissions of primary gases from vehicles led to a production between 20 and 30 % due to new particles formation in relation to the total mass concentration PM2.5 in the downtown SPMA.
J. F. Peng, M. Hu, Z. B. Wang, X. F. Huang, P. Kumar, Z. J. Wu, S. Guo, D. L. Yue, D. J. Shang, Z. Zheng, and L. Y. He
Atmos. Chem. Phys., 14, 10249–10265, https://doi.org/10.5194/acp-14-10249-2014, https://doi.org/10.5194/acp-14-10249-2014, 2014
M. Zimnoch, P. Wach, L. Chmura, Z. Gorczyca, K. Rozanski, J. Godlowska, J. Mazur, K. Kozak, and A. Jeričević
Atmos. Chem. Phys., 14, 9567–9581, https://doi.org/10.5194/acp-14-9567-2014, https://doi.org/10.5194/acp-14-9567-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds
Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
Modeling impacts of dust mineralogy on fast climate response
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China
Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus
Global aviation contrail climate effects from 2019 to 2021
Rapid iodine oxoacid nucleation enhanced by dimethylamine in broad marine regions
Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds
Aerosols in the central Arctic cryosphere: satellite and model integrated insights during Arctic spring and summer
Observationally constrained regional variations of shortwave absorption by iron oxides emphasize the cooling effect of dust
Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Predicting Hygroscopic Growth of Organosulfur Aerosol Particles Using COSMOtherm
Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data
Simulated phase state and viscosity of secondary organic aerosols over China
Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions
Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Revealing dominant patterns of aerosols regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Synergistic effects of previous winter NAO and ENSO on the spring dust activities in North China
Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February–March 2020–2022 and associated atmospheric circulation
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Sensitivity of global direct aerosol shortwave radiative forcing to uncertainties in aerosol optical properties
Molecular-level study on the role of methanesulfonic acid in iodine oxoacid nucleation
Improving estimation of a record breaking East Asian dust storm emission with lagged aerosol Ångström Exponent observations
Regional to global distributions, trends, and drivers of biogenic volatile organic compound emission from 2001 to 2020
Impacts of ice-nucleating particles on cirrus clouds and radiation derived from global model simulations with MADE3 in EMAC
Seasonal characteristics of emission, distribution, and radiative effect of marine organic aerosols over the western Pacific Ocean: an investigation with a coupled regional climate aerosol model
Fire–precipitation interactions amplify the quasi-biennial variability in fires over southern Mexico and Central America
Improved estimates of smoke exposure during Australia fire seasons: importance of quantifying plume injection heights
New particle formation induced by anthropogenic–biogenic interactions on the southeastern Tibetan Plateau
Investigation of observed dust trends over the Middle East region in NASA Goddard Earth Observing System (GEOS) model simulations
Impact of Biomass Burning Aerosols (BBA) on the tropical African climate in an ocean-atmosphere-aerosols coupled climate model
A new process-based and scale-aware desert dust emission scheme for global climate models – Part II: Evaluation in the Community Earth System Model version 2 (CESM2)
How well do Earth system models reproduce the observed aerosol response to rapid emission reductions? A COVID-19 case study
Global modeling of aerosol nucleation with an explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Observationally constrained analysis of sulfur cycle in the marine atmosphere with NASA ATom measurements and AeroCom model simulations
Impact of acidity and surface-modulated acid dissociation on cloud response to organic aerosol
The contribution of residential wood combustion to the PM2.5 concentrations in the Helsinki metropolitan area
Analysis of atmospheric particle growth based on vapor concentrations measured at the high-altitude GAW station Chacaltaya in the Bolivian Andes
Expanding the simulation of East Asian super dust storms: physical transport mechanisms impacting the western Pacific
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024, https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Short summary
In a study of two consecutive winter seasons, we used measurements and modelling tools to identify the levels and sources of black carbon pollution in a medium-sized urban area of the Po Valley, Italy. Our findings show that biomass burning and traffic-related emissions (especially from Euro 4 diesel cars) significantly contribute to BC concentrations. This research offers crucial insights for policymakers and urban planners aiming to improve air quality in cities.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024, https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary
Short summary
Aerosols can modify the liquid water path (LWP) of stratocumulus and, thus, their radiative effect. We compare storm-resolving model and satellite data that disagree on the sign of LWP adjustments and diagnose this discrepancy with causal inference. We find that strong precipitation, the absence of wet scavenging, and cloud deepening under a weak inversion contribute to positive LWP adjustments to aerosols in the model, despite weak negative effects from cloud-top entrainment enhancement.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Qianqian Song, Paul Ginoux, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7421–7446, https://doi.org/10.5194/acp-24-7421-2024, https://doi.org/10.5194/acp-24-7421-2024, 2024
Short summary
Short summary
We implement and simulate the distribution of eight dust minerals in the GFDL AM4.0 model. We found that resolving the eight minerals reduces dust absorption compared to the homogeneous dust used in the standard GFDL AM4.0 model that assumes a globally uniform hematite content of 2.7 % by volume. Resolving dust mineralogy results in significant impacts on radiation, land surface temperature, surface winds, and precipitation over North Africa in summer.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024, https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Short summary
In this study, we diagnose uncertainties in carbon monoxide and organic carbon emissions from four inventories for seven major wildfire-prone regions. Uncertainties in vegetation classification methods, fire detection products, and cloud obscuration effects lead to bias in these biomass burning (BB) emission inventories. By comparing simulations with measurements, we provide certain inventory recommendations. Our study has implications for reducing uncertainties in emissions in further studies.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Short summary
The radiative forcing (RF) due to aviation contrails is comparable to that caused by CO2. We estimate that global contrail net RF in 2019 was 62.1 mW m−2. This is ~1/2 the previous best estimate for 2018. Contrail RF varies regionally due to differences in conditions required for persistent contrails. COVID-19 reduced contrail RF by 54% in 2020 relative to 2019. Globally, 2 % of all flights account for 80 % of the annual contrail energy forcing, suggesting a opportunity to mitigate contrail RF.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 5823–5835, https://doi.org/10.5194/acp-24-5823-2024, https://doi.org/10.5194/acp-24-5823-2024, 2024
Short summary
Short summary
The nucleation of iodic acid (HIO3) and iodous acid (HIO2) was proven to be critical in marine areas. However, HIO3–HIO2 nucleation cannot effectively derive the rapid nucleation in some polluted coasts. We find a significant enhancement of dimethylamine (DMA) on the HIO3–HIO2 nucleation in marine and polar regions with abundant DMA sources, which may establish reasonable connections between the HIO3–HIO2 nucleation and the rapid formation of new particles in polluted marine and polar regions.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Basudev Swain, Marco Vountas, Aishwarya Singh, Nidhi L. Anchan, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Sachin S. Gunthe, Hartmut Bösch, and John P. Burrows
Atmos. Chem. Phys., 24, 5671–5693, https://doi.org/10.5194/acp-24-5671-2024, https://doi.org/10.5194/acp-24-5671-2024, 2024
Short summary
Short summary
Arctic amplification (AA) accelerates the warming of the central Arctic cryosphere and affects aerosol dynamics. Limited observations hinder a comprehensive analysis. This study uses AEROSNOW aerosol optical density (AOD) data and GEOS-Chem simulations to assess AOD variability. Discrepancies highlight the need for improved observational integration into models to refine our understanding of aerosol effects on cloud microphysics, ice nucleation, and radiative forcing under evolving AA.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024, https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the Earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth system model estimates of the radiative forcing from the interactions of aerosols with clouds due to warm rain processes.
Zijun Li, Angela Buchholz, and Noora Hyttinen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1182, https://doi.org/10.5194/egusphere-2024-1182, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing the aerosol-cloud climate interactions in the post-fossil fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here, a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with AS. A good agreement was observed between their model-estimated and experimental HGFs.
Xiaoli Wei, Qian Cui, Leiming Ma, Feng Zhang, Wenwen Li, and Peng Liu
Atmos. Chem. Phys., 24, 5025–5045, https://doi.org/10.5194/acp-24-5025-2024, https://doi.org/10.5194/acp-24-5025-2024, 2024
Short summary
Short summary
A new aerosol-type classification algorithm has been proposed. It includes an optical database built by Mie scattering and a complex refractive index working as a baseline to identify different aerosol types. The new algorithm shows high accuracy and efficiency. Hence, a global map of aerosol types was generated to characterize aerosol types across the five continents. It will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
EGUsphere, https://doi.org/10.5194/egusphere-2024-1000, https://doi.org/10.5194/egusphere-2024-1000, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties, and this method is verified from theoretical inspect. This method performs well for thickly coated BC at high RHs.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2024-1024, https://doi.org/10.5194/egusphere-2024-1024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three SSP scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-955, https://doi.org/10.5194/egusphere-2024-955, 2024
Short summary
Short summary
This study examines how the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO) in the previous winter affect spring dust activities in North China. The results show that NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both NAO and ENSO are negative, their combined effect on dust activities is even greater. This research underscores the importance of these climate patterns in predicting spring dust activities in North China.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128, https://doi.org/10.5194/acp-24-4105-2024, https://doi.org/10.5194/acp-24-4105-2024, 2024
Short summary
Short summary
Dust events occur more frequently during the Austral spring and summer in dust regions, including central Australia, the southwest of Western Australia, and the northern and southern regions of eastern Australia using remote sensing and reanalysis datasets. High-concentration dust is distributed around central Australia and in the downwind northern and southern Australia. Typically, around 50 % of the dust lifted settles on Australian land, with the remaining half being deposited in the ocean.
Jonathan Elsey, Nicolas Bellouin, and Claire Ryder
Atmos. Chem. Phys., 24, 4065–4081, https://doi.org/10.5194/acp-24-4065-2024, https://doi.org/10.5194/acp-24-4065-2024, 2024
Short summary
Short summary
Aerosols influence the Earth's energy balance. The uncertainty in this radiative forcing is large depending partly on uncertainty in measurements of aerosol optical properties. We have developed a freely available new framework of millions of radiative transfer simulations spanning aerosol uncertainty and assess the impact on radiative forcing uncertainty. We find that reducing these uncertainties would reduce radiative forcing uncertainty, but non-aerosol uncertainties must also be considered.
Jing Li, Nan Wu, Biwu Chu, An Ning, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 3989–4000, https://doi.org/10.5194/acp-24-3989-2024, https://doi.org/10.5194/acp-24-3989-2024, 2024
Short summary
Short summary
Iodic acid (HIO3) nucleates with iodous acid (HIO2) efficiently in marine areas; however, whether methanesulfonic acid (MSA) can synergistically participate in the HIO3–HIO2-based nucleation is unclear. We provide molecular-level evidence that MSA can efficiently promote the formation of HIO3–HIO2-based clusters using a theoretical approach. The proposed MSA-enhanced iodine nucleation mechanism may help us to deeply understand marine new particle formation events with bursts of iodine particles.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-840, https://doi.org/10.5194/egusphere-2024-840, 2024
Short summary
Short summary
In March 2021, East Asia experienced an outbreak of severe dust storms after an absence of one and a half decades. Here, we innovative used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize the dust emission and reproduce the dust storm. This work is valuable for the quantification of health damage, aviation risks, and profound impacts on the Earth system, but also to reveal the climatic driving force and the process of desertification.
Hao Wang, Xiaohong Liu, Chenglai Wu, and Guangxing Lin
Atmos. Chem. Phys., 24, 3309–3328, https://doi.org/10.5194/acp-24-3309-2024, https://doi.org/10.5194/acp-24-3309-2024, 2024
Short summary
Short summary
We quantified different global- and regional-scale drivers of biogenic volatile organic compound (BVOC) emission trends over the past 20 years. The results show that global greening trends significantly boost BVOC emissions and deforestation reduces BVOC emissions in South America and Southeast Asia. Elevated temperature in Europe and increased soil moisture in East and South Asia enhance BVOC emissions. The results deepen our understanding of long-term BVOC emission trends in hotspots.
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 24, 3217–3240, https://doi.org/10.5194/acp-24-3217-2024, https://doi.org/10.5194/acp-24-3217-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) have important influences on cirrus clouds and the climate system; however, the understanding of their global impacts is still uncertain. We perform numerical simulations with a global aerosol–climate model to analyse INP-induced cirrus changes and the resulting climate impacts. We evaluate various sources of uncertainties, e.g. the ice-nucleating ability of INPs and the role of model dynamics, and provide a new estimate for the global INP–cirrus effect.
Jiawei Li, Zhiwei Han, Pingqing Fu, Xiaohong Yao, and Mingjie Liang
Atmos. Chem. Phys., 24, 3129–3161, https://doi.org/10.5194/acp-24-3129-2024, https://doi.org/10.5194/acp-24-3129-2024, 2024
Short summary
Short summary
Organic aerosols of marine origin are important for aerosol climatic effects but are poorly understood. For the first time, an online coupled regional chemistry–climate model is applied to explore the characteristics of emission, distribution, and direct and indirect radiative effects of marine organic aerosols over the western Pacific, which reveals an important role of marine organic aerosols in perturbing cloud and radiation and promotes understanding of global aerosol climatic impact.
Yawen Liu, Yun Qian, Philip J. Rasch, Kai Zhang, Lai-yung Ruby Leung, Yuhang Wang, Minghuai Wang, Hailong Wang, Xin Huang, and Xiu-Qun Yang
Atmos. Chem. Phys., 24, 3115–3128, https://doi.org/10.5194/acp-24-3115-2024, https://doi.org/10.5194/acp-24-3115-2024, 2024
Short summary
Short summary
Fire management has long been a challenge. Here we report that spring-peak fire activity over southern Mexico and Central America (SMCA) has a distinct quasi-biennial signal by measuring multiple fire metrics. This signal is initially driven by quasi-biennial variability in precipitation and is further amplified by positive feedback of fire–precipitation interaction at short timescales. This work highlights the importance of fire–climate interactions in shaping fires on an interannual scale.
Xu Feng, Loretta J. Mickley, Michelle L. Bell, Tianjia Liu, Jenny A. Fisher, and Maria Val Martin
Atmos. Chem. Phys., 24, 2985–3007, https://doi.org/10.5194/acp-24-2985-2024, https://doi.org/10.5194/acp-24-2985-2024, 2024
Short summary
Short summary
During severe wildfire seasons, smoke can have a significant impact on air quality in Australia. Our study demonstrates that characterization of the smoke plume injection fractions greatly affects estimates of surface smoke PM2.5. Using the plume behavior predicted by the machine learning method leads to the best model agreement with observed surface PM2.5 in key cities across Australia, with smoke PM2.5 accounting for 5 %–52 % of total PM2.5 on average during fire seasons from 2009 to 2020.
Shiyi Lai, Ximeng Qi, Xin Huang, Sijia Lou, Xuguang Chi, Liangduo Chen, Chong Liu, Yuliang Liu, Chao Yan, Mengmeng Li, Tengyu Liu, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 24, 2535–2553, https://doi.org/10.5194/acp-24-2535-2024, https://doi.org/10.5194/acp-24-2535-2024, 2024
Short summary
Short summary
By combining in situ measurements and chemical transport modeling, this study investigates new particle formation (NPF) on the southeastern Tibetan Plateau. We found that the NPF was driven by the presence of biogenic gases and the transport of anthropogenic precursors. The NPF was vertically heterogeneous and shaped by the vertical mixing. This study highlights the importance of anthropogenic–biogenic interactions and meteorological dynamics in NPF in this climate-sensitive region.
Adriana Rocha-Lima, Peter R. Colarco, Anton S. Darmenov, Edward P. Nowottnick, Arlindo M. da Silva, and Luke D. Oman
Atmos. Chem. Phys., 24, 2443–2464, https://doi.org/10.5194/acp-24-2443-2024, https://doi.org/10.5194/acp-24-2443-2024, 2024
Short summary
Short summary
Observations show an increasing aerosol optical depth trend in the Middle East between 2003–2012. We evaluate the NASA Goddard Earth Observing System (GEOS) model's ability to capture these trends and examine the meteorological and surface parameters driving dust emissions. Our results highlight the importance of data assimilation for long-term trends of atmospheric aerosols and support the hypothesis that vegetation cover loss may have contributed to increasing dust emissions in the period.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
EGUsphere, https://doi.org/10.5194/egusphere-2024-496, https://doi.org/10.5194/egusphere-2024-496, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean-atmosphere-aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low cloud fraction, decreasing the ocean and continental surface temperature and by reducing the precipitation of the coastal Western Africa. It also highlights the key role of the ocean temperature response and its feedbacks for the September to November season.
Danny M. Leung, Jasper F. Kok, Longlei Li, Natalie M. Mahowald, David M. Lawrence, Simone Tilmes, Erik Kluzek, Martina Klose, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 2287–2318, https://doi.org/10.5194/acp-24-2287-2024, https://doi.org/10.5194/acp-24-2287-2024, 2024
Short summary
Short summary
This study uses a premier Earth system model to evaluate a new desert dust emission scheme proposed in our companion paper. We show that our scheme accounts for more dust emission physics, hence matching better against observations than other existing dust emission schemes do. Our scheme's dust emissions also couple tightly with meteorology, hence likely improving the modeled dust sensitivity to climate change. We believe this work is vital for improving dust representation in climate models.
Ruth A. R. Digby, Nathan P. Gillett, Adam H. Monahan, Knut von Salzen, Antonis Gkikas, Qianqian Song, and Zhibo Zhang
Atmos. Chem. Phys., 24, 2077–2097, https://doi.org/10.5194/acp-24-2077-2024, https://doi.org/10.5194/acp-24-2077-2024, 2024
Short summary
Short summary
The COVID-19 lockdowns reduced aerosol emissions. We ask whether these reductions affected regional aerosol optical depth (AOD) and compare the observed changes to predictions from Earth system models. Only India has an observed AOD reduction outside of typical variability. Models overestimate the response in some regions, but when key biases have been addressed, the agreement is improved. Our results suggest that current models can realistically predict the effects of future emission changes.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen Arnold, Leighton Regayre, Meinrat Andreae, Mira Pöhlker, Duseong Jo, Man Yue, and Ken Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-401, https://doi.org/10.5194/egusphere-2024-401, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model. The updated model shows better agreement with measurements of nucleation rate, growth rate, NPF event frequency. Our results reveal that HOMs-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Huisheng Bian, Mian Chin, Peter R. Colarco, Eric C. Apel, Donald R. Blake, Karl Froyd, Rebecca S. Hornbrook, Jose Jimenez, Pedro Campuzano Jost, Michael Lawler, Mingxu Liu, Marianne Tronstad Lund, Hitoshi Matsui, Benjamin A. Nault, Joyce E. Penner, Andrew W. Rollins, Gregory Schill, Ragnhild B. Skeie, Hailong Wang, Lu Xu, Kai Zhang, and Jialei Zhu
Atmos. Chem. Phys., 24, 1717–1741, https://doi.org/10.5194/acp-24-1717-2024, https://doi.org/10.5194/acp-24-1717-2024, 2024
Short summary
Short summary
This work studies sulfur in the remote troposphere at global and seasonal scales using aircraft measurements and multi-model simulations. The goal is to understand the sulfur cycle over remote oceans, spread of model simulations, and observation–model discrepancies. Such an understanding and comparison with real observations are crucial to narrow down the uncertainties in model sulfur simulations and improve understanding of the sulfur cycle in atmospheric air quality, climate, and ecosystems.
Gargi Sengupta, Minjie Zheng, and Nønne L. Prisle
Atmos. Chem. Phys., 24, 1467–1487, https://doi.org/10.5194/acp-24-1467-2024, https://doi.org/10.5194/acp-24-1467-2024, 2024
Short summary
Short summary
The effect of organic acid aerosol on sulfur chemistry and cloud properties was investigated in an atmospheric model. Organic acid dissociation was considered using both bulk and surface-related properties. We found that organic acid dissociation leads to increased hydrogen ion concentrations and sulfate aerosol mass in aqueous aerosols, increasing cloud formation. This could be important in large-scale climate models as many organic aerosol components are both acidic and surface-active.
Leena Kangas, Jaakko Kukkonen, Mari Kauhaniemi, Kari Riikonen, Mikhail Sofiev, Anu Kousa, Jarkko V. Niemi, and Ari Karppinen
Atmos. Chem. Phys., 24, 1489–1507, https://doi.org/10.5194/acp-24-1489-2024, https://doi.org/10.5194/acp-24-1489-2024, 2024
Short summary
Short summary
Residential wood combustion is a major source of fine particulate matter. This study has evaluated the contribution of residential wood combustion to fine particle concentrations and its year-to-year and seasonal variation in te Helsinki metropolitan area. The average concentrations attributed to wood combustion in winter were up to 10- or 15-fold compared to summer. Wood combustion caused 12 % to 14 % of annual fine particle concentrations. In winter, the contribution ranged from 16 % to 21 %.
Arto Heitto, Cheng Wu, Diego Aliaga, Luis Blacutt, Xuemeng Chen, Yvette Gramlich, Liine Heikkinen, Wei Huang, Radovan Krejci, Paolo Laj, Isabel Moreno, Karine Sellegri, Fernando Velarde, Kay Weinhold, Alfred Wiedensohler, Qiaozhi Zha, Federico Bianchi, Marcos Andrade, Kari E. J. Lehtinen, Claudia Mohr, and Taina Yli-Juuti
Atmos. Chem. Phys., 24, 1315–1328, https://doi.org/10.5194/acp-24-1315-2024, https://doi.org/10.5194/acp-24-1315-2024, 2024
Short summary
Short summary
Particle growth at the Chacaltaya station in Bolivia was simulated based on measured vapor concentrations and ambient conditions. Major contributors to the simulated growth were low-volatility organic compounds (LVOCs). Also, sulfuric acid had major role when volcanic activity was occurring in the area. This study provides insight on nanoparticle growth at this high-altitude Southern Hemispheric site and hence contributes to building knowledge of early growth of atmospheric particles.
Steven Soon-Kai Kong, Saginela Ravindra Babu, Sheng-Hsiang Wang, Stephen M. Griffith, Jackson Hian-Wui Chang, Ming-Tung Chuang, Guey-Rong Sheu, and Neng-Huei Lin
Atmos. Chem. Phys., 24, 1041–1058, https://doi.org/10.5194/acp-24-1041-2024, https://doi.org/10.5194/acp-24-1041-2024, 2024
Short summary
Short summary
In this study, we combined ground observations from 7-SEAS Dongsha Experiment, MERRA-2 reanalysis, and MODIS satellite images for evaluation and improvement of the CMAQ dust model for cases of East Asian Dust reaching the Taiwan region, including Dongsha in the western Pacific. We proposed a better CMAQ dust treatment over East Asia and for the first time revealed the impact of typhoons on dust transport.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
EGUsphere, https://doi.org/10.5194/egusphere-2024-90, https://doi.org/10.5194/egusphere-2024-90, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Cited articles
Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, Official Journal of the European Union L 152, 11 June 2008, 1–44,
available at: http://data.europa.eu/eli/dir/2008/50/oj, last access: 18 May 2020.
Allen, G., Sioutas, C., Koutrakis, P., Reiss, R., Lurmann, F. W., and Roberts,
P. T.: Evaluation of the TEOM® Method for Measurement of
Ambient Particulate Mass in Urban Areas, JAPCA J. Air Waste
Ma., 47, 682–689, https://doi.org/10.1080/10473289.1997.10463923,
1997. a, b
Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., Perez,
N., and Hopke, P.: Quantifying road dust resuspension in urban environment
by Multilinear Engine: A comparison with PMF2, Atmos. Environ., 43,
2770–2780, https://doi.org/10.1016/J.ATMOSENV.2009.02.039, 2009. a
Anderson, H.: Air pollution and mortality: A history, Atmos.
Environ., 43, 142–152, https://doi.org/10.1016/J.ATMOSENV.2008.09.026, 2009. a
Andreae, M. O., Jones, C. D., and Cox, P. M.: Strong present-day aerosol
cooling implies a hot future, Nature, 435, 1187–1190,
https://doi.org/10.1038/nature03671, 2005. a
AQMEII: AQMEII, available at: https://aqmeii.jrc.ec.europa.eu/ (last accessed: 2 February 2020),
2012. a
Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.: Online coupled regional meteorology chemistry models in Europe: current status and prospects, Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, 2014. a
Baró, R., Jiménez-Guerrero, P., Balzarini, A., Curci, G., Forkel,
R., Grell, G., Hirtl, M., Honzak, L., Langer, M., Pérez, J. L.,
Pirovano, G., San José, R., Tuccella, P., Werhahn, J., and
Žabkar, R.: Sensitivity analysis of the microphysics scheme in
WRF-Chem contributions to AQMEII phase 2, Atmos. Environ., 115,
620–629, https://doi.org/10.1016/J.ATMOSENV.2015.01.047, 2015. a, b, c, d
Berge, E. and Jakobsen, H. A.: A regional scale multilayer model for the
calculation of long-term transport and deposition of air pollution in
Europe, Tellus B, 50, 205–223,
https://doi.org/10.3402/tellusb.v50i3.16097, 1998. a
Bernier, N. B. and Bélair, S.: High horizontal and vertical resolution
limited-area model: Near-surface and wind energy forecast applications,
J. Appl. Meteorol. Clim., 51, 1061–1078,
https://doi.org/10.1175/JAMC-D-11-0197.1, 2012. a
Blunden, J., Arndt, D. S., Scambos, T. A., Thiaw, W. M., Thorne, P. W., Weaver,
S. J., Willett, K. M., Diamond, H. J., Dolman, A. J., Fogt, R. L., Gregg,
M. C., Hall, B. D., Jeffries, M. O., Newlin, M. L., Renwick, J. A.,
Richter-Menge, J. A., and Sánchez-Lugo, A.: STATE OF THE CLIMATE IN
2011, B. Am. Meteorol. Soc., 93, S1–S264,
https://doi.org/10.1175/2012BAMSStateoftheClimate.1, 2012. a, b, c, d
Boadh, R., Satyanarayana, A., Rama Krishna, T., and Madala, S.: Sensitivity
of PBL schemes of the WRF-ARW model in simulating the boundary layer flow
parameters for their application to air pollution dispersion modeling over a
tropical station, Atmósfera, 29, 61–81,
https://doi.org/10.20937/ATM.2016.29.01.05, 2016. a
Chang, J. C. and Hanna, S. R.: Air quality model performance evaluation,
Meteorol. Atmos. Phys., 87, 167–196,
https://doi.org/10.1007/s00703-003-0070-7, 2004. a, b
Cindrić, K., Telišman Prtenjak, M., Herceg-Bulić, I.,
Mihajlović, D., and Pasarić, Z.: Analysis of the extraordinary
2011/2012 drought in Croatia, Theor. Appl. Climatol., 123, 503–522, https://doi.org/10.1007/s00704-014-1368-8, 2016. a
Dimitriou, K. and Kassomenos, P.: Indicators reflecting local and
transboundary sources of PM2.5 and PMCOARSE in Rome – impacts in air
quality, Atmos. Environ., 96, 154–162,
https://doi.org/10.1016/j.atmosenv.2014.07.029, 2014. a
EC: GuidANCE to the demonstration of equivalence of ambient air monitoring
methods, Tech. rep., European Commission Working Group on Guidance for the
Demonstration of Equivalence, 2010. a
EEA: AirBase, European Environmental Agency, available at: https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-7 (last access: 12 May 2020), 2012. a
EEA: Air quality in Europe – 2013 report, Tech. Rep. 9/2013, European
Environment Agency, https://doi.org/10.2800/92843, 2013. a, b, c, d
EEA: Air quality in Europe – 2015 report, Tech. Rep. 5/2015, European
Environment Agency, https://doi.org/10.2800/62459, 2015. a
Eisner, A. D. and Wiener, R. W.: Discussion and Evaluation of the Volatility
Test for Equivalency of Other Methods to the Federal Reference Method for
Fine Particulate Matter, Aerosol Sci. Tech., 36, 433–440,
https://doi.org/10.1080/027868202753571250, 2002. a
EMEP: EMEP, available at:
https://emep.int/publ/reports/2016/EMEP_Status_Report_1_2016.pdf
(last access: 2!February 2020), 2016. a
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010. a
EVIRON: User's guide: comprehensive air quality model with extensions (CAMx),
Version 5.3., Tech. rep., ENVIRON International Corporation, Novato, CA,
2010. a
Forkel, R., Balzarini, A., Baró, R., Bianconi, R., Curci, G.,
Jiménez-Guerrero, P., Hirtl, M., Honzak, L., Lorenz, C., Im, U.,
Pérez, J. L., Pirovano, G., San José, R., Tuccella, P.,
Werhahn, J., Žabkar, R., Forkel, R., Balzarini, A., Bar, R., Hirtl, M.,
Honzak, L., Lorenz, C., Im, U., Jim, P., Tuccella, P., Werhahn, J., Pirovano,
G., San, R., and Juan, L. P.: Analysis of the WRF-Chem contributions to
AQMEII phase2 with respect to aerosol radiative feedbacks on meteorology and
pollutant distributions, Atmos. Environ., 115, 630–645,
https://doi.org/10.1016/j.atmosenv.2014.10.056, 2015. a, b, c, d
Forsberg, B., Hansson, H.-C., Johansson, C., Areskoug, H., Persson, K., and
Järvholm, B.: Comparative health impact assessment of local and
regional particulate air pollutants in Scandinavia., Ambio, 34, 11–9, 2005. a
Freitas, S. R., Longo, K. M., Alonso, M. F., Pirre, M., Marecal, V., Grell, G., Stockler, R., Mello, R. F., and Sánchez Gácita, M.: PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models, Geosci. Model Dev., 4, 419–433, https://doi.org/10.5194/gmd-4-419-2011, 2011. a
Gašparac, G., Jeričević, A., and Grisogono, B.: Influence of
WRF parameterization on coupled air quality modeling systems,
Springer Proceedings in Complexity, 24, 557–561,
https://doi.org/10.1007/978-3-319-24478-5_90, 2016. a, b, c, d
Gauss, M., Tsyro, S., Fagerli, H., Benedictow, A. C., Hjellbrekke, A., and Aas,
W.: Acidifying and eutrophying components, Tech. rep., The Norwegian
Meteorological Institute, Oslo, Norway, supplementary material to EMEP Status
Report 1/2016, available at: https://www.emep.int/ (last access: 12 May 2020), 2016. a, b, c
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock,
W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF
model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/J.ATMOSENV.2005.04.027, 2005. a, b
Grgurić, S., Križan, J., Gašparac, G., Antonić, O.,
Špirić, Z., Mamouri, R. E., Christodoulou, A., Nisantzi, A.,
Agapiou, A., Themistocleous, K., Fedra, K., Panayiotou, C., and Hadjimitsis,
D.: Relationship between MODIS based Aerosol Optical Depth and PM10 over
Croatia, Cent. Eur. J. Geosci., 6, 2–16,
https://doi.org/10.2478/s13533-012-0135-6, 2013. a, b
Grisogono, B. and Belušić, D.: Improving mixing length-scale for
stable boundary layers, Q. J. Roy. Meteorol.
Soc., 134, 2185–2192, https://doi.org/10.1002/qj.347, 2008. a
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006. a
Harrison, R. M. and Jones, A. M.: Multisite Study of Particle Number
Concentrations in Urban Air, Environ. Sci. Technol., 39,
6063–6070, https://doi.org/10.1021/ES040541E, 2005. a
Hauck, H., Berner, A., Gomiscek, B., Stopper, S., Puxbaum, H., Kundi, M., and
Preining, O.: On the equivalence of gravimetric PM data with TEOM and
beta-attenuation measurements, J. Aerosol Sci., 35, 1135–1149,
https://doi.org/10.1016/J.JAEROSCI.2004.04.004, 2004. a
Heal, M. R., Kumar, P., and Harrison, R. M.: Particles, air quality, policy
and health, Chem. Soc. Rev., 41, 6606, https://doi.org/10.1039/c2cs35076a,
2012. a
Heiman, G.: Understanding Research Methods and Statistics: An Integrated
Introduction for Psychology, v. 1, Houghton Mifflin,
available at: https://books.google.hr/books?id=r2UNAAAACAAJ (last access: 12 May 2020), 2001. a
Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A.,
Baró, R., Bellasio, R., Brunner, D., Chemel, C., Curci, G., Flemming,
J., Forkel, R., Giordano, L., Jiménez-Guerrero, P., Hirtl, M., Hodzic,
A., Honzak, L., Jorba, O., Knote, C., Kuenen, J. J., Makar, P. A.,
Manders-Groot, A., Neal, L., Pérez, J. L., Pirovano, G., Pouliot, G.,
San Jose, R., Savage, N., Schroder, W., Sokhi, R. S., Syrakov, D., Torian,
A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y.,
Zhang, J., Hogrefe, C., and Galmarini, S.: Evaluation of operational
on-line-coupled regional air quality models over Europe and North America in
the context of AQMEII phase 2. Part I: Ozone, Atmos. Environ., 115,
404–420, https://doi.org/10.1016/j.atmosenv.2014.09.042, 2015. a
Jeričević, A. and Večenaj, Ž.: Improvement of vertical
diffusion analytic schemes under stable atmospheric conditions,
Bound.-Lay. Meteorol., 131, 293–307, https://doi.org/10.1007/s10546-009-9367-5,
2009. a
Jeričević, A., Kraljević, L., Grisogono, B., Fagerli, H., and Večenaj, Ž.: Parameterization of vertical diffusion and the atmospheric boundary layer height determination in the EMEP model, Atmos. Chem. Phys., 10, 341–364, https://doi.org/10.5194/acp-10-341-2010, 2010. a, b, c
Jeričević, A., Ilyin, I., and Vidič, S.: Modelling of heavy
metals: study of impacts due to climate change, Springer, Dordrecht, Netherlands, 10, 175–189,
https://doi.org/10.1007/978-94-007-2430-3_15, 2012. a, b
Jiang, H., Liao, H., Pye, H. O. T., Wu, S., Mickley, L. J., Seinfeld, J. H., and Zhang, X. Y.: Projected effect of 2000–2050 changes in climate and emissions on aerosol levels in China and associated transboundary transport, Atmos. Chem. Phys., 13, 7937–7960, https://doi.org/10.5194/acp-13-7937-2013, 2013. a
Juda-Rezler, K., Reizer, M., and Oudinet, J.-P.: Determination and analysis of
PM10 source apportionment during episodes of air pollution in Central Eastern
European urban areas: The case of wintertime 2006, Atmos. Environ.,
45, 6557–6566, https://doi.org/10.1016/J.ATMOSENV.2011.08.020, 2011. a
Karppinen, A., Härkönen, J., Kukkonen, J., Aarnio, P., and Koskentalo, T.: Statistical model for assessing the portion of fine particulate matter transported regionally and long range to urban air,
Scandinavian Journal of Work, Environment & Health, 30, 47–53, available at: https://www.sjweh.fi/show_abstract.php?abstract_id=814 (last access: 18 May 2020), 2004. a
Kumar, P. and Goel, A.: Concentration dynamics of coarse and fine particulate
matter at and around signalised traffic intersections, Environ.
Sci.-Proc. Imp., 18, 1220–1235, https://doi.org/10.1039/C6EM00215C,
2016. a
Kumar, P., Khare, M., Harrison, R. M., Bloss, W. J., Lewis, A. C., Coe, H., and
Morawska, L.: New Directions: Air pollution challenges for developing
megacities like Delhi, Atmos. Environ., 122, 657–661,
https://doi.org/10.1016/j.atmosenv.2015.10.032, 2015. a
Kumar, P., de Fatima Andrade, M., Ynoue, R. Y., Fornaro, A., de Freitas,
E. D., Martins, J., Martins, L. D., Albuquerque, T., Zhang, Y., and Morawska,
L.: New directions: From biofuels to wood stoves: The modern and ancient air
quality challenges in the megacity of São Paulo, Atmos.
Environ., 140, 364–369, https://doi.org/10.1016/j.atmosenv.2016.05.059, 2016. a
Lacey, R. E. and Faulkner, W. B.: Uncertainty associated with the gravimetric
measurement of particulate matter concentration in ambient air, J.
Air Waste Manage., 65, 887–894,
https://doi.org/10.1080/10962247.2015.1038397, 2015. a
Laurent, O., Hu, J., Li, L., Kleeman, M. J., Bartell, S. M., Cockburn, M.,
Escobedo, L., and Wu, J.: A Statewide Nested Case-Control Study of Preterm
Birth and Air Pollution by Source and Composition: California, 2001–2008,
Environ. Health Persp., 124, 1479–1486, https://doi.org/10.1289/ehp.1510133,
2016. a
Luhana, L., Sokhi, R., Lynne, W., Mao, H., Boulter, P., McCrae, I., Wright, J.,
and Osborn, D.: Measurement of non-exhaust particulate matter., Tech. rep.,
European Commision 5th Framework Programme, 2004. a
Meteorological Synthesizing Centre – West (MSC-W): EMEP, available at: https://www.emep.int/mscw/mscw_models.html, last access: 12 May 2020. a
Miranda, A., Silveira, C., Ferreira, J., Monteiro, A., Lopes, D., Relvas, H.,
Borrego, C., and Roebeling, P.: Current air quality plans in Europe designed
to support air quality management policies, Atmos. Pollut. Res.,
6, 434–443, https://doi.org/10.5094/APR.2015.048, 2015. a
NOAA/ESRL/GDA: WRF-Chem, available at: https://ruc.noaa.gov/wrf/wrf-chem/, last access: 12 May 2020. a
Noble, C. A., Vanderpool, R. W., Peters, T. M., Mcelroy, F. F., Gemmill &
Russell, D. B., and Wiener, W. W.: Federal Reference and Equivalent Methods
for Measuring Fine Particulate Matter, Aerosol Sci. Tech., 34,
457–464, https://doi.org/10.1080/02786820121582, 2001. a
Pakkanen, T. A., Loukkola, K., Korhonen, C. H., Aurela, M., Mäkelä,
T., Hillamo, R. E., Aarnio, P., Koskentalo, T., Kousa, A., and Maenhaut, W.:
Sources and chemical composition of atmospheric fine and coarse particles in
the Helsinki area, Atmos. Environ., 35, 5381–5391,
https://doi.org/10.1016/S1352-2310(01)00307-7, 2001. a
Pang, Y., Eatough, N. L., and Eatough, D. J.: PM2.5 Semivolatile Organic
Material at Riverside, California: Implications for the PM2.5 Federal
Reference Method Sampler, Aerosol Sci. Tech., 36, 277–288,
https://doi.org/10.1080/027868202753504443, 2002. a
Patashnick, H. and Rupprecht, G.: New real-time monitoring instrument for
suspended particulate mass concentration – TEOM, J. Am.
Chem. Soc., 25, 188–193, 1980. a
Peters, A., Dockery, D. W., Muller, J. E., and Mittleman, M. A.: Increased
Particulate Air Pollution and the Triggering of Myocardial Infarction,
Circulation, 103, 2810–2815, https://doi.org/10.1161/01.CIR.103.23.2810, 2001. a
Pope, III. C., A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito,
K., and Thurston, G. D.: Lung Cancer, Cardiopulmonary Mortality, and
Long-term Exposure to Fine Particulate Air Pollution, J.
Amer. Med. Assoc., 287, 1132, https://doi.org/10.1001/jama.287.9.1132, 2002. a
Prank, M., Sofiev, M., Tsyro, S., Hendriks, C., Semeena, V., Vazhappilly Francis, X., Butler, T., Denier van der Gon, H., Friedrich, R., Hendricks, J., Kong, X., Lawrence, M., Righi, M., Samaras, Z., Sausen, R., Kukkonen, J., and Sokhi, R.: Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005, Atmos. Chem. Phys., 16, 6041–6070, https://doi.org/10.5194/acp-16-6041-2016, 2016. a, b, c, d
Putaud, J.-P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini,
M.-C., Decesari, S., Fuzzi, S., Gehrig, R., Hüglin, C., Laj, P.,
Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Müller, K., Querol, X.,
Rodriguez, S., Schneider, J., Spindler, G., ten Brink, H., Tørseth, K.,
and Wiedensohler, A.: A European aerosol phenomenology – 2: chemical
characteristics of particulate matter at kerbside, urban, rural and
background sites in Europe, Atmos. Environ., 38, 2579–2595,
https://doi.org/10.1016/J.ATMOSENV.2004.01.041, 2004. a, b, c, d
Putaud, J. P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys,
J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H. C., Harrison, R. M.,
Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A. M., Kasper-Giebl,
A., Kiss, G., Kousa, A., Kuhlbusch, T. A. J., Löschau, G., Maenhaut,
W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C., Pitz, M., Puxbaum, H.,
Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J.,
Spindler, G., ten Brink, H., Tursic, J., Viana, M., Wiedensohler, A., and
Raes, F.: A European aerosol phenomenology – 3: Physical and chemical
characteristics of particulate matter from 60 rural, urban, and kerbside
sites across Europe, Atmos. Environ., 44, 1308–1320,
https://doi.org/10.1016/j.atmosenv.2009.12.011, 2010. a, b
Qu, y., An, J., Li, J., Chen, Y., Li, Y., Liu, X., and Hu, M.: Effects of NO x
and VOCs from five emission sources on summer surface O3 over the
Beijing-Tianjin-Hebei region, Adv. Atmos. Sci., 31,
https://doi.org/10.1007/s00376-013-3132-x, 2014. a, b
Querol, X., Alastuey, A., Viana, M., Rodriguez, S., Artiñano, B.,
Salvador, P., Garcia do Santos, S., Fernandez Patier, R., Ruiz, C., de la
Rosa, J., Sanchez de la Campa, A., Menendez, M., and Gil, J.: Speciation
and origin of PM10 and PM2.5 in Spain, J. Aerosol Sci., 35,
1151–1172, https://doi.org/10.1016/J.JAEROSCI.2004.04.002, 2004. a
Rao, S. T., Galmarini, S., Puckett, K., Rao, S. T., Galmarini, S., and Puckett,
K.: Air Quality Model Evaluation International Initiative (AQMEII):
Advancing the State of the Science in Regional Photochemical Modeling and Its
Applications, B. Am. Meteorol. Soc., 92, 23–30,
https://doi.org/10.1175/2010BAMS3069.1, 2011. a
Ritter, M.: Air pollution modeling over very complex terrain: An evaluation
of WRF-Chem over Switzerland for two 1-year periods, Atmos. Res.,
132–133, 209–222, https://doi.org/10.1016/j.atmosres.2013.05.021, 2013. a
Saarikoski, S., Frey, A., Mäkelä, T., and Hillamo, R.: Size
distribution measurement of carbonaceous particulate matter using a low
pressure impactor with quartz fiber substrates, Aerosol Sci.
Tech., 42, 603–612, https://doi.org/10.1080/02786820802227329, 2008. a
Saide, P. E., Carmichael, G. R., Spak, S. N., Gallardo, L., Osses, A. E.,
Mena-Carrasco, M. A., and Pagowski, M.: Forecasting urban PM10 and PM2.5
pollution episodes in very stable nocturnal conditions and complex terrain
using WRF-Chem CO tracer model, Atmos. Environ., 45, 2769–2780,
https://doi.org/10.1016/j.atmosenv.2011.02.001, 2011. a
Samet, J. M., Dominici, F., Curriero, F. C., Coursac, I., and Zeger, S. L.:
Fine Particulate Air Pollution and Mortality in 20 U.S. Cities,
1987–1994, New Engl. J. Med., 343, 1742–1749,
https://doi.org/10.1056/NEJM200012143432401, 2000. a
Samoli, E., Analitis, A., Touloumi, G., Schwartz, J., Anderson, H. R., Sunyer,
J., Bisanti, L., Zmirou, D., Vonk, J. M., Pekkanen, J., Goodman, P., Paldy,
A., Schindler, C., and Katsouyanni, K.: Estimating the Exposure–Response
Relationships between Particulate Matter and Mortality within the APHEA
Multicity Project, Environ. Health Persp., 113, 88–95,
https://doi.org/10.1289/ehp.7387, 2005. a
Schaap, M., Timmermans, R. M., Roemer, M., Boersen, G., Builtjes, P. J.,
Sauter, F. J., Velders, G. J., and Beck, J. P.: The LOTOS EUROS model:
description, validation and latest developments, Int. J.
Environ. Pollut., 32, 270–290, https://doi.org/10.1504/IJEP.2008.017106, 2008. a
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865, https://doi.org/10.5194/acp-12-7825-2012, 2012. a, b, c, d
Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Wang, W., and
Powers, J.: A description of the Advanced Research WRF Version 3, Tech. rep.,
National Center for Atmospheric Research, https://doi.org/10.5065/D68S4MVH, 2008. a
Skjøth, C., Werner, M., Adams-Groom, B., Alison, W., Lewis, M., and Kennedy,
R.: Quality of the Governing Temperature Variables in WRF in relation to
Simulation of Primary Biological Aerosols, Adv. Meteorol., 2015, 412658,
https://doi.org/10.1155/2015/412658, 2015. a
Sofiev, M., Galperin, M., and Genikhovich, E.: A Construction and Evaluation
of Eulerian Dynamic Core for the Air Quality and Emergency Modelling System
SILAM, in: Air Pollution Modeling and Its Application XIX,
Springer Netherlands, Dordrecht, 699–701, https://doi.org/10.1007/978-1-4020-8453-9_94, 2008. a
Solazzo, E., Bianconi, R., Pirovano, G., Matthias, V., Vautard, R., Moran,
M. D., Appel, K. W., Bessagnet, B., Brandt, J., Christensen, J. H., Chemel,
C., Coll, I., Ferreira, J., Forkel, R., Francis, X. V., Grell, G., Grossi,
P., Hansen, A. B., Miranda, A. I., Nopmongcol, U., Prank, M., Sartelet,
K. N., Schaap, M., Silver, J. D., Sokhi, R. S., Vira, J., Werhahn, J., Wolke,
R., Yarwood, G., Zhang, J., Rao, S. T., and Galmarini, S.: Operational model
evaluation for particulate matter in Europe and North America in the context
of AQMEII, Atmos. Environ., 53, 75–92,
https://doi.org/10.1016/j.atmosenv.2012.02.045, 2012. a, b, c, d
Spinoni, J., Naumann, G., Vogt, J., and Barbosa, P.: European drought
climatologies and trends based on a multi-indicator approach, Global
Planet. Change, 127, 50–57, https://doi.org/10.1016/J.GLOPLACHA.2015.01.012, 2015. a
Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acácio, V., Dias, S., Stagge, J. H., Tallaksen, L. M., Kampragou, E., Van Loon, A. F., Barker, L. J., Melsen, L. A., Bifulco, C., Musolino, D., de Carli, A., Massarutto, A., Assimacopoulos, D., and Van Lanen, H. A. J.: Impacts of European drought events: insights from an international database of text-based reports, Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, 2016. a
Syrakov, D., Prodanova, M., Georgieva, E., Etropolska, I., and Slavov, K.:
Simulation of European air quality by WRF–CMAQ models using AQMEII-2
infrastructure, J. Comput. Appl. Math., 293, 232–245,
https://doi.org/10.1016/j.cam.2015.01.032, 2015. a
Tuccella, P., Curci, G., Visconti, G., Bessagnet, B., Menut, L., and Park,
R. J.: Modeling of gas and aerosol with WRF/Chem over Europe: Evaluation and
sensitivity study, J. Geophys. Res., 117, 3303,
https://doi.org/10.1029/2011JD016302,
2012. a
University of Wyoming: Sounding data, available at: http://www.weather.uwyo.edu/upperair/sounding.html, last access: 12 May 2020. a
Valor, G. B. and López, D. J. M. G.: Ogimet, available at: https://www.ogimet.com (last access: 12 May 2020), 2005. a
Van Dingenen, R., Raes, F., Putaud, J.-P., Baltensperger, U., Charron, A.,
Facchini, M.-C., Decesari, S., Fuzzi, S., Gehrig, R., Hansson, H.-C.,
Harrison, R. M., Hüglin, C., Jones, A. M., Laj, P., Lorbeer, G.,
Maenhaut, W., Palmgren, F., Querol, X., Rodriguez, S., Schneider, J., ten
Brink, H., Tunved, P., Tørseth, K., Wehner, B., Weingartner, E.,
Wiedensohler, A., and Wåhlin, P.: A European aerosol phenomenology – 1:
physical characteristics of particulate matter at kerbside, urban, rural and
background sites in Europe, Atmos. Environ., 38, 2561–2577,
https://doi.org/10.1016/J.ATMOSENV.2004.01.040, 2004. a
Vautard, R., Builtjes, P., Thunis, P., Cuvelier, C., Bedogni, M., Bessagnet,
B., Honoré, C., Moussiopoulos, N., Pirovano, G., Schaap, M., Stern, R.,
Tarrason, L., and Wind, P.: Evaluation and intercomparison of Ozone and PM10
simulations by several chemistry transport models over four European cities
within the CityDelta project, Atmos. Environ., 41, 173–188,
https://doi.org/10.1016/J.ATMOSENV.2006.07.039, 2007. a
Werner, M., Kryza, M., Geels, C., Ellermann, T., and Ambelas Skjøth, C.: Spatial, temporal and vertical distribution of ammonia concentrations over Europe – comparing a static and dynamic approach with WRF-Chem, Atmos. Chem. Phys. Discuss., 15, 22935–22973, https://doi.org/10.5194/acpd-15-22935-2015, 2015. a
WHO: Health risks of particulate matter from long-range transboundary air
pollution, Pollution Atmospherique, p. 169, ISBN 978 92 890 42895,
2006. a
Willeke, K. and Baron, P. A.: Aerosol measurement: principles, techniques, and
applications, Van Nostrand Reinhold, https://doi.org/10.1017/CBO9781316117422, 1993. a
Willmott, C. J.: On the evaluation of model performance in physical geography, in: Spatial Statistics and Models, edited by: Gaile, G. L. and Willmott, C. J., Springer, Dordrecht, 443–460, https://doi.org/10.1007/978-94-017-3048-8_23, 1984. a
Winiwarter, W. and Simpson, D.: On the boundary between man-made and natural
emissions: Problems in defining European ecosystems, J. Geophys.
Res., 104, 8153–8159, https://doi.org/10.1029/1998JD100107, 1999. a
Short summary
Two different available air quality modelling systems were used to investigate physical and chemical processes that contributed to increased daily background PM10 in all of Europe (focusing on eastern and central Europe). Differentiation of modelling performance in respect to the terrain height was found. A strong influence of meteorological conditions on increased background PM10 and statically stable atmospheric conditions were recognized as a key factor in the build-up of background PM10.
Two different available air quality modelling systems were used to investigate physical and...
Altmetrics
Final-revised paper
Preprint