Research article
03 Mar 2020
Research article
| 03 Mar 2020
Wintertime new particle formation and its contribution to cloud condensation nuclei in the Northeastern United States
Fangqun Yu et al.
Related authors
Fangqun Yu, Gan Luo, Arshad Arjunan Nair, Sebastian Eastham, Christina J. Williamson, Agnieszka Kupc, and Charles A. Brock
Atmos. Chem. Phys., 23, 1863–1877, https://doi.org/10.5194/acp-23-1863-2023, https://doi.org/10.5194/acp-23-1863-2023, 2023
Short summary
Short summary
Particle number concentrations and size distributions in the stratosphere are studied through model simulations and comparisons with measurements. The nucleation scheme used in most of the solar geoengineering modeling studies overpredicts the nucleation rates and particle number concentrations in the stratosphere. The model based on updated nucleation schemes captures reasonably well some aspects of particle size distributions but misses some features. The possible reasons are discussed.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
EGUsphere, https://doi.org/10.5194/egusphere-2022-1485, https://doi.org/10.5194/egusphere-2022-1485, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Anthropogenic fugitive dust is causing severe coarse particulate matter (PM) air pollution in East Asia. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is the major reason for the lack decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls to successfully decrease fine particulate nitrate.
Noah S. Hirshorn, Lauren M. Zuromski, Christopher Rapp, Ian McCubbin, Gerardo Carrillo-Cardenas, Fangqun Yu, and A. Gannet Hallar
Atmos. Chem. Phys., 22, 15909–15924, https://doi.org/10.5194/acp-22-15909-2022, https://doi.org/10.5194/acp-22-15909-2022, 2022
Short summary
Short summary
New particle formation (NPF) is a source of atmospheric aerosol number concentration that can impact climate by growing to larger sizes and under proper conditions form cloud condensation nuclei (CCN). Using novel methods, we find that at Storm Peak Laboratory, a remote, mountaintop site in Colorado, NPF is observed to enhance CCN concentrations in the spring by a factor of 1.54 and in the winter by a factor of 1.36 which can occur on a regional scale having important climate implications.
Kun Wang, Xiaoyan Ma, Rong Tian, and Fangqun Yu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-797, https://doi.org/10.5194/acp-2022-797, 2022
Preprint under review for ACP
Short summary
Short summary
During March 12th to April 6th, 2016 in Beijing, there were 11 typical new particle formation days, 13 non-event days and 2 undefined days. We first analyzed the favorable background of new particle formation in Beijing, and then obtained the quantitative meteorological and solar radiation conditions of new particle formation. In addition, we conducted the simulations using four nucleation schemes based on a global chemistry transport model (GEOS-Chem) to understand the nucleation mechanism.
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Short summary
The 2016 Korea–United States Air Quality (KORUS-AQ) field campaign provided a unique set of observations to improve our understanding of PM2.5 pollution in South Korea. Models typically have errors in simulating PM2.5 in this region, which is of concern for the development of control measures. We use KORUS-AQ observations to improve our understanding of the mechanisms driving PM2.5 and the implications of model errors for determining PM2.5 that is attributable to local or foreign sources.
Yanda Zhang, Fangqun Yu, Gan Luo, Jiwen Fan, and Shuai Liu
Atmos. Chem. Phys., 21, 17433–17451, https://doi.org/10.5194/acp-21-17433-2021, https://doi.org/10.5194/acp-21-17433-2021, 2021
Short summary
Short summary
This paper explores the impacts of dust on summertime convective cloud and precipitation through a numerical experiment. The result indicates that the long-range-transported dust can notably affect the properties of convective cloud and precipitation by enhancing immersion freezing and invigorating convection. We also analyze the different dust effects predicted by the Morrison and SBM schemes, which are partially attributed to the saturation adjustment approach utilized in the bulk schemes.
Shixian Zhai, Daniel J. Jacob, Jared F. Brewer, Ke Li, Jonathan M. Moch, Jhoon Kim, Seoyoung Lee, Hyunkwang Lim, Hyun Chul Lee, Su Keun Kuk, Rokjin J. Park, Jaein I. Jeong, Xuan Wang, Pengfei Liu, Gan Luo, Fangqun Yu, Jun Meng, Randall V. Martin, Katherine R. Travis, Johnathan W. Hair, Bruce E. Anderson, Jack E. Dibb, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jung-Hun Woo, Younha Kim, Qiang Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 16775–16791, https://doi.org/10.5194/acp-21-16775-2021, https://doi.org/10.5194/acp-21-16775-2021, 2021
Short summary
Short summary
Geostationary satellite aerosol optical depth (AOD) has tremendous potential for monitoring surface fine particulate matter (PM2.5). Our study explored the physical relationship between AOD and PM2.5 by integrating data from surface networks, aircraft, and satellites with the GEOS-Chem chemical transport model. We quantitatively showed that accurate simulation of aerosol size distributions, boundary layer depths, relative humidity, coarse particles, and diurnal variations in PM2.5 are essential.
Gongda Lu, Eloise A. Marais, Tuan V. Vu, Jingsha Xu, Zongbo Shi, James D. Lee, Qiang Zhang, Lu Shen, Gan Luo, and Fangqun Yu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-428, https://doi.org/10.5194/acp-2021-428, 2021
Revised manuscript not accepted
Short summary
Short summary
Emission controls were imposed in Beijing-Tianjin-Hebei in northern China in autumn-winter 2017. We find that regional PM2.5 targets (15 % decrease relative to previous year) were exceeded. Our analysis shows that decline in precursor emissions only leads to less than half (43 %) the improved air quality. Most of the change (57 %) is due to interannual variability in meteorology. Stricter emission controls may be necessary in years with unfavourable meteorology.
Xueshun Chen, Fangqun Yu, Wenyi Yang, Yele Sun, Huansheng Chen, Wei Du, Jian Zhao, Ying Wei, Lianfang Wei, Huiyun Du, Zhe Wang, Qizhong Wu, Jie Li, Junling An, and Zifa Wang
Atmos. Chem. Phys., 21, 9343–9366, https://doi.org/10.5194/acp-21-9343-2021, https://doi.org/10.5194/acp-21-9343-2021, 2021
Short summary
Short summary
Atmospheric aerosol particles have significant climate and health effects that depend on aerosol size, composition, and mixing state. A new global-regional nested aerosol model with an advanced particle microphysics module and a volatility basis set organic aerosol module was developed to simulate aerosol microphysical processes. Simulations strongly suggest the important role of anthropogenic organic species in particle formation over the areas influenced by anthropogenic sources.
Xiaojing Shen, Junying Sun, Fangqun Yu, Ying Wang, Junting Zhong, Yangmei Zhang, Xinyao Hu, Can Xia, Sinan Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 7039–7052, https://doi.org/10.5194/acp-21-7039-2021, https://doi.org/10.5194/acp-21-7039-2021, 2021
Short summary
Short summary
In this work, we revealed the changes of PNSD and NPF events during the COVID-19 lockdown period in Beijing, China, to illustrate the impact of reduced primary emission and elavated atmospheric oxidized capicity on the nucleation and growth processes. The subsequent growth of nucleated particles and their contribution to the aerosol pollution formation were also explored, to highlight the necessity of controlling the nanoparticles in the future air quality management.
Ling Liu, Fangqun Yu, Kaipeng Tu, Zhi Yang, and Xiuhui Zhang
Atmos. Chem. Phys., 21, 6221–6230, https://doi.org/10.5194/acp-21-6221-2021, https://doi.org/10.5194/acp-21-6221-2021, 2021
Short summary
Short summary
Trifluoroacetic acid (TFA) was previously proved to participate in sulfuric acid (SA)–dimethylamine (DMA) nucleation in Shanghai, China. However, complex atmospheric environments can influence the nucleation of aerosol significantly. We show the influence of different atmospheric conditions on the SA-DMA-TFA nucleation and find the enhancement by TFA can be significant in cold and polluted areas, which provides the perspective of the realistic role of TFA in different atmospheric environments.
Arshad Arjunan Nair and Fangqun Yu
Atmos. Chem. Phys., 20, 12853–12869, https://doi.org/10.5194/acp-20-12853-2020, https://doi.org/10.5194/acp-20-12853-2020, 2020
Short summary
Short summary
Small particles in the atmosphere can affect cloud formation and properties and thus Earth's energy budget. These cloud condensation nuclei (CCN) contribute the largest uncertainties in climate change modeling. To reduce these uncertainties, it is important to quantify CCN numbers accurately, measurements of which are sparse. We propose and evaluate a machine learning method to estimate CCN, in the absence of their direct measurements, using more common measurements of weather and air quality.
Katherine R. Travis, Colette L. Heald, Hannah M. Allen, Eric C. Apel, Stephen R. Arnold, Donald R. Blake, William H. Brune, Xin Chen, Róisín Commane, John D. Crounse, Bruce C. Daube, Glenn S. Diskin, James W. Elkins, Mathew J. Evans, Samuel R. Hall, Eric J. Hintsa, Rebecca S. Hornbrook, Prasad S. Kasibhatla, Michelle J. Kim, Gan Luo, Kathryn McKain, Dylan B. Millet, Fred L. Moore, Jeffrey Peischl, Thomas B. Ryerson, Tomás Sherwen, Alexander B. Thames, Kirk Ullmann, Xuan Wang, Paul O. Wennberg, Glenn M. Wolfe, and Fangqun Yu
Atmos. Chem. Phys., 20, 7753–7781, https://doi.org/10.5194/acp-20-7753-2020, https://doi.org/10.5194/acp-20-7753-2020, 2020
Short summary
Short summary
Atmospheric models overestimate the rate of removal of trace gases by the hydroxyl radical (OH). This is a concern for studies of the climate and air quality impacts of human activities. Here, we evaluate the performance of a commonly used model of atmospheric chemistry against data from the NASA Atmospheric Tomography Mission (ATom) over the remote oceans where models have received little validation. The model is generally successful, suggesting that biases in OH may be a concern over land.
Gan Luo, Fangqun Yu, and Jonathan M. Moch
Geosci. Model Dev., 13, 2879–2903, https://doi.org/10.5194/gmd-13-2879-2020, https://doi.org/10.5194/gmd-13-2879-2020, 2020
Short summary
Short summary
This work improved pH calculation for cloud, rain, and wet surfaces, fraction of cloud available for aqueous-phase chemistry, rainout efficiencies for various types of cloud, empirical washout by rain and snow, and wet surface uptake in GEOS-Chem v12.6.0. We compared simulated mass concentrations of aerosol precursors and aerosols with surface monitoring networks, Arctic sites, and ATom observations, and showed that the model results with the updated wet processes agree better for most species.
Fangqun Yu, Alexey B. Nadykto, Gan Luo, and Jason Herb
Geosci. Model Dev., 13, 2663–2670, https://doi.org/10.5194/gmd-13-2663-2020, https://doi.org/10.5194/gmd-13-2663-2020, 2020
Short summary
Short summary
Secondary particles formed via nucleation have important implications for air quality and climate. Here we describe nucleation rate lookup tables for four different nucleation mechanisms that can be readily used in chemistry transport and climate models. The nucleation rates predicted have been assessed against state-of-the-art laboratory measurements. The lookup tables cover a wide range of key parameters controlling binary, ternary, and ion-mediated nucleation in the Earth's atmosphere.
Xiaoyan Ma, Hailing Jia, Rong Tian, Fangqun Yu, and Jiagnan Li
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-54, https://doi.org/10.5194/acp-2020-54, 2020
Preprint withdrawn
Short summary
Short summary
BC Mixing state, is one of critical microphysical properties to modulate optical properties, radiative forcing (RF), and climatic effect. However, it has been simply assumed previously as either external or internal mixing. In this study, by employing a nested GEOS-Chem-APM with predicted BC mixing state, we examined the effect of mixing state on aerosol optical properties, RF, and heating rate over East Asia. This will improve the predictions of aerosol climatic effect in the future.
Gan Luo, Fangqun Yu, and James Schwab
Geosci. Model Dev., 12, 3439–3447, https://doi.org/10.5194/gmd-12-3439-2019, https://doi.org/10.5194/gmd-12-3439-2019, 2019
Short summary
Short summary
GEOS-Chem 12.0.0 has been recognized to significantly overestimate the concentrations of gaseous nitric acid, aerosol nitrate, and aerosol ammonium over the United States. In this study, we show that most or all of the overestimation issue appears to be associated with wet scavenging processes. With the updated wet scavenging scheme in this work, we successfully improve the skill of the model in predicting the three species concentrations, which are important for air quality and climate studies.
George S. Fanourgakis, Maria Kanakidou, Athanasios Nenes, Susanne E. Bauer, Tommi Bergman, Ken S. Carslaw, Alf Grini, Douglas S. Hamilton, Jill S. Johnson, Vlassis A. Karydis, Alf Kirkevåg, John K. Kodros, Ulrike Lohmann, Gan Luo, Risto Makkonen, Hitoshi Matsui, David Neubauer, Jeffrey R. Pierce, Julia Schmale, Philip Stier, Kostas Tsigaridis, Twan van Noije, Hailong Wang, Duncan Watson-Parris, Daniel M. Westervelt, Yang Yang, Masaru Yoshioka, Nikos Daskalakis, Stefano Decesari, Martin Gysel-Beer, Nikos Kalivitis, Xiaohong Liu, Natalie M. Mahowald, Stelios Myriokefalitakis, Roland Schrödner, Maria Sfakianaki, Alexandra P. Tsimpidi, Mingxuan Wu, and Fangqun Yu
Atmos. Chem. Phys., 19, 8591–8617, https://doi.org/10.5194/acp-19-8591-2019, https://doi.org/10.5194/acp-19-8591-2019, 2019
Short summary
Short summary
Effects of aerosols on clouds are important for climate studies but are among the largest uncertainties in climate projections. This study evaluates the skill of global models to simulate aerosol, cloud condensation nuclei (CCN) and cloud droplet number concentrations (CDNCs). Model results show reduced spread in CDNC compared to CCN due to the negative correlation between the sensitivities of CDNC to aerosol number concentration (air pollution) and updraft velocity (atmospheric dynamics).
Fangqun Yu, Alexey B. Nadykto, Jason Herb, Gan Luo, Kirill M. Nazarenko, and Lyudmila A. Uvarova
Atmos. Chem. Phys., 18, 17451–17474, https://doi.org/10.5194/acp-18-17451-2018, https://doi.org/10.5194/acp-18-17451-2018, 2018
Short summary
Short summary
Aerosol nucleation exerts important influences on the climate, hydrological cycle, and air quality. We have developed an advanced physical–chemical model that describes ion-induced and neutral nucleation involving ammonia, sulfuric acid, and water vapors. The model is shown to reproduce laboratory measurements taken under a wide range of conditions, offers physiochemical insights into the ternary nucleation process, and provides an accurate approach to calculate ternary rate in the atmosphere.
Jingbo Mao, Fangqun Yu, Yan Zhang, Jingyu An, Lin Wang, Jun Zheng, Lei Yao, Gan Luo, Weichun Ma, Qi Yu, Cheng Huang, Li Li, and Limin Chen
Atmos. Chem. Phys., 18, 7933–7950, https://doi.org/10.5194/acp-18-7933-2018, https://doi.org/10.5194/acp-18-7933-2018, 2018
Short summary
Short summary
A few pptv of gaseous amines have been observed to affect particle nucleation and growth, and it is necessary to understand the sources and concentrations of atmospheric amines. This study presents the source-dependent amines to ammonia emission ratios and simulates methylamines concentrations in a polluted region in China with WRF-Chem. The performance of simulations based on source-dependent ratios is much better than those based on fixed ratios that have been assumed in all previous studies.
Maria Sand, Bjørn H. Samset, Yves Balkanski, Susanne Bauer, Nicolas Bellouin, Terje K. Berntsen, Huisheng Bian, Mian Chin, Thomas Diehl, Richard Easter, Steven J. Ghan, Trond Iversen, Alf Kirkevåg, Jean-François Lamarque, Guangxing Lin, Xiaohong Liu, Gan Luo, Gunnar Myhre, Twan van Noije, Joyce E. Penner, Michael Schulz, Øyvind Seland, Ragnhild B. Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Fangqun Yu, Kai Zhang, and Hua Zhang
Atmos. Chem. Phys., 17, 12197–12218, https://doi.org/10.5194/acp-17-12197-2017, https://doi.org/10.5194/acp-17-12197-2017, 2017
Short summary
Short summary
The role of aerosols in the changing polar climate is not well understood and the aerosols are poorly constrained in the models. In this study we have compared output from 16 different aerosol models with available observations at both poles. We show that the model median is representative of the observations, but the model spread is large. The Arctic direct aerosol radiative effect over the industrial area is positive during spring due to black carbon and negative during summer due to sulfate.
Fangqun Yu, Gan Luo, Alexey B. Nadykto, and Jason Herb
Atmos. Chem. Phys., 17, 4997–5005, https://doi.org/10.5194/acp-17-4997-2017, https://doi.org/10.5194/acp-17-4997-2017, 2017
Short summary
Short summary
H2SO4–organics clustering thermodynamics from quantum studies has been employed to develop a scheme to include temperature dependence in an H2SO4–organics nucleation parameterization. We show that temperature has a strong impact on nucleation rates, particle number concentrations, and aerosol first indirect radiative forcing in summer. To our knowledge, the study represents the first attempt to study the temperature effect on organics-mediated nucleation in the global atmosphere.
F. Yu, G. Luo, S. C. Pryor, P. R. Pillai, S. H. Lee, J. Ortega, J. J. Schwab, A. G. Hallar, W. R. Leaitch, V. P. Aneja, J. N. Smith, J. T. Walker, O. Hogrefe, and K. L. Demerjian
Atmos. Chem. Phys., 15, 13993–14003, https://doi.org/10.5194/acp-15-13993-2015, https://doi.org/10.5194/acp-15-13993-2015, 2015
Short summary
Short summary
The role of low-volatility organics in new particle formation (NPF) in the atmosphere is assessed. An empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics significantly overpredicts NPF in the summer.
Two different schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America.
F. Yu and G. Luo
Atmos. Chem. Phys., 14, 12455–12464, https://doi.org/10.5194/acp-14-12455-2014, https://doi.org/10.5194/acp-14-12455-2014, 2014
Short summary
Short summary
Global lifetimes and concentrations of gaseous methylamines (MMA, DMA, and TMA) have been simulated.
Oxidation and aerosol uptakes are dominant sinks for these methylamines. The oxidation alone leads to their lifetimes of 5-10h in most parts of low and middle latitude regions. The uptake by secondary species can shorten their lifetime to as low as 1-2h over central Europe, eastern Asia, and the eastern US.
The modeled concentrations are substantially lower than observed values available.
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
X. Ma, K. Bartlett, K. Harmon, and F. Yu
Atmos. Meas. Tech., 6, 2391–2401, https://doi.org/10.5194/amt-6-2391-2013, https://doi.org/10.5194/amt-6-2391-2013, 2013
Fangqun Yu, Gan Luo, Arshad Arjunan Nair, Sebastian Eastham, Christina J. Williamson, Agnieszka Kupc, and Charles A. Brock
Atmos. Chem. Phys., 23, 1863–1877, https://doi.org/10.5194/acp-23-1863-2023, https://doi.org/10.5194/acp-23-1863-2023, 2023
Short summary
Short summary
Particle number concentrations and size distributions in the stratosphere are studied through model simulations and comparisons with measurements. The nucleation scheme used in most of the solar geoengineering modeling studies overpredicts the nucleation rates and particle number concentrations in the stratosphere. The model based on updated nucleation schemes captures reasonably well some aspects of particle size distributions but misses some features. The possible reasons are discussed.
Christopher E. Lawrence, Paul Casson, Richard Brandt, James J. Schwab, James E. Dukett, Phil Snyder, Elizabeth Yerger, Daniel Kelting, Trevor C. VandenBoer, and Sara Lance
Atmos. Chem. Phys., 23, 1619–1639, https://doi.org/10.5194/acp-23-1619-2023, https://doi.org/10.5194/acp-23-1619-2023, 2023
Short summary
Short summary
Atmospheric aqueous chemistry can have profound effects on our environment, as illustrated by historical data from Whiteface Mountain (WFM) that were critical for uncovering the process of acid rain. The current study updates the long-term trends in cloud water composition at WFM for the period 1994 to 2021. We highlight the emergence of a new chemical regime at WFM dominated by organics and ammonium, quite different from the highly acidic regime observed in the past but not necessarily
clean.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
EGUsphere, https://doi.org/10.5194/egusphere-2022-1485, https://doi.org/10.5194/egusphere-2022-1485, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Anthropogenic fugitive dust is causing severe coarse particulate matter (PM) air pollution in East Asia. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is the major reason for the lack decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls to successfully decrease fine particulate nitrate.
Noah S. Hirshorn, Lauren M. Zuromski, Christopher Rapp, Ian McCubbin, Gerardo Carrillo-Cardenas, Fangqun Yu, and A. Gannet Hallar
Atmos. Chem. Phys., 22, 15909–15924, https://doi.org/10.5194/acp-22-15909-2022, https://doi.org/10.5194/acp-22-15909-2022, 2022
Short summary
Short summary
New particle formation (NPF) is a source of atmospheric aerosol number concentration that can impact climate by growing to larger sizes and under proper conditions form cloud condensation nuclei (CCN). Using novel methods, we find that at Storm Peak Laboratory, a remote, mountaintop site in Colorado, NPF is observed to enhance CCN concentrations in the spring by a factor of 1.54 and in the winter by a factor of 1.36 which can occur on a regional scale having important climate implications.
Kun Wang, Xiaoyan Ma, Rong Tian, and Fangqun Yu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-797, https://doi.org/10.5194/acp-2022-797, 2022
Preprint under review for ACP
Short summary
Short summary
During March 12th to April 6th, 2016 in Beijing, there were 11 typical new particle formation days, 13 non-event days and 2 undefined days. We first analyzed the favorable background of new particle formation in Beijing, and then obtained the quantitative meteorological and solar radiation conditions of new particle formation. In addition, we conducted the simulations using four nucleation schemes based on a global chemistry transport model (GEOS-Chem) to understand the nucleation mechanism.
Jun-Wei Xu, Jintai Lin, Gan Luo, Jamiu Adeniran, and Hao Kong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-646, https://doi.org/10.5194/acp-2022-646, 2022
Preprint under review for ACP
Short summary
Short summary
Research on the sources of Chinese PM2.5 pollution has focused on the contributions of China’s domestic emissions. However, the impact of foreign anthropogenic emissions has typically been simplified or neglected. Here we find that foreign anthropogenic emissions play an important role in Chinese PM2.5 pollution through chemical interactions between transported pollutants and China’s local emissions. Thus, foreign emission reductions are essential for improving Chinese air quality.
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Short summary
The 2016 Korea–United States Air Quality (KORUS-AQ) field campaign provided a unique set of observations to improve our understanding of PM2.5 pollution in South Korea. Models typically have errors in simulating PM2.5 in this region, which is of concern for the development of control measures. We use KORUS-AQ observations to improve our understanding of the mechanisms driving PM2.5 and the implications of model errors for determining PM2.5 that is attributable to local or foreign sources.
Yanda Zhang, Fangqun Yu, Gan Luo, Jiwen Fan, and Shuai Liu
Atmos. Chem. Phys., 21, 17433–17451, https://doi.org/10.5194/acp-21-17433-2021, https://doi.org/10.5194/acp-21-17433-2021, 2021
Short summary
Short summary
This paper explores the impacts of dust on summertime convective cloud and precipitation through a numerical experiment. The result indicates that the long-range-transported dust can notably affect the properties of convective cloud and precipitation by enhancing immersion freezing and invigorating convection. We also analyze the different dust effects predicted by the Morrison and SBM schemes, which are partially attributed to the saturation adjustment approach utilized in the bulk schemes.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Shixian Zhai, Daniel J. Jacob, Jared F. Brewer, Ke Li, Jonathan M. Moch, Jhoon Kim, Seoyoung Lee, Hyunkwang Lim, Hyun Chul Lee, Su Keun Kuk, Rokjin J. Park, Jaein I. Jeong, Xuan Wang, Pengfei Liu, Gan Luo, Fangqun Yu, Jun Meng, Randall V. Martin, Katherine R. Travis, Johnathan W. Hair, Bruce E. Anderson, Jack E. Dibb, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jung-Hun Woo, Younha Kim, Qiang Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 16775–16791, https://doi.org/10.5194/acp-21-16775-2021, https://doi.org/10.5194/acp-21-16775-2021, 2021
Short summary
Short summary
Geostationary satellite aerosol optical depth (AOD) has tremendous potential for monitoring surface fine particulate matter (PM2.5). Our study explored the physical relationship between AOD and PM2.5 by integrating data from surface networks, aircraft, and satellites with the GEOS-Chem chemical transport model. We quantitatively showed that accurate simulation of aerosol size distributions, boundary layer depths, relative humidity, coarse particles, and diurnal variations in PM2.5 are essential.
Gloria Titos, María A. Burgos, Paul Zieger, Lucas Alados-Arboledas, Urs Baltensperger, Anne Jefferson, James Sherman, Ernest Weingartner, Bas Henzing, Krista Luoma, Colin O'Dowd, Alfred Wiedensohler, and Elisabeth Andrews
Atmos. Chem. Phys., 21, 13031–13050, https://doi.org/10.5194/acp-21-13031-2021, https://doi.org/10.5194/acp-21-13031-2021, 2021
Short summary
Short summary
This paper investigates the impact of water uptake on aerosol optical properties, in particular the aerosol light-scattering coefficient. Although in situ measurements are performed at low relative humidity (typically at
RH < 40 %), to address the climatic impact of aerosol particles it is necessary to take into account the effect that water uptake may have on the aerosol optical properties.
Gongda Lu, Eloise A. Marais, Tuan V. Vu, Jingsha Xu, Zongbo Shi, James D. Lee, Qiang Zhang, Lu Shen, Gan Luo, and Fangqun Yu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-428, https://doi.org/10.5194/acp-2021-428, 2021
Revised manuscript not accepted
Short summary
Short summary
Emission controls were imposed in Beijing-Tianjin-Hebei in northern China in autumn-winter 2017. We find that regional PM2.5 targets (15 % decrease relative to previous year) were exceeded. Our analysis shows that decline in precursor emissions only leads to less than half (43 %) the improved air quality. Most of the change (57 %) is due to interannual variability in meteorology. Stricter emission controls may be necessary in years with unfavourable meteorology.
Xueshun Chen, Fangqun Yu, Wenyi Yang, Yele Sun, Huansheng Chen, Wei Du, Jian Zhao, Ying Wei, Lianfang Wei, Huiyun Du, Zhe Wang, Qizhong Wu, Jie Li, Junling An, and Zifa Wang
Atmos. Chem. Phys., 21, 9343–9366, https://doi.org/10.5194/acp-21-9343-2021, https://doi.org/10.5194/acp-21-9343-2021, 2021
Short summary
Short summary
Atmospheric aerosol particles have significant climate and health effects that depend on aerosol size, composition, and mixing state. A new global-regional nested aerosol model with an advanced particle microphysics module and a volatility basis set organic aerosol module was developed to simulate aerosol microphysical processes. Simulations strongly suggest the important role of anthropogenic organic species in particle formation over the areas influenced by anthropogenic sources.
Xiaojing Shen, Junying Sun, Fangqun Yu, Ying Wang, Junting Zhong, Yangmei Zhang, Xinyao Hu, Can Xia, Sinan Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 7039–7052, https://doi.org/10.5194/acp-21-7039-2021, https://doi.org/10.5194/acp-21-7039-2021, 2021
Short summary
Short summary
In this work, we revealed the changes of PNSD and NPF events during the COVID-19 lockdown period in Beijing, China, to illustrate the impact of reduced primary emission and elavated atmospheric oxidized capicity on the nucleation and growth processes. The subsequent growth of nucleated particles and their contribution to the aerosol pollution formation were also explored, to highlight the necessity of controlling the nanoparticles in the future air quality management.
Ling Liu, Fangqun Yu, Kaipeng Tu, Zhi Yang, and Xiuhui Zhang
Atmos. Chem. Phys., 21, 6221–6230, https://doi.org/10.5194/acp-21-6221-2021, https://doi.org/10.5194/acp-21-6221-2021, 2021
Short summary
Short summary
Trifluoroacetic acid (TFA) was previously proved to participate in sulfuric acid (SA)–dimethylamine (DMA) nucleation in Shanghai, China. However, complex atmospheric environments can influence the nucleation of aerosol significantly. We show the influence of different atmospheric conditions on the SA-DMA-TFA nucleation and find the enhancement by TFA can be significant in cold and polluted areas, which provides the perspective of the realistic role of TFA in different atmospheric environments.
Arshad Arjunan Nair and Fangqun Yu
Atmos. Chem. Phys., 20, 12853–12869, https://doi.org/10.5194/acp-20-12853-2020, https://doi.org/10.5194/acp-20-12853-2020, 2020
Short summary
Short summary
Small particles in the atmosphere can affect cloud formation and properties and thus Earth's energy budget. These cloud condensation nuclei (CCN) contribute the largest uncertainties in climate change modeling. To reduce these uncertainties, it is important to quantify CCN numbers accurately, measurements of which are sparse. We propose and evaluate a machine learning method to estimate CCN, in the absence of their direct measurements, using more common measurements of weather and air quality.
María A. Burgos, Elisabeth Andrews, Gloria Titos, Angela Benedetti, Huisheng Bian, Virginie Buchard, Gabriele Curci, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Anton Laakso, Julie Letertre-Danczak, Marianne T. Lund, Hitoshi Matsui, Gunnar Myhre, Cynthia Randles, Michael Schulz, Twan van Noije, Kai Zhang, Lucas Alados-Arboledas, Urs Baltensperger, Anne Jefferson, James Sherman, Junying Sun, Ernest Weingartner, and Paul Zieger
Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, https://doi.org/10.5194/acp-20-10231-2020, 2020
Short summary
Short summary
We investigate how well models represent the enhancement in scattering coefficients due to particle water uptake, and perform an evaluation of several implementation schemes used in ten Earth system models. Our results show the importance of the parameterization of hygroscopicity and model chemistry as drivers of some of the observed diversity amongst model estimates. The definition of dry conditions and the phenomena taking place in this relative humidity range also impact the model evaluation.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Martine Collaud Coen, Elisabeth Andrews, Andrés Alastuey, Todor Petkov Arsov, John Backman, Benjamin T. Brem, Nicolas Bukowiecki, Cédric Couret, Konstantinos Eleftheriadis, Harald Flentje, Markus Fiebig, Martin Gysel-Beer, Jenny L. Hand, András Hoffer, Rakesh Hooda, Christoph Hueglin, Warren Joubert, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Casper Labuschagne, Neng-Huei Lin, Yong Lin, Cathrine Lund Myhre, Krista Luoma, Hassan Lyamani, Angela Marinoni, Olga L. Mayol-Bracero, Nikos Mihalopoulos, Marco Pandolfi, Natalia Prats, Anthony J. Prenni, Jean-Philippe Putaud, Ludwig Ries, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Patrick Sheridan, James Patrick Sherman, Junying Sun, Gloria Titos, Elvis Torres, Thomas Tuch, Rolf Weller, Alfred Wiedensohler, Paul Zieger, and Paolo Laj
Atmos. Chem. Phys., 20, 8867–8908, https://doi.org/10.5194/acp-20-8867-2020, https://doi.org/10.5194/acp-20-8867-2020, 2020
Short summary
Short summary
Long-term trends of aerosol radiative properties (52 stations) prove that aerosol load has significantly decreased over the last 20 years. Scattering trends are negative in Europe (EU) and North America (NA), not ss in Asia, and show a mix of positive and negative trends at polar stations. Absorption has mainly negative trends. The single scattering albedo has positive trends in Asia and eastern EU and negative in western EU and NA, leading to a global positive median trend of 0.02 % per year.
Katherine R. Travis, Colette L. Heald, Hannah M. Allen, Eric C. Apel, Stephen R. Arnold, Donald R. Blake, William H. Brune, Xin Chen, Róisín Commane, John D. Crounse, Bruce C. Daube, Glenn S. Diskin, James W. Elkins, Mathew J. Evans, Samuel R. Hall, Eric J. Hintsa, Rebecca S. Hornbrook, Prasad S. Kasibhatla, Michelle J. Kim, Gan Luo, Kathryn McKain, Dylan B. Millet, Fred L. Moore, Jeffrey Peischl, Thomas B. Ryerson, Tomás Sherwen, Alexander B. Thames, Kirk Ullmann, Xuan Wang, Paul O. Wennberg, Glenn M. Wolfe, and Fangqun Yu
Atmos. Chem. Phys., 20, 7753–7781, https://doi.org/10.5194/acp-20-7753-2020, https://doi.org/10.5194/acp-20-7753-2020, 2020
Short summary
Short summary
Atmospheric models overestimate the rate of removal of trace gases by the hydroxyl radical (OH). This is a concern for studies of the climate and air quality impacts of human activities. Here, we evaluate the performance of a commonly used model of atmospheric chemistry against data from the NASA Atmospheric Tomography Mission (ATom) over the remote oceans where models have received little validation. The model is generally successful, suggesting that biases in OH may be a concern over land.
Gan Luo, Fangqun Yu, and Jonathan M. Moch
Geosci. Model Dev., 13, 2879–2903, https://doi.org/10.5194/gmd-13-2879-2020, https://doi.org/10.5194/gmd-13-2879-2020, 2020
Short summary
Short summary
This work improved pH calculation for cloud, rain, and wet surfaces, fraction of cloud available for aqueous-phase chemistry, rainout efficiencies for various types of cloud, empirical washout by rain and snow, and wet surface uptake in GEOS-Chem v12.6.0. We compared simulated mass concentrations of aerosol precursors and aerosols with surface monitoring networks, Arctic sites, and ATom observations, and showed that the model results with the updated wet processes agree better for most species.
Fangqun Yu, Alexey B. Nadykto, Gan Luo, and Jason Herb
Geosci. Model Dev., 13, 2663–2670, https://doi.org/10.5194/gmd-13-2663-2020, https://doi.org/10.5194/gmd-13-2663-2020, 2020
Short summary
Short summary
Secondary particles formed via nucleation have important implications for air quality and climate. Here we describe nucleation rate lookup tables for four different nucleation mechanisms that can be readily used in chemistry transport and climate models. The nucleation rates predicted have been assessed against state-of-the-art laboratory measurements. The lookup tables cover a wide range of key parameters controlling binary, ternary, and ion-mediated nucleation in the Earth's atmosphere.
Xiaoyan Ma, Hailing Jia, Rong Tian, Fangqun Yu, and Jiagnan Li
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-54, https://doi.org/10.5194/acp-2020-54, 2020
Preprint withdrawn
Short summary
Short summary
BC Mixing state, is one of critical microphysical properties to modulate optical properties, radiative forcing (RF), and climatic effect. However, it has been simply assumed previously as either external or internal mixing. In this study, by employing a nested GEOS-Chem-APM with predicted BC mixing state, we examined the effect of mixing state on aerosol optical properties, RF, and heating rate over East Asia. This will improve the predictions of aerosol climatic effect in the future.
Gan Luo, Fangqun Yu, and James Schwab
Geosci. Model Dev., 12, 3439–3447, https://doi.org/10.5194/gmd-12-3439-2019, https://doi.org/10.5194/gmd-12-3439-2019, 2019
Short summary
Short summary
GEOS-Chem 12.0.0 has been recognized to significantly overestimate the concentrations of gaseous nitric acid, aerosol nitrate, and aerosol ammonium over the United States. In this study, we show that most or all of the overestimation issue appears to be associated with wet scavenging processes. With the updated wet scavenging scheme in this work, we successfully improve the skill of the model in predicting the three species concentrations, which are important for air quality and climate studies.
George S. Fanourgakis, Maria Kanakidou, Athanasios Nenes, Susanne E. Bauer, Tommi Bergman, Ken S. Carslaw, Alf Grini, Douglas S. Hamilton, Jill S. Johnson, Vlassis A. Karydis, Alf Kirkevåg, John K. Kodros, Ulrike Lohmann, Gan Luo, Risto Makkonen, Hitoshi Matsui, David Neubauer, Jeffrey R. Pierce, Julia Schmale, Philip Stier, Kostas Tsigaridis, Twan van Noije, Hailong Wang, Duncan Watson-Parris, Daniel M. Westervelt, Yang Yang, Masaru Yoshioka, Nikos Daskalakis, Stefano Decesari, Martin Gysel-Beer, Nikos Kalivitis, Xiaohong Liu, Natalie M. Mahowald, Stelios Myriokefalitakis, Roland Schrödner, Maria Sfakianaki, Alexandra P. Tsimpidi, Mingxuan Wu, and Fangqun Yu
Atmos. Chem. Phys., 19, 8591–8617, https://doi.org/10.5194/acp-19-8591-2019, https://doi.org/10.5194/acp-19-8591-2019, 2019
Short summary
Short summary
Effects of aerosols on clouds are important for climate studies but are among the largest uncertainties in climate projections. This study evaluates the skill of global models to simulate aerosol, cloud condensation nuclei (CCN) and cloud droplet number concentrations (CDNCs). Model results show reduced spread in CDNC compared to CCN due to the negative correlation between the sensitivities of CDNC to aerosol number concentration (air pollution) and updraft velocity (atmospheric dynamics).
Fangqun Yu, Alexey B. Nadykto, Jason Herb, Gan Luo, Kirill M. Nazarenko, and Lyudmila A. Uvarova
Atmos. Chem. Phys., 18, 17451–17474, https://doi.org/10.5194/acp-18-17451-2018, https://doi.org/10.5194/acp-18-17451-2018, 2018
Short summary
Short summary
Aerosol nucleation exerts important influences on the climate, hydrological cycle, and air quality. We have developed an advanced physical–chemical model that describes ion-induced and neutral nucleation involving ammonia, sulfuric acid, and water vapors. The model is shown to reproduce laboratory measurements taken under a wide range of conditions, offers physiochemical insights into the ternary nucleation process, and provides an accurate approach to calculate ternary rate in the atmosphere.
Jingbo Mao, Fangqun Yu, Yan Zhang, Jingyu An, Lin Wang, Jun Zheng, Lei Yao, Gan Luo, Weichun Ma, Qi Yu, Cheng Huang, Li Li, and Limin Chen
Atmos. Chem. Phys., 18, 7933–7950, https://doi.org/10.5194/acp-18-7933-2018, https://doi.org/10.5194/acp-18-7933-2018, 2018
Short summary
Short summary
A few pptv of gaseous amines have been observed to affect particle nucleation and growth, and it is necessary to understand the sources and concentrations of atmospheric amines. This study presents the source-dependent amines to ammonia emission ratios and simulates methylamines concentrations in a polluted region in China with WRF-Chem. The performance of simulations based on source-dependent ratios is much better than those based on fixed ratios that have been assumed in all previous studies.
Jie Zhang, Sara Lance, Jeffrey M. Freedman, Yele Sun, Brian A. Crandall, Xiuli Wei, and James J. Schwab
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-529, https://doi.org/10.5194/acp-2018-529, 2018
Preprint retracted
Short summary
Short summary
The impact of fireworks (FW) events on air quality was studied using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and collocated instruments during the Independence Day (July 4) holiday. The Independence Day FW events resulted in significant increases in both organic and inorganic (potassium, sulfate, chloride) chemical components, and the contribution from different aerosol sources was discussed.
Jie Zhang, Joseph P. Marto, and James J. Schwab
Atmos. Meas. Tech., 11, 2995–3005, https://doi.org/10.5194/amt-11-2995-2018, https://doi.org/10.5194/amt-11-2995-2018, 2018
Short summary
Short summary
The performance of two kinds of optical instruments for aerosol mass measurements was explained by a Mie scattering theory. At the same time, the response of optical instruments for ambient aerosol with different size, chemical composition, and refractive index were also studied. These would help evaluate the applicability and limitations of these optical scattering instruments.
James P. Sherman and Allison McComiskey
Atmos. Chem. Phys., 18, 4131–4152, https://doi.org/10.5194/acp-18-4131-2018, https://doi.org/10.5194/acp-18-4131-2018, 2018
Short summary
Short summary
This paper highlights the first multi-year ground-based climatology of aerosol direct radiative effect (DRE) in the southeastern US Aerosol DRE at the co-located NOAA and NASA aerosol monitoring sites at Appalachian State University is approximately five times more negative during summer than winter. Aerosol DRE is most sensitive to aerosol optical depth (AOD). Use of MODIS-measured increases DRE uncertainty by a factor of 2.5 to 5.
Maria Sand, Bjørn H. Samset, Yves Balkanski, Susanne Bauer, Nicolas Bellouin, Terje K. Berntsen, Huisheng Bian, Mian Chin, Thomas Diehl, Richard Easter, Steven J. Ghan, Trond Iversen, Alf Kirkevåg, Jean-François Lamarque, Guangxing Lin, Xiaohong Liu, Gan Luo, Gunnar Myhre, Twan van Noije, Joyce E. Penner, Michael Schulz, Øyvind Seland, Ragnhild B. Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Fangqun Yu, Kai Zhang, and Hua Zhang
Atmos. Chem. Phys., 17, 12197–12218, https://doi.org/10.5194/acp-17-12197-2017, https://doi.org/10.5194/acp-17-12197-2017, 2017
Short summary
Short summary
The role of aerosols in the changing polar climate is not well understood and the aerosols are poorly constrained in the models. In this study we have compared output from 16 different aerosol models with available observations at both poles. We show that the model median is representative of the observations, but the model spread is large. The Arctic direct aerosol radiative effect over the industrial area is positive during spring due to black carbon and negative during summer due to sulfate.
Lauren Schmeisser, Elisabeth Andrews, John A. Ogren, Patrick Sheridan, Anne Jefferson, Sangeeta Sharma, Jeong Eun Kim, James P. Sherman, Mar Sorribas, Ivo Kalapov, Todor Arsov, Christo Angelov, Olga L. Mayol-Bracero, Casper Labuschagne, Sang-Woo Kim, András Hoffer, Neng-Huei Lin, Hao-Ping Chia, Michael Bergin, Junying Sun, Peng Liu, and Hao Wu
Atmos. Chem. Phys., 17, 12097–12120, https://doi.org/10.5194/acp-17-12097-2017, https://doi.org/10.5194/acp-17-12097-2017, 2017
Short summary
Short summary
Three methods are used to classify aerosol type from aerosol optical properties measured in situ at 24 surface sites. Classification methods work best at sites with stable, homogenous aerosol at particularly polluted and dust-prone continental and marine sites. Classification methods are poor at remote marine and Arctic sites. Using these methods to extrapolate aerosol type from optical properties can help determine aerosol radiative forcing and improve aerosol satellite retrieval algorithms.
K. Max Zhang, George Allen, Bo Yang, Geng Chen, Jiajun Gu, James Schwab, Dirk Felton, and Oliver Rattigan
Atmos. Chem. Phys., 17, 11441–11452, https://doi.org/10.5194/acp-17-11441-2017, https://doi.org/10.5194/acp-17-11441-2017, 2017
Short summary
Short summary
Woodsmoke is a worldwide public health concern. A reliable marker for woodsmoke will be very useful in air-quality management. DC (Delta-C) has been proposed as a woodsmoke marker in previous studies. However, several researchers raised concerns of whether it is reliable. Our study took advantage of aerosol light absorption and PM2.5 data collected at three US cities/towns dominated by woodsmoke. We showed that DC can be a good qualitative and semi-quantitive marker, but with limitations.
Fangqun Yu, Gan Luo, Alexey B. Nadykto, and Jason Herb
Atmos. Chem. Phys., 17, 4997–5005, https://doi.org/10.5194/acp-17-4997-2017, https://doi.org/10.5194/acp-17-4997-2017, 2017
Short summary
Short summary
H2SO4–organics clustering thermodynamics from quantum studies has been employed to develop a scheme to include temperature dependence in an H2SO4–organics nucleation parameterization. We show that temperature has a strong impact on nucleation rates, particle number concentrations, and aerosol first indirect radiative forcing in summer. To our knowledge, the study represents the first attempt to study the temperature effect on organics-mediated nucleation in the global atmosphere.
F. Yu, G. Luo, S. C. Pryor, P. R. Pillai, S. H. Lee, J. Ortega, J. J. Schwab, A. G. Hallar, W. R. Leaitch, V. P. Aneja, J. N. Smith, J. T. Walker, O. Hogrefe, and K. L. Demerjian
Atmos. Chem. Phys., 15, 13993–14003, https://doi.org/10.5194/acp-15-13993-2015, https://doi.org/10.5194/acp-15-13993-2015, 2015
Short summary
Short summary
The role of low-volatility organics in new particle formation (NPF) in the atmosphere is assessed. An empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics significantly overpredicts NPF in the summer.
Two different schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America.
J. P. Sherman, P. J. Sheridan, J. A. Ogren, E. Andrews, D. Hageman, L. Schmeisser, A. Jefferson, and S. Sharma
Atmos. Chem. Phys., 15, 12487–12517, https://doi.org/10.5194/acp-15-12487-2015, https://doi.org/10.5194/acp-15-12487-2015, 2015
Short summary
Short summary
Variability in aerosol optical properties relevant to radiative forcing were studied on several timescales at four continental North American NOAA-ESRL sites. Light scattering and intensive properties varied most on seasonal scales while absorption variability on weekly and diurnal timescales was comparable to its seasonal variability. Large reductions in light scattering were observed at the two long-term sites (relative to late 1990s), along with a smaller contribution by sub-1µm particles.
F. Yu and G. Luo
Atmos. Chem. Phys., 14, 12455–12464, https://doi.org/10.5194/acp-14-12455-2014, https://doi.org/10.5194/acp-14-12455-2014, 2014
Short summary
Short summary
Global lifetimes and concentrations of gaseous methylamines (MMA, DMA, and TMA) have been simulated.
Oxidation and aerosol uptakes are dominant sinks for these methylamines. The oxidation alone leads to their lifetimes of 5-10h in most parts of low and middle latitude regions. The uptake by secondary species can shorten their lifetime to as low as 1-2h over central Europe, eastern Asia, and the eastern US.
The modeled concentrations are substantially lower than observed values available.
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
X. Ma, K. Bartlett, K. Harmon, and F. Yu
Atmos. Meas. Tech., 6, 2391–2401, https://doi.org/10.5194/amt-6-2391-2013, https://doi.org/10.5194/amt-6-2391-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds
Projected increases in wildfires may challenge regulatory curtailment of PM2.5 over the eastern US by 2050
Meteorological export and deposition fluxes of black carbon on glaciers of the central Chilean Andes
Future changes in atmospheric rivers over East Asia under stratospheric aerosol intervention
Modeling the influence of chain length on secondary organic aerosol (SOA) formation via multiphase reactions of alkanes
How aerosol size matters in aerosol optical depth (AOD) assimilation and the optimization using the Ångström exponent
Microphysical, macrophysical, and radiative responses of subtropical marine clouds to aerosol injections
Hemispheric-wide climate response to regional COVID-19-related aerosol emission reductions: the prominent role of atmospheric circulation adjustments
Impacts of an aerosol layer on a midlatitude continental system of cumulus clouds: how do these impacts depend on the vertical location of the aerosol layer?
Impact of phase state and non-ideal mixing on equilibration timescales of secondary organic aerosol partitioning
A global climatology of ice-nucleating particles under cirrus conditions derived from model simulations with MADE3 in EMAC
Enviro-HIRLAM model estimates of elevated black carbon pollution over Ukraine resulted from forest fires
Where does the dust deposited over the Sierra Nevada snow come from?
Instant and delayed effects of March biomass burning aerosols over the Indochina Peninsula
Aerosol–cloud interaction in the atmospheric chemistry model GRAPES_Meso5.1/CUACE and its impacts on mesoscale numerical weather prediction under haze pollution conditions in Jing–Jin–Ji in China
Survival probabilities of atmospheric particles: comparison based on theory, cluster population simulations, and observations in Beijing
The simulation of mineral dust in the United Kingdom Earth System Model UKESM1
Dust pollution in China affected by different spatial and temporal types of El Niño
An improved representation of aerosol mixing state for air quality–weather interactions
Circulation-regulated impacts of aerosol pollution on urban heat island in Beijing
Size-resolved dust direct radiative effect efficiency derived from satellite observations
Modeling coarse and giant desert dust particles
Fire–climate interactions through the aerosol radiative effect in a global chemistry–climate–vegetation model
Contributions of meteorology and anthropogenic emissions to the trends in winter PM2.5 in eastern China 2013–2018
Impacts of condensable particulate matter on atmospheric organic aerosols and fine particulate matter (PM2.5) in China
Mapping the dependence of black carbon radiative forcing on emission region and season
Regional PM2.5 pollution confined by atmospheric internal boundaries in the North China Plain: boundary layer structures and numerical simulation
Toward targeted observations of the meteorological initial state for improving the PM2.5 forecast of a heavy haze event that occurred in the Beijing–Tianjin–Hebei region
Below-cloud scavenging of aerosol by rain: a review of numerical modelling approaches and sensitivity simulations with mineral dust in the Met Office's Unified Model
Aggravated Air Pollution and Health Burden due to Traffic Congestion in Urban China
Predicting gridded winter PM2.5 concentration in the east of China
Satellite-based evaluation of AeroCom model bias in biomass burning regions
Impacts of marine organic emissions on low-level stratiform clouds – a large eddy simulator study
Aviation contrail climate effects in the North Atlantic from 2016 to 2021
Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic
Simulating wildfire emissions and plume rise using geostationary satellite fire radiative power measurements: a case study of the 2019 Williams Flats fire
Atomistic and coarse-grained simulations reveal increased ice nucleation activity on silver iodide surfaces in slit and wedge geometries
Secondary aerosol formation in marine Arctic environments: a model measurement comparison at Ny-Ålesund
Effective radiative forcing of anthropogenic aerosols in E3SM version 1: historical changes, causality, decomposition, and parameterization sensitivities
Examination of aerosol impacts on convective clouds and precipitation in two metropolitan areas in East Asia; how varying depths of convective clouds between the areas diversify those aerosol effects?
Influence of emission size distribution and nucleation on number concentrations over Greater Paris
Impact of stratospheric aerosol intervention geoengineering on surface air temperature in China: a surface energy budget perspective
Regional impacts of black carbon morphologies on shortwave aerosol–radiation interactions: a comparative study between the US and China
Tropospheric warming over the northern Indian Ocean caused by South Asian anthropogenic aerosols: possible impact on the upper troposphere and lower stratosphere
Intraseasonal variation of the northeast Asian anomalous anticyclone and its impacts on PM2.5 pollution in the North China Plain in early winter
Inverse modeling of the 2021 spring super dust storms in East Asia
Causal influences of El Niño–Southern Oscillation on global dust activities
Formation, radiative forcing, and climatic effects of severe regional haze
Advances in air quality research – current and emerging challenges
Large-eddy-simulation study on turbulent particle deposition and its dependence on atmospheric-boundary-layer stability
Marios Chatziparaschos, Nikos Daskalakis, Stelios Myriokefalitakis, Nikos Kalivitis, Athanasios Nenes, María Gonçalves Ageitos, Montserrat Costa-Surós, Carlos Pérez García-Pando, Medea Zanoli, Mihalis Vrekoussis, and Maria Kanakidou
Atmos. Chem. Phys., 23, 1785–1801, https://doi.org/10.5194/acp-23-1785-2023, https://doi.org/10.5194/acp-23-1785-2023, 2023
Short summary
Short summary
Ice formation is enabled by ice-nucleating particles (INP) at higher temperatures than homogeneous formation and can profoundly affect the properties of clouds. Our global model results show that K-feldspar is the most important contributor to INP concentrations globally, affecting mid-level mixed-phase clouds. However, quartz can significantly contribute and dominates the lowest and the highest altitudes of dust-derived INP, affecting mainly low-level and high-level mixed-phase clouds.
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023, https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary
Short summary
We show that for air quality, the densely populated eastern US may see even larger impacts of wildfires due to long-distance smoke transport and associated positive climatic impacts, partially compensating the improvements from regulations on anthropogenic emissions. This study highlights the tension between natural and anthropogenic contributions and the non-local nature of air pollution that complicate regulatory strategies for improving future regional air quality for human health.
Rémy Lapere, Nicolás Huneeus, Sylvain Mailler, Laurent Menut, and Florian Couvidat
Atmos. Chem. Phys., 23, 1749–1768, https://doi.org/10.5194/acp-23-1749-2023, https://doi.org/10.5194/acp-23-1749-2023, 2023
Short summary
Short summary
Glaciers in the Andes of central Chile are shrinking rapidly in response to global warming. This melting is accelerated by the deposition of opaque particles onto snow and ice. In this work, model simulations quantify typical deposition rates of soot on glaciers in summer and winter months and show that the contribution of emissions from Santiago is not as high as anticipated. Additionally, the combination of regional- and local-scale meteorology explains the seasonality in deposition.
Ju Liang and Jim Haywood
Atmos. Chem. Phys., 23, 1687–1703, https://doi.org/10.5194/acp-23-1687-2023, https://doi.org/10.5194/acp-23-1687-2023, 2023
Short summary
Short summary
The recent record-breaking flood events in China during the summer of 2021 highlight the importance of mitigating the risks from future changes in high-impact weather systems under global warming. Based on a state-of-the-art Earth system model, we demonstrate a pilot study on the responses of atmospheric rivers and extreme precipitation over East Asia to anthropogenically induced climate warming and an unconventional mitigation strategy – stratospheric aerosol injection.
Azad Madhu, Myoseon Jang, and David Deacon
Atmos. Chem. Phys., 23, 1661–1675, https://doi.org/10.5194/acp-23-1661-2023, https://doi.org/10.5194/acp-23-1661-2023, 2023
Short summary
Short summary
SOA formation is simulated using the UNIPAR model for series of linear alkanes. The inclusion of autoxidation reactions within the explicit gas mechanisms of C9–C12 was found to significantly improve predictions. Available product distributions were extrapolated with an incremental volatility coefficient (IVC) to predict SOA formation of alkanes without explicit mechanisms. These product distributions were used to simulate SOA formation from C13 and C15 and had good agreement with chamber data.
Jianbing Jin, Bas Henzing, and Arjo Segers
Atmos. Chem. Phys., 23, 1641–1660, https://doi.org/10.5194/acp-23-1641-2023, https://doi.org/10.5194/acp-23-1641-2023, 2023
Short summary
Short summary
Aerosol models and satellite retrieval algorithms rely on different aerosol size assumptions. In practice, differences between simulations and observations do not always reflect the difference in aerosol amount. To avoid inconsistencies, we designed a hybrid assimilation approach. Different from a standard aerosol optical depth (AOD) assimilation that directly assimilates AODs, the hybrid one estimates aerosol size parameters by assimilating Ängström observations before assimilating the AODs.
Je-Yun Chun, Robert Wood, Peter Blossey, and Sarah J. Doherty
Atmos. Chem. Phys., 23, 1345–1368, https://doi.org/10.5194/acp-23-1345-2023, https://doi.org/10.5194/acp-23-1345-2023, 2023
Short summary
Short summary
We investigate the impact of injected aerosol on subtropical low marine clouds under a variety of meteorological conditions using high-resolution model simulations. This study illustrates processes perturbed by aerosol injections and their impact on cloud properties (e.g., cloud number concentration, thickness, and cover). We show that those responses are highly sensitive to background meteorological conditions, such as precipitation, and background cloud properties.
Nora L. S. Fahrenbach and Massimo A. Bollasina
Atmos. Chem. Phys., 23, 877–894, https://doi.org/10.5194/acp-23-877-2023, https://doi.org/10.5194/acp-23-877-2023, 2023
Short summary
Short summary
We studied the monthly-scale climate response to COVID-19 aerosol emission reductions during January–May 2020 using climate models. Our results show global temperature and rainfall anomalies driven by circulation changes. The climate patterns reverse polarity from JF to MAM due to a shift in the main SO2 reduction region from China to India. This real-life example of rapid climate adjustments to abrupt, regional aerosol emission reduction has large implications for future climate projections.
Seoung Soo Lee, Junshik Um, Won Jun Choi, Kyung-Ja Ha, Chang Hoon Jung, Jianping Guo, and Youtong Zheng
Atmos. Chem. Phys., 23, 273–286, https://doi.org/10.5194/acp-23-273-2023, https://doi.org/10.5194/acp-23-273-2023, 2023
Short summary
Short summary
This paper elaborates on process-level mechanisms regarding how the interception of radiation by aerosols interacts with the surface heat fluxes and atmospheric instability in warm cumulus clouds. This paper elucidates how these mechanisms vary with the location or altitude of an aerosol layer. This elucidation indicates that the location of aerosol layers should be taken into account for parameterizations of aerosol–cloud interactions.
Meredith Schervish and Manabu Shiraiwa
Atmos. Chem. Phys., 23, 221–233, https://doi.org/10.5194/acp-23-221-2023, https://doi.org/10.5194/acp-23-221-2023, 2023
Short summary
Short summary
Secondary organic aerosols (SOAs) can exhibit complex non-ideal behavior and adopt an amorphous semisolid state. We simulate condensation of semi-volatile compounds into a phase-separated particle to investigate the effect of non-ideality and particle phase state on the equilibration timescale of SOA partitioning. Our results provide useful insights into the interpretation of experimental observations and the description and treatment of SOA in aerosol models.
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 22, 15887–15907, https://doi.org/10.5194/acp-22-15887-2022, https://doi.org/10.5194/acp-22-15887-2022, 2022
Short summary
Short summary
Ice-nucleating particles (INPs) have important influences on cirrus clouds and the climate system; however, their global atmospheric distribution in the cirrus regime is still very uncertain. We present a global climatology of INPs under cirrus conditions derived from model simulations, considering the mineral dust, soot, crystalline ammonium sulfate, and glassy organics INP types. The comparison of respective INP concentrations indicates the large importance of ammonium sulfate particles.
Mykhailo Savenets, Larysa Pysarenko, Svitlana Krakovska, Alexander Mahura, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 15777–15791, https://doi.org/10.5194/acp-22-15777-2022, https://doi.org/10.5194/acp-22-15777-2022, 2022
Short summary
Short summary
The paper explores the spatio-temporal variability of black carbon during a wildfire in August 2010, with a focus on Ukraine. As a research tool, the seamless Enviro-HIRLAM modelling system is used for investigating the atmospheric transport of aerosol particles emitted by wildfires from remote and local sources. The results of this study improve our understanding of the physical and chemical processes and the interactions of aerosols in the atmosphere.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Anbao Zhu, Haiming Xu, Jiechun Deng, Jing Ma, and Shaofeng Hua
Atmos. Chem. Phys., 22, 15425–15447, https://doi.org/10.5194/acp-22-15425-2022, https://doi.org/10.5194/acp-22-15425-2022, 2022
Short summary
Short summary
This study demonstrates the instant and delayed effects of biomass burning (BB) aerosols on precipitation over the Indochina Peninsula (ICP). The convection suppression due to the BB aerosol-induced stabilized atmosphere dominates over the favorable water-vapor condition induced by large-scale circulation responses, leading to an overall reduced precipitation in March, while the delayed effect promotes precipitation from early April to mid April due to the anomalous atmospheric circulations.
Wenjie Zhang, Hong Wang, Xiaoye Zhang, Liping Huang, Yue Peng, Zhaodong Liu, Xiao Zhang, and Huizheng Che
Atmos. Chem. Phys., 22, 15207–15221, https://doi.org/10.5194/acp-22-15207-2022, https://doi.org/10.5194/acp-22-15207-2022, 2022
Short summary
Short summary
Aerosol–cloud interaction (ACI) is first implemented in the atmospheric chemistry system GRAPES_Meso5.1/CUACE. ACI can improve the simulated cloud, temperature, and precipitation under haze pollution conditions in Jing-Jin-Ji in China. This paper demonstrates the critical role of ACI in current numerical weather prediction over the severely polluted region.
Santeri Tuovinen, Runlong Cai, Veli-Matti Kerminen, Jingkun Jiang, Chao Yan, Markku Kulmala, and Jenni Kontkanen
Atmos. Chem. Phys., 22, 15071–15091, https://doi.org/10.5194/acp-22-15071-2022, https://doi.org/10.5194/acp-22-15071-2022, 2022
Short summary
Short summary
We compare observed survival probabilities of atmospheric particles from Beijing, China, with survival probabilities based on analytical formulae and model simulations. We find observed survival probabilities under polluted conditions at smaller sizes to be higher, while at larger sizes they are lower than or similar to theoretical survival probabilities. Uncertainties in condensation sink and growth rate are unlikely to explain higher-than-predicted survival probabilities at smaller sizes.
Stephanie Woodward, Alistair A. Sellar, Yongming Tang, Marc Stringer, Andrew Yool, Eddy Robertson, and Andy Wiltshire
Atmos. Chem. Phys., 22, 14503–14528, https://doi.org/10.5194/acp-22-14503-2022, https://doi.org/10.5194/acp-22-14503-2022, 2022
Short summary
Short summary
We describe the dust scheme in the UKESM1 Earth system model and show generally good agreement with observations. Comparing with the closely related HadGEM3-GC3.1 model, we show that dust differences are not only due to inter-model differences but also to the dust size distribution. Under climate change, HadGEM3-GC3.1 dust hardly changes, but UKESM1 dust decreases because that model includes the vegetation response which, in our models, has a bigger impact on dust than climate change itself.
Yang Yang, Liangying Zeng, Hailong Wang, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 22, 14489–14502, https://doi.org/10.5194/acp-22-14489-2022, https://doi.org/10.5194/acp-22-14489-2022, 2022
Short summary
Short summary
Using an aerosol–climate model, dust pollution in China affected by different spatial and temporal types of El Niño are examined. Both eastern and central Pacific El Niño and short-duration El Niño increase winter dust concentrations over northern China, while long-duration El Niño decreases concentrations. Only long-duration El Niño events can significantly affect dust over China in the following spring. This study has profound implications for air pollution control and dust storm prediction.
Robin Stevens, Andrei Ryjkov, Mahtab Majdzadeh, and Ashu Dastoor
Atmos. Chem. Phys., 22, 13527–13549, https://doi.org/10.5194/acp-22-13527-2022, https://doi.org/10.5194/acp-22-13527-2022, 2022
Short summary
Short summary
Absorbing particles like black carbon can be coated with other matter. How much radiation these particles absorb depends on the coating thickness. The removal of these particles by clouds and rain depends on the coating composition. These effects are important for both climate and air quality. We implement a more detailed representation of these particles in an air quality model which accounts for both coating thickness and composition. We find a significant effect on particle concentrations.
Fan Wang, Gregory R. Carmichael, Jing Wang, Bin Chen, Bo Huang, Yuguo Li, Yuanjian Yang, and Meng Gao
Atmos. Chem. Phys., 22, 13341–13353, https://doi.org/10.5194/acp-22-13341-2022, https://doi.org/10.5194/acp-22-13341-2022, 2022
Short summary
Short summary
Unprecedented urbanization in China has led to serious urban heat island (UHI) issues, exerting intense heat stress on urban residents. We find diverse influences of aerosol pollution on urban heat island intensity (UHII) under different circulations. Our results also highlight the role of black carbon in aggravating UHI, especially during nighttime. It could thus be targeted for cooperative management of heat islands and aerosol pollution.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Jasper F. Kok, Claudia Di Biagio, Samuel Albani, Jianyu Zheng, and Jiachen Ding
Atmos. Chem. Phys., 22, 13115–13135, https://doi.org/10.5194/acp-22-13115-2022, https://doi.org/10.5194/acp-22-13115-2022, 2022
Short summary
Short summary
This study developed a dataset that enables us to efficiently calculate dust direct radiative effect (DRE, i.e., cooling or warming our planet) for any given dust size distribution in addition to three sets of dust mineral components and two dust shapes. We demonstrate and validate the method of using this dataset to calculate dust DRE. Moreover, using this dataset we found that dust mineral composition is a more important factor in determining dust DRE than dust size and shape.
Eleni Drakaki, Vassilis Amiridis, Alexandra Tsekeri, Antonis Gkikas, Emmanouil Proestakis, Sotirios Mallios, Stavros Solomos, Christos Spyrou, Eleni Marinou, Claire L. Ryder, Demetri Bouris, and Petros Katsafados
Atmos. Chem. Phys., 22, 12727–12748, https://doi.org/10.5194/acp-22-12727-2022, https://doi.org/10.5194/acp-22-12727-2022, 2022
Short summary
Short summary
State-of-the-art atmospheric dust models have limitations in accounting for a realistic dust size distribution (emission, transport). We modify the parameterization of the mineral dust cycle by including particles with diameter >20 μm, as indicated by observations over deserts. Moreover, we investigate the effects of reduced settling velocities of dust particles. Model results are evaluated using airborne and spaceborne dust measurements above Cabo Verde.
Chenguang Tian, Xu Yue, Jun Zhu, Hong Liao, Yang Yang, Yadong Lei, Xinyi Zhou, Hao Zhou, Yimian Ma, and Yang Cao
Atmos. Chem. Phys., 22, 12353–12366, https://doi.org/10.5194/acp-22-12353-2022, https://doi.org/10.5194/acp-22-12353-2022, 2022
Short summary
Short summary
We quantify the impacts of fire aerosols on climate through direct, indirect, and albedo effects. In atmosphere-only simulations, we find global fire aerosols cause surface cooling and rainfall inhibition over many land regions. These fast atmospheric perturbations further lead to a reduction in regional leaf area index and lightning activities. By considering the feedback of fire aerosols on humidity, lightning, and leaf area index, we predict a slight reduction in fire emissions.
Yanxing Wu, Run Liu, Yanzi Li, Junjie Dong, Zhijiong Huang, Junyu Zheng, and Shaw Chen Liu
Atmos. Chem. Phys., 22, 11945–11955, https://doi.org/10.5194/acp-22-11945-2022, https://doi.org/10.5194/acp-22-11945-2022, 2022
Short summary
Short summary
Multiple linear regression (MLR) analyses often interpret the correlation coefficient (r2) as the contribution of an independent variable to the dependent variable. Since a good correlation does not imply a causal relationship, we propose that r2 should be interpreted as the maximum possible contribution. Moreover, MLR results are sensitive to the length of time analyzed; long-term analysis gives a more accurate assessment because of its additional constraints.
Mengying Li, Shaocai Yu, Xue Chen, Zhen Li, Yibo Zhang, Zhe Song, Weiping Liu, Pengfei Li, Xiaoye Zhang, Meigen Zhang, Yele Sun, Zirui Liu, Caiping Sun, Jingkun Jiang, Shuxiao Wang, Benjamin N. Murphy, Kiran Alapaty, Rohit Mathur, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 22, 11845–11866, https://doi.org/10.5194/acp-22-11845-2022, https://doi.org/10.5194/acp-22-11845-2022, 2022
Short summary
Short summary
This study constructed an emission inventory of condensable particulate matter (CPM) in China with a focus on organic aerosols (OAs), based on collected CPM emission information. The results show that OA emissions are enhanced twofold for the years 2014 and 2017 after the inclusion of CPM in the new inventory. Sensitivity cases demonstrated the significant contributions of CPM emissions from stationary combustion and mobile sources to primary, secondary, and total OA concentrations.
Petri Räisänen, Joonas Merikanto, Risto Makkonen, Mikko Savolahti, Alf Kirkevåg, Maria Sand, Øyvind Seland, and Antti-Ilari Partanen
Atmos. Chem. Phys., 22, 11579–11602, https://doi.org/10.5194/acp-22-11579-2022, https://doi.org/10.5194/acp-22-11579-2022, 2022
Short summary
Short summary
A climate model is used to evaluate how the radiative forcing (RF) associated with black carbon (BC) emissions depends on the latitude, longitude, and seasonality of emissions. It is found that both the direct RF (BC absorption of solar radiation in air) and snow RF (BC absorption in snow/ice) depend strongly on the emission region and season. The results suggest that, for a given mass of BC emitted, climatic impacts are likely to be largest for high-latitude emissions due to the large snow RF.
Xipeng Jin, Xuhui Cai, Mingyuan Yu, Yu Song, Xuesong Wang, Hongsheng Zhang, and Tong Zhu
Atmos. Chem. Phys., 22, 11409–11427, https://doi.org/10.5194/acp-22-11409-2022, https://doi.org/10.5194/acp-22-11409-2022, 2022
Short summary
Short summary
Meteorological discontinuities in the vertical direction define the lowest atmosphere as the boundary layer, while in the horizontal direction it identifies the contrast zone as the internal boundary. Both of them determine the polluted air mass dimension over the North China Plain. This study reveals the boundary layer structures under three categories of internal boundaries, modified by thermal, dynamical, and blending effects. It provides a new insight to understand regional pollution.
Lichao Yang, Wansuo Duan, Zifa Wang, and Wenyi Yang
Atmos. Chem. Phys., 22, 11429–11453, https://doi.org/10.5194/acp-22-11429-2022, https://doi.org/10.5194/acp-22-11429-2022, 2022
Short summary
Short summary
The initial meteorological state has a great impact on PM2.5 forecasts. Assimilating additional observations is an effective way to improve the accuracy of the initial meteorological state. Here we used an advanced optimization approach to identify where we should preferentially place the meteorological observations associated with PM2.5 forecasts in the Beijing–Tianjin–Hebei region of China. We provide evidence that the target observation strategy is effective for improving PM2.5 forecasts.
Anthony C. Jones, Adrian Hill, John Hemmings, Pascal Lemaitre, Arnaud Quérel, Claire L. Ryder, and Stephanie Woodward
Atmos. Chem. Phys., 22, 11381–11407, https://doi.org/10.5194/acp-22-11381-2022, https://doi.org/10.5194/acp-22-11381-2022, 2022
Short summary
Short summary
As raindrops fall to the ground, they capture aerosol (i.e. below-cloud scavenging or BCS). Many different BCS schemes are available to climate models, and it is unclear what the impact of selecting one scheme over another is. Here, various BCS models are outlined and then applied to mineral dust in climate model simulations. We find that dust concentrations are highly sensitive to the BCS scheme, with dust atmospheric lifetimes ranging from 5 to 44 d.
Peng Wang, Ruhan Zhang, Shida Sun, Meng Gao, Bo Zheng, Dan Zhang, Yangli Zhang, Gregory R. Carmichael, and Hongliang Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-577, https://doi.org/10.5194/acp-2022-577, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
In China, vehicles have jumped significantly in the recent decade. This caused severe traffic congestion and aggravated air pollution. In this study, we developed a new temporal-allocation approach to quantify the impacts of traffic congestion. We found that traffic congestion worsens air quality and health burden across China, especially in the urban clusters. More effective and comprehensive vehicle emission control policies should be implemented to improve air quality in China.
Zhicong Yin, Mingkeng Duan, Yuyan Li, Tianbao Xu, and Huijun Wang
Atmos. Chem. Phys., 22, 11173–11185, https://doi.org/10.5194/acp-22-11173-2022, https://doi.org/10.5194/acp-22-11173-2022, 2022
Short summary
Short summary
The PM2.5 concentration has been greatly reduced in recent years in China and has entered a crucial stage that required fine seasonal prediction. However, there is still no study aimed at predicting gridded PM2.5 concentration. A model for seasonal prediction of gridded winter PM2.5 concentration in the east of China was developed by analyzing the contributions of emissions and climate variability, which could provide scientific support for air pollution control at the regional and city levels.
Qirui Zhong, Nick Schutgens, Guido van der Werf, Twan van Noije, Kostas Tsigaridis, Susanne E. Bauer, Tero Mielonen, Alf Kirkevåg, Øyvind Seland, Harri Kokkola, Ramiro Checa-Garcia, David Neubauer, Zak Kipling, Hitoshi Matsui, Paul Ginoux, Toshihiko Takemura, Philippe Le Sager, Samuel Rémy, Huisheng Bian, Mian Chin, Kai Zhang, Jialei Zhu, Svetlana G. Tsyro, Gabriele Curci, Anna Protonotariou, Ben Johnson, Joyce E. Penner, Nicolas Bellouin, Ragnhild B. Skeie, and Gunnar Myhre
Atmos. Chem. Phys., 22, 11009–11032, https://doi.org/10.5194/acp-22-11009-2022, https://doi.org/10.5194/acp-22-11009-2022, 2022
Short summary
Short summary
Aerosol optical depth (AOD) errors for biomass burning aerosol (BBA) are evaluated in 18 global models against satellite datasets. Notwithstanding biases in satellite products, they allow model evaluations. We observe large and diverse model biases due to errors in BBA. Further interpretations of AOD diversities suggest large biases exist in key processes for BBA which require better constraining. These results can contribute to further model improvement and development.
Marje Prank, Juha Tonttila, Jaakko Ahola, Harri Kokkola, Thomas Kühn, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 22, 10971–10992, https://doi.org/10.5194/acp-22-10971-2022, https://doi.org/10.5194/acp-22-10971-2022, 2022
Short summary
Short summary
Aerosols and clouds persist as the dominant sources of uncertainty in climate projections. In this modelling study, we investigate the role of marine aerosols in influencing the lifetime of low-level clouds. Our high resolution simulations show that sea spray can both extend and shorten the lifetime of the cloud layer depending on the model setup. The impact of the primary marine organics is relatively limited while secondary aerosol from monoterpenes can have larger impact.
Roger Teoh, Ulrich Schumann, Edward Gryspeerdt, Marc Shapiro, Jarlath Molloy, George Koudis, Christiane Voigt, and Marc E. J. Stettler
Atmos. Chem. Phys., 22, 10919–10935, https://doi.org/10.5194/acp-22-10919-2022, https://doi.org/10.5194/acp-22-10919-2022, 2022
Short summary
Short summary
Aircraft condensation trails (contrails) contribute to over half of the climate forcing attributable to aviation. This study uses historical air traffic and weather data to simulate contrails in the North Atlantic over 5 years, from 2016 to 2021. We found large intra- and inter-year variability in contrail radiative forcing and observed a 66 % reduction due to COVID-19. Most warming contrails predominantly result from night-time flights in winter.
Haochi Che, Philip Stier, Duncan Watson-Parris, Hamish Gordon, and Lucia Deaconu
Atmos. Chem. Phys., 22, 10789–10807, https://doi.org/10.5194/acp-22-10789-2022, https://doi.org/10.5194/acp-22-10789-2022, 2022
Short summary
Short summary
Extensive stratocumulus clouds over the south-eastern Atlantic (SEA) can lead to a cooling effect on the climate. A key pathway by which aerosols affect cloud properties is by acting as cloud condensation nuclei (CCN). Here, we investigated the source attribution of CCN in the SEA as well as the cloud responses. Our results show that aerosol nucleation contributes most to CCN in the marine boundary layer. In terms of emissions, anthropogenic sources contribute most to the CCN and cloud droplets.
Aditya Kumar, R. Bradley Pierce, Ravan Ahmadov, Gabriel Pereira, Saulo Freitas, Georg Grell, Chris Schmidt, Allen Lenzen, Joshua P. Schwarz, Anne E. Perring, Joseph M. Katich, John Hair, Jose L. Jimenez, Pedro Campuzano-Jost, and Hongyu Guo
Atmos. Chem. Phys., 22, 10195–10219, https://doi.org/10.5194/acp-22-10195-2022, https://doi.org/10.5194/acp-22-10195-2022, 2022
Short summary
Short summary
We use the WRF-Chem model with new implementations of GOES-16 wildfire emissions and plume rise based on fire radiative power (FRP) to interpret aerosol observations during the 2019 NASA–NOAA FIREX-AQ field campaign and perform model evaluations. The model shows significant improvements in simulating the variety of aerosol loading environments sampled during FIREX-AQ. Our results also highlight the importance of accurate wildfire diurnal cycle and aerosol chemical mechanisms in models.
Golnaz Roudsari, Olli H. Pakarinen, Bernhard Reischl, and Hanna Vehkamäki
Atmos. Chem. Phys., 22, 10099–10114, https://doi.org/10.5194/acp-22-10099-2022, https://doi.org/10.5194/acp-22-10099-2022, 2022
Short summary
Short summary
We use atomistic simulations to study heterogeneous ice nucleation on silver iodide surfaces in slit and wedge geometries at low supercooling which serve as a model of irregularities on real atmospheric aerosol particle surfaces. The revealed microscopic ice nucleation mechanisms in confined geometries strongly support the experimental evidence for the importance of surface features such as cracks or pits functioning as active sites for ice nucleation in the atmosphere.
Carlton Xavier, Metin Baykara, Robin Wollesen de Jonge, Barbara Altstädter, Petri Clusius, Ville Vakkari, Roseline Thakur, Lisa Beck, Silvia Becagli, Mirko Severi, Rita Traversi, Radovan Krejci, Peter Tunved, Mauro Mazzola, Birgit Wehner, Mikko Sipilä, Markku Kulmala, Michael Boy, and Pontus Roldin
Atmos. Chem. Phys., 22, 10023–10043, https://doi.org/10.5194/acp-22-10023-2022, https://doi.org/10.5194/acp-22-10023-2022, 2022
Short summary
Short summary
The focus of this work is to study and improve our understanding of processes involved in the formation and growth of new particles in a remote Arctic marine environment. We run the 1D model ADCHEM along air mass trajectories arriving at Ny-Ålesund in May 2018. The model finds that ion-mediated H2SO4–NH3 nucleation can explain the observed new particle formation at Ny-Ålesund. The growth of particles is driven via H2SO4 condensation and formation of methane sulfonic acid in the aqueous phase.
Kai Zhang, Wentao Zhang, Hui Wan, Philip J. Rasch, Steven J. Ghan, Richard C. Easter, Xiangjun Shi, Yong Wang, Hailong Wang, Po-Lun Ma, Shixuan Zhang, Jian Sun, Susannah M. Burrows, Manish Shrivastava, Balwinder Singh, Yun Qian, Xiaohong Liu, Jean-Christophe Golaz, Qi Tang, Xue Zheng, Shaocheng Xie, Wuyin Lin, Yan Feng, Minghuai Wang, Jin-Ho Yoon, and L. Ruby Leung
Atmos. Chem. Phys., 22, 9129–9160, https://doi.org/10.5194/acp-22-9129-2022, https://doi.org/10.5194/acp-22-9129-2022, 2022
Short summary
Short summary
Here we analyze the effective aerosol forcing simulated by E3SM version 1 using both century-long free-running and short nudged simulations. The aerosol forcing in E3SMv1 is relatively large compared to other models, mainly due to the large indirect aerosol effect. Aerosol-induced changes in liquid and ice cloud properties in E3SMv1 have a strong correlation. The aerosol forcing estimates in E3SMv1 are sensitive to the parameterization changes in both liquid and ice cloud processes.
Seoung Soo Lee, Jinho Choi, Goun Kim, Kyung-Ja Ha, Kyong-Hwan Seo, Chang Hoon Jung, Junshik Um, Youtong Zheng, Jianping Guo, Sang-Keun Song, Yun Gon Lee, and Nobuyuki Utsumi
Atmos. Chem. Phys., 22, 9059–9081, https://doi.org/10.5194/acp-22-9059-2022, https://doi.org/10.5194/acp-22-9059-2022, 2022
Short summary
Short summary
This study investigates how aerosols affect clouds and precipitation and how the aerosol effects vary with varying types of clouds that are characterized by cloud depth in two metropolitan areas in East Asia. As cloud depth increases, the enhancement of precipitation amount transitions to no changes in precipitation amount with increasing aerosol concentrations. This indicates that cloud depth needs to be considered for a comprehensive understanding of aerosol-cloud interactions.
Karine Sartelet, Youngseob Kim, Florian Couvidat, Maik Merkel, Tuukka Petäjä, Jean Sciare, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 8579–8596, https://doi.org/10.5194/acp-22-8579-2022, https://doi.org/10.5194/acp-22-8579-2022, 2022
Short summary
Short summary
A methodology is defined to estimate number emissions from an inventory providing mass emissions. Number concentrations are simulated over Greater Paris using different nucleation parameterisations (binary, ternary involving sulfuric acid and ammonia, and heteromolecular involving sulfuric acid and extremely low-volatility organics, ELVOCs). The comparisons show that ternary nucleation may not be a dominant process for new particle formation in cities, but they stress the role of ELVOCs.
Zhaochen Liu, Xianmei Lang, and Dabang Jiang
Atmos. Chem. Phys., 22, 7667–7680, https://doi.org/10.5194/acp-22-7667-2022, https://doi.org/10.5194/acp-22-7667-2022, 2022
Short summary
Short summary
Stratospheric aerosol intervention geoengineering is considered a potential means to counteract global warming. Here the impact of stratospheric aerosol intervention geoengineering on surface air temperature over China and related physical processes are investigated. Results show that the increased stratospheric aerosols cause surface cooling over China. The temperature responses vary with models, regions, and seasons and are largely related to net surface shortwave radiation changes.
Jie Luo, Zhengqiang Li, Chenchong Zhang, Qixing Zhang, Yongming Zhang, Ying Zhang, Gabriele Curci, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 22, 7647–7666, https://doi.org/10.5194/acp-22-7647-2022, https://doi.org/10.5194/acp-22-7647-2022, 2022
Short summary
Short summary
The fractal black carbon was applied to re-evaluate the regional impacts of morphologies on aerosol–radiation interactions (ARIs), and the effects were compared between the US and China. The regional-mean clear-sky ARI is significantly affected by the BC morphology, and relative differences of 17.1 % and 38.7 % between the fractal model with a Df of 1.8 and the spherical model were observed in eastern China and the northwest US, respectively.
Suvarna Fadnavis, Prashant Chavan, Akash Joshi, Sunil M. Sonbawne, Asutosh Acharya, Panuganti C. S. Devara, Alexandru Rap, Felix Ploeger, and Rolf Müller
Atmos. Chem. Phys., 22, 7179–7191, https://doi.org/10.5194/acp-22-7179-2022, https://doi.org/10.5194/acp-22-7179-2022, 2022
Short summary
Short summary
We show that large amounts of anthropogenic aerosols are transported from South Asia to the northern Indian Ocean. These aerosols are then lifted into the UTLS by the ascending branch of the Hadley circulation. They are further transported to the Southern Hemisphere and downward via westerly ducts over the tropical Atlantic and Pacific. These aerosols increase tropospheric heating, resulting in an increase in water vapor, which is then transported to the UTLS.
Xiadong An, Wen Chen, Peng Hu, Shangfeng Chen, and Lifang Sheng
Atmos. Chem. Phys., 22, 6507–6521, https://doi.org/10.5194/acp-22-6507-2022, https://doi.org/10.5194/acp-22-6507-2022, 2022
Short summary
Short summary
The intraseasonal NAAA usually establishes quickly on day −3 with a life span of 8 days. Further results revealed that the probability of regional PM2.5 pollution related to the NAAA for at least 2 days in the NCP is 80% in NDJ period 2000–2021. Particularly, air quality in the NCP tends to deteriorate on day 2 prior to the peak day of the NAAA and reaches a peak on day −1 with a life cycle of 4 days. The corresponding meteorological conditions support these conclusions.
Jianbing Jin, Mijie Pang, Arjo Segers, Wei Han, Li Fang, Baojie Li, Haochuan Feng, Hai Xiang Lin, and Hong Liao
Atmos. Chem. Phys., 22, 6393–6410, https://doi.org/10.5194/acp-22-6393-2022, https://doi.org/10.5194/acp-22-6393-2022, 2022
Short summary
Short summary
Super dust storms reappeared in East Asia last spring after being absent for one and a half decades. Accurate simulation of such super sandstorms is valuable, but challenging due to imperfect emissions. In this study, the emissions of these dust storms are estimated by assimilating multiple observations. The results reveal that emissions originated from both China and Mongolia. However, for northern China, long-distance transport from Mongolia contributes much more dust than Chinese deserts.
Thanh Le and Deg-Hyo Bae
Atmos. Chem. Phys., 22, 5253–5263, https://doi.org/10.5194/acp-22-5253-2022, https://doi.org/10.5194/acp-22-5253-2022, 2022
Short summary
Short summary
Here we assess the response of dust activities to El Niño–Southern Oscillation (ENSO) over the 1850–2014 period using climate model outputs. Our results show that ENSO is an important driver of dust deposition and dust transportation with high consensus across models. However, the results indicate that ENSO is unlikely to show causal impacts on dust emissions of major dust sources. This study allows us to obtain further understanding of the linkages between ENSO and dust cycle at a global scale.
Yun Lin, Yuan Wang, Bowen Pan, Jiaxi Hu, Song Guo, Misti Levy Zamora, Pengfei Tian, Qiong Su, Yuemeng Ji, Jiayun Zhao, Mario Gomez-Hernandez, Min Hu, and Renyi Zhang
Atmos. Chem. Phys., 22, 4951–4967, https://doi.org/10.5194/acp-22-4951-2022, https://doi.org/10.5194/acp-22-4951-2022, 2022
Short summary
Short summary
Severe regional haze events, which are characterized by exceedingly high levels of fine particulate matter (PM), occur frequently in many developing countries (such as China and India), with profound implications for human health, weather, and climate. Our work establishes a synthetic view for the dominant regional features during severe haze events, unraveling rapid in situ PM production and inefficient transport, both of which are amplified by atmospheric stagnation.
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys., 22, 4615–4703, https://doi.org/10.5194/acp-22-4615-2022, https://doi.org/10.5194/acp-22-4615-2022, 2022
Short summary
Short summary
This review of air quality research focuses on developments over the past decade. The article considers current and future challenges that are important from air quality research and policy perspectives and highlights emerging prominent gaps of knowledge. The review also examines how air pollution management needs to adapt to new challenges and makes recommendations to guide the direction for future air quality research within the wider community and to provide support for policy.
Xin Yin, Cong Jiang, Yaping Shao, Ning Huang, and Jie Zhang
Atmos. Chem. Phys., 22, 4509–4522, https://doi.org/10.5194/acp-22-4509-2022, https://doi.org/10.5194/acp-22-4509-2022, 2022
Short summary
Short summary
Through a series of numerical experiments using the large-eddy-simulation model, we have developed an improved particle deposition scheme that takes into account transient wind shear fluctuations. Statistical analysis of the simulation results shows that the shear stress can be well approximated by a Weibull distribution and that the new scheme provides more accurate predictions than the conventional scheme, particularly under weak wind conditions and strong convective atmospheric conditions.
Cited articles
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley Jr., J. A.,
Hansen, J. E., and Hofmann, D. J.: Climate forcing by anthropogenic aerosols,
Science, 255, 423–430, 1992.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J.,
Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer
modeling: A summary of the AER codes, J. Quant. Spectrosc. Ra.,
91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.
Erupe, M. E., Benson, D. R., Li, J., Young, L.-H., Verheggen, B., Al-Refai, M., Tahboub,
O., Cunningham, V., Frimpong, F., Viggiano, A. A., and Lee, S.-H.:
Correlation of aerosol nucleation rate with sulfuric acid and ammonia in
Kent Ohio: an atmospheric observation, J. Geophys. Res., 115, D23216,
https://doi.org/10.1029/2010JD013942, 2010.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient
thermodynamic equilibrium model for
K+–Ca2+–Mg2+– –Na+– – –Cl−–H2O
aerosols, Atmos. Chem. Phys., 7, 4639–4659,
https://doi.org/10.5194/acp-7-4639-2007, 2007.
Gaudet, L. C., Sulia, K. J., Yu, F., and Luo, G.: Sensitivity of Lake-Effect
Cloud Microphysical Processes to Ice Crystal Habit and Nucleation during
OWLeS IOP4, J. Climate, 76, 3411–3434, https://doi.org/10.1175/JAS-D-19-0004.1, 2019.
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
Grell, G. A., Peckham, S. E., McKeen, S., Schmitz, R., Frost, G., Skamarock,
W. C., and Eder, B.: Fully coupled “online” chem-istry within the WRF
model, Atmos. Environ., 39, 6957–6975, 2005.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Han, Y., Zhu, T., Guan, T., Zhu, Y., Liu, J., Ji, Y., Gao, S., Wang, F., Lu, H., and
Huang, W.: Association between size-segregated particles in ambient air and
acute respiratory inflammation, Sci. Total Environ., 565,
412–419, 2016.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an
explicittreatment of entrainment processes, Mon. Weather Rev. 134,
2318–2341, 2006.
Kanawade, V. P., Benson, D. R., and Lee, S.-H.: Statistical analysis of 4-year
observations of aerosol sizes in a semi-rural continental environment,
Atmos. Environ., 59, 30–38, 2012.
Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagné, S., Ickes, L., Kürten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer, D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Downard, A., Ehn, M., Flagan, R.C., Haider, S., Hansel, A., Hauser, D., Jud, W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkilä, J., Minginette, P., Mogo, S., Nieminen, T., Onnela, A., Pereira, P., Petäjä, T., Schnitzhofer, R., Seinfeld, J. H., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H., Weingartner, E., Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U., and Kulmala, M.: Role of sulphuric acid, ammonia and galactic
cosmic rays in atmospheric aerosol nucleation, Nature, 476, 429–433, 2011.
Knibbs, L. D., Cole-Hunter, T., and Morawska, L.: A review of commuter exposure
toultrafine particles and its health effects, Atmos. Environ., 45, 2611–2622,
https://doi.org/10.1016/j.atmosenv.2011.02.065, 2011.
Kürten, A., Bergen, A., Heinritzi, M., Leiminger, M., Lorenz, V., Piel, F., Simon, M., Sitals, R., Wagner, A. C., and Curtius, J.: Observation of new particle formation and measurement of sulfuric acid, ammonia, amines and highly oxidized organic molecules at a rural site in central Germany, Atmos. Chem. Phys., 16, 12793–12813, https://doi.org/10.5194/acp-16-12793-2016, 2016.
Lee, S.-H., Gordon, H., Yu, H., Lehtipalo, K., Haley, R., Li, Y., and Zhang,
R.: New particle formation in the atmosphere: From molecular clusters to
global climate, J. Geophys. Res., 124, 7098–7146, https://doi.org/10.1029/2018JD029356,
2019.
Luo, G. and Yu, F.: Simulation of particle formation and number concentration over the Eastern United States with the WRF-Chem + APM model, Atmos. Chem. Phys., 11, 11521–11533, https://doi.org/10.5194/acp-11-11521-2011, 2011.
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloudmicrophysics on
the development of trailing stratiform precipitation in asimulated squall
line: Comparison of one- and two-moment schemes, Mon. Weather Rev., 137,
991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009.
NADP: National Atmospheric Deposition Program 2017 Annual Summary, Wisconsin
State Laboratory of Hygiene, University of Wisconsin-Madison, WI, USA, available
at: http://nadp.slh.wisc.edu/lib/dataReports.aspx (last access: 29 February 2020), 2018.
National Atmospheric Deposition Program (NRSP3): Ammonia Monitoring Network (AMoN) data, NADP Program Office, Illinois State Water Survey, University of Illinois, Champaign, IL 61820, available at: http://nadp.slh.wisc.edu/data/AMoN/ (last access: 29 February 2020), 2017.
Neitola, K., Brus, D., Makkonen, U., Sipilä, M., Mauldin III, R. L., Sarnela, N., Jokinen, T., Lihavainen, H., and Kulmala, M.: Total sulfate vs. sulfuric acid monomer concenterations in nucleation studies, Atmos. Chem. Phys., 15, 3429–3443, https://doi.org/10.5194/acp-15-3429-2015, 2015.
Pierce, J. R. and Adams, P. J.: Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates, Atmos. Chem. Phys., 9, 1339–1356, https://doi.org/10.5194/acp-9-1339-2009, 2009.
Schell B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A.: Modeling
the formation of secondary organic aerosol within a comprehensive air
quality model system, J. Geophys. Res., 106, 28275–28293,
2001.
Schwab, J. J., Spicer, J. B., and Demerjian, K. L.: Ozone, Trace Gas, and
Particulate Matter Measurements at a Rural Site in Southwestern New York
State: 1995–2005, J. Air Waste Manage. Assoc., 59, 293–309, https://doi.org/10.3155/1047-3289.59.3.293, 2009.
Sherman, J. P., Sheridan, P. J., Ogren, J. A., Andrews, E., Hageman, D., Schmeisser, L., Jefferson, A., and Sharma, S.: A multi-year study of lower tropospheric aerosol variability and systematic relationships from four North American regions, Atmos. Chem. Phys., 15, 12487–12517, https://doi.org/10.5194/acp-15-12487-2015, 2015.
Spracklen, D., Carslaw, K., Kulmala, M., Kerminen, V.-M., Si-hto, S.-L.,
Riipinen, I., Merikanto, J., Mann, G., Chipperfield, M., Wiedensohler, A.,
Birmili, W., and Lihavainen, H.: Contribution of particle formation to global
cloud condensa-tion nuclei concentrations, Geophys. Res. Lett., 35,
L06808, https://doi.org/10.1029/2007GL033038, 2008.
Tiszenkel, L., Stangl, C., Krasnomowitz, J., Ouyang, Q., Yu, H., Apsokardu, M. J., Johnston, M. V., and Lee, S.-H.: Temperature effects on sulfuric acid aerosol nucleation and growth: initial results from the TANGENT study, Atmos. Chem. Phys., 19, 8915–8929, https://doi.org/10.5194/acp-19-8915-2019, 2019.
Twomey, S.: The Influence of Pollution on the Shortwave Albedo of
Clouds, J. Atmos. Sci., 34, 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2,
1977.
UCAR/NCAR/CISL/TDD: NCAR Command Language (Version 6.6.2) [Software], Boulder, Colorado, https://doi.org/10.5065/D6WD3XH5, 2019.
Yarwood, G., Rao, S., Yocke, M., and Whitten, G. Z.: Updates to the Carbon Bond
Mechanism: CB05. US EPA Final Report, 161 pp., available at:
http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf (last access: 29 February 2020), 2005.
Yu, F.: A secondary organic aerosol formation model considering successive oxidation aging and kinetic condensation of organic compounds: global scale implications, Atmos. Chem. Phys., 11, 1083–1099, https://doi.org/10.5194/acp-11-1083-2011, 2011.
Yu, F. and Luo, G.: Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentrations, Atmos. Chem. Phys., 9, 7691–7710, https://doi.org/10.5194/acp-9-7691-2009, 2009.
Yu, F., Luo, G., and Ma, X.: Regional and global modeling of aerosol optical properties with a size, composition, and mixing state resolved particle microphysics model, Atmos. Chem. Phys., 12, 5719–5736, https://doi.org/10.5194/acp-12-5719-2012, 2012.
Yu, F., Luo, G., Pryor, S. C., Pillai, P. R., Lee, S. H., Ortega, J., Schwab, J. J., Hallar, A. G., Leaitch, W. R., Aneja, V. P., Smith, J. N., Walker, J. T., Hogrefe, O., and Demerjian, K. L.: Spring and summer contrast in new particle formation over nine forest areas in North America, Atmos. Chem. Phys., 15, 13993–14003, https://doi.org/10.5194/acp-15-13993-2015, 2015.
Yu, F., Luo, G., Nadykto, A. B., and Herb, J.: Impact of temperature dependence on the possible contribution of organics to new particle formation in the atmosphere, Atmos. Chem. Phys., 17, 4997–5005, https://doi.org/10.5194/acp-17-4997-2017, 2017.
Yu, F., Nadykto, A. B., Herb, J., Luo, G., Nazarenko, K. M., and Uvarova, L. A.: ternary ion-mediated nucleation (TIMN): kinetic-based model and comparison with CLOUD measurements, Atmos. Chem. Phys., 18, 17451–17474, https://doi.org/10.5194/acp-18-17451-2018, 2018.
Yu, H., Haller, A. G., You, Y., Sedlacek, A., Springston, S., Kanawade, V. P., Lee,
Y.-N., Wang, J., Kuang, C., McGraw, R. L., McCubbin, I., Mikkala, J., and Lee,
S.-H.: Sub-3 nm particles observed at the coastal and continental sites
in the United States, J. Geophys. Res., 119, 860–879, https://doi.org/10.1002/2013JD020841, 2014.
Short summary
Particle number concentration (PNC) is a key parameter important for the health and climate impacts of atmospheric aerosols. We show that, even during wintertime, regional nucleation occurs and contributes significantly to number concentrations of ultrafine particles and cloud condensation nuclei. Due to low biogenic emissions, wintertime regional nucleation is solely controlled by inorganic species, and ternary ion-mediated nucleation is able to capture the observed variations in PNC.
Particle number concentration (PNC) is a key parameter important for the health and climate...
Altmetrics
Final-revised paper
Preprint