Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-12409-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-12409-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using the climate feedback response analysis method to quantify climate feedbacks in the middle atmosphere
Maartje Sanne Kuilman
CORRESPONDING AUTHOR
Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Qiong Zhang
Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Department of Earth, Ocean and Atmospheric Science, Florida State
University, Tallahassee, Florida, USA
Qin Wen
Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Laboratory for Climate and Ocean–Atmosphere Studies (LaCOAS), Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
Related authors
No articles found.
Katherine Power, Fernanda Matos, and Qiong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-4061, https://doi.org/10.5194/egusphere-2024-4061, 2025
Short summary
Short summary
This study explores the climate impact of reduced Antarctic and Greenland Ice Sheets using the Late Pliocene as an analogue for future climate. Results reveal a 9.5 °C rise in Antarctic surface temperature, 16 % sea ice loss, and increased precipitation. The simulations highlight weakened Antarctic Bottom Water formation and Southern Annular Mode persistence. By isolating albedo effects, this research provides insights into global climate dynamics and feedbacks.
Marco Gaetani, Gabriele Messori, Francesco S. R. Pausata, Shivangi Tiwari, M. Carmen Alvarez Castro, and Qiong Zhang
Clim. Past, 20, 1735–1759, https://doi.org/10.5194/cp-20-1735-2024, https://doi.org/10.5194/cp-20-1735-2024, 2024
Short summary
Short summary
Palaeoclimate reconstructions suggest that, around 6000 years ago, a greening of the Sahara took place, accompanied by climate changes in the Northern Hemisphere at middle to high latitudes. In this study, a climate model is used to investigate how this drastic environmental change in the Sahara impacted remote regions. Specifically, climate simulations reveal significant modifications in atmospheric circulation over the North Atlantic, affecting North American and European climates.
Putian Zhou, Zhengyao Lu, Jukka-Pekka Keskinen, Qiong Zhang, Juha Lento, Jianpu Bian, Twan van Noije, Philippe Le Sager, Veli-Matti Kerminen, Markku Kulmala, Michael Boy, and Risto Makkonen
Clim. Past, 19, 2445–2462, https://doi.org/10.5194/cp-19-2445-2023, https://doi.org/10.5194/cp-19-2445-2023, 2023
Short summary
Short summary
A Green Sahara with enhanced rainfall and larger vegetation cover existed in northern Africa about 6000 years ago. Biosphere–atmosphere interactions are found to be critical to explaining this wet period. Based on modeled vegetation reconstruction data, we simulated dust emissions and aerosol formation, which are key factors in biosphere–atmosphere interactions. Our results also provide a benchmark of aerosol climatology for future paleo-climate simulation experiments.
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023, https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary
Short summary
We investigate the Maritime Continent climate in the mid-Piacenzian warm period and find it is warmer and wetter and the sea surface salinity is lower compared with preindustrial period. Besides, the fresh and warm water transfer through the Maritime Continent was stronger. In order to avoid undue influence from closely related models in the multimodel results, we introduce a new metric, the multi-cluster mean, which could reveal spatial signals that are not captured by the multimodel mean.
Gustav Strandberg, Jie Chen, Ralph Fyfe, Erik Kjellström, Johan Lindström, Anneli Poska, Qiong Zhang, and Marie-José Gaillard
Clim. Past, 19, 1507–1530, https://doi.org/10.5194/cp-19-1507-2023, https://doi.org/10.5194/cp-19-1507-2023, 2023
Short summary
Short summary
The impact of land use and land cover change (LULCC) on the climate around 2500 years ago is studied using reconstructions and models. The results suggest that LULCC impacted the climate in parts of Europe. Reconstructed LULCC shows up to 1.5 °C higher temperature in parts of Europe in some seasons. This relatively strong response implies that anthropogenic LULCC that had occurred by the late prehistoric period may have already affected the European climate by 2500 years ago.
Julia E. Weiffenbach, Michiel L. J. Baatsen, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Zixuan Han, Alan M. Haywood, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Julia C. Tindall, Charles J. R. Williams, Qiong Zhang, and Zhongshi Zhang
Clim. Past, 19, 61–85, https://doi.org/10.5194/cp-19-61-2023, https://doi.org/10.5194/cp-19-61-2023, 2023
Short summary
Short summary
We study the behavior of the Atlantic Meridional Overturning Circulation (AMOC) in the mid-Pliocene. The mid-Pliocene was about 3 million years ago and had a similar CO2 concentration to today. We show that the stronger AMOC during this period relates to changes in geography and that this has a significant influence on ocean temperatures and heat transported northwards by the Atlantic Ocean. Understanding the behavior of the mid-Pliocene AMOC can help us to learn more about our future climate.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Zixuan Han, Qiong Zhang, Qiang Li, Ran Feng, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Bette L. Otto-Bliesner, Esther C. Brady, Nan Rosenbloom, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Charles J. R. Williams, Daniel J. Lunt, Jianbo Cheng, Qin Wen, and Natalie J. Burls
Clim. Past, 17, 2537–2558, https://doi.org/10.5194/cp-17-2537-2021, https://doi.org/10.5194/cp-17-2537-2021, 2021
Short summary
Short summary
Understanding the potential processes responsible for large-scale hydrological cycle changes in a warmer climate is of great importance. Our study implies that an imbalance in interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate cycling. Moreover, a robust westward shift in the Pacific Walker circulation can moisten the northern Indian Ocean.
Arthur M. Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past, 17, 2427–2450, https://doi.org/10.5194/cp-17-2427-2021, https://doi.org/10.5194/cp-17-2427-2021, 2021
Short summary
Short summary
In this work, we have studied the behaviour of El Niño events in the mid-Pliocene, a period of around 3 million years ago, using a collection of 17 climate models. It is an interesting period to study, as it saw similar atmospheric carbon dioxide levels to the present day. We find that the El Niño events were less strong in the mid-Pliocene simulations, when compared to pre-industrial climate. Our results could help to interpret El Niño behaviour in future climate projections.
Ellen Berntell, Qiong Zhang, Qiang Li, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, William Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, Charles J. R. Williams, Daniel J. Lunt, Ran Feng, Bette L. Otto-Bliesner, and Esther C. Brady
Clim. Past, 17, 1777–1794, https://doi.org/10.5194/cp-17-1777-2021, https://doi.org/10.5194/cp-17-1777-2021, 2021
Short summary
Short summary
The mid-Pliocene Warm Period (~ 3.2 Ma) is often considered an analogue for near-future climate projections, and model results from the PlioMIP2 ensemble show an increase of rainfall over West Africa and the Sahara region compared to pre-industrial conditions. Though previous studies of future projections show a west–east drying–wetting contrast over the Sahel, these results indicate a uniform rainfall increase over the Sahel in warm climates characterized by increased greenhouse gas forcing.
Qiong Zhang, Ellen Berntell, Josefine Axelsson, Jie Chen, Zixuan Han, Wesley de Nooijer, Zhengyao Lu, Qiang Li, Qiang Zhang, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 1147–1169, https://doi.org/10.5194/gmd-14-1147-2021, https://doi.org/10.5194/gmd-14-1147-2021, 2021
Short summary
Short summary
Paleoclimate modelling has long been regarded as a strong out-of-sample test bed of the climate models that are used for the projection of future climate changes. Here, we document the model experimental setups for the three past warm periods with EC-Earth3-LR and present the results on the large-scale features. The simulations demonstrate good performance of the model in capturing the climate response under different climate forcings.
Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Odd Helge Otterå, Kerim H. Nisancioglu, Ning Tan, Camille Contoux, Gilles Ramstein, Ran Feng, Bette L. Otto-Bliesner, Esther Brady, Deepak Chandan, W. Richard Peltier, Michiel L. J. Baatsen, Anna S. von der Heydt, Julia E. Weiffenbach, Christian Stepanek, Gerrit Lohmann, Qiong Zhang, Qiang Li, Mark A. Chandler, Linda E. Sohl, Alan M. Haywood, Stephen J. Hunter, Julia C. Tindall, Charles Williams, Daniel J. Lunt, Wing-Le Chan, and Ayako Abe-Ouchi
Clim. Past, 17, 529–543, https://doi.org/10.5194/cp-17-529-2021, https://doi.org/10.5194/cp-17-529-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important topic in the Pliocene Model Intercomparison Project. Previous studies have suggested a much stronger AMOC during the Pliocene than today. However, our current multi-model intercomparison shows large model spreads and model–data discrepancies, which can not support the previous hypothesis. Our study shows good consistency with future projections of the AMOC.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Alan M. Haywood, Julia C. Tindall, Harry J. Dowsett, Aisling M. Dolan, Kevin M. Foley, Stephen J. Hunter, Daniel J. Hill, Wing-Le Chan, Ayako Abe-Ouchi, Christian Stepanek, Gerrit Lohmann, Deepak Chandan, W. Richard Peltier, Ning Tan, Camille Contoux, Gilles Ramstein, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Qiong Zhang, Qiang Li, Youichi Kamae, Mark A. Chandler, Linda E. Sohl, Bette L. Otto-Bliesner, Ran Feng, Esther C. Brady, Anna S. von der Heydt, Michiel L. J. Baatsen, and Daniel J. Lunt
Clim. Past, 16, 2095–2123, https://doi.org/10.5194/cp-16-2095-2020, https://doi.org/10.5194/cp-16-2095-2020, 2020
Short summary
Short summary
The large-scale features of middle Pliocene climate from the 16 models of PlioMIP Phase 2 are presented. The PlioMIP2 ensemble average was ~ 3.2 °C warmer and experienced ~ 7 % more precipitation than the pre-industrial era, although there are large regional variations. PlioMIP2 broadly agrees with a new proxy dataset of Pliocene sea surface temperatures. Combining PlioMIP2 and proxy data suggests that a doubling of atmospheric CO2 would increase globally averaged temperature by 2.6–4.8 °C.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Martin Renoult, James Douglas Annan, Julia Catherine Hargreaves, Navjit Sagoo, Clare Flynn, Marie-Luise Kapsch, Qiang Li, Gerrit Lohmann, Uwe Mikolajewicz, Rumi Ohgaito, Xiaoxu Shi, Qiong Zhang, and Thorsten Mauritsen
Clim. Past, 16, 1715–1735, https://doi.org/10.5194/cp-16-1715-2020, https://doi.org/10.5194/cp-16-1715-2020, 2020
Short summary
Short summary
Interest in past climates as sources of information for the climate system has grown in recent years. In particular, studies of the warm mid-Pliocene and cold Last Glacial Maximum showed relationships between the tropical surface temperature of the Earth and its sensitivity to an abrupt doubling of atmospheric CO2. In this study, we develop a new and promising statistical method and obtain similar results as previously observed, wherein the sensitivity does not seem to exceed extreme values.
Cited articles
Akmaev, R. A., Fomichev, V. I., and Zhu, X.: Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere, J. Atmos. Sol.-Terr. Phys, 68, 1879–1889,
https://doi.org/10.1016/j.jastp.2006.03.008, 2006.
Beig, G., Keckhut, P., Lower, R. P., Roble, R. G., Mlynczak, M. G., Scheer, J., Fomichev, V. I., Offermann, D., French, W. J. R., Shepherd, M. G., Semenov, A. I., Remsberg, E. E., She, C. Y., Lübken, F. J., Bremer J., Clemensha, B. R., Stegman, J., Sigernes, F., and Fadnavis, S.: Review of mesospheric temperature trends, Rev. Geophys., 41, 4, https://doi.org/10.1029/2002RG000121, 2003.
Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J.-L., Hall, A., Hallegatte, S., Holland, M. M., Ingram, W., Randall, D. A., Soden, D. J., Tselioudis, G., and Webb, M. J.: How well do we understand and evaluate climate
change feedback processes?, J. Climate, 19, 3445–3482,
https://doi.org/10.1175/JCLI3819.1, 2006.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate
Change: The Physical Science Basis. Contribution of Working Group I to IPCC
AR5, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 2013.
Brasseur, G. P. and Solomon, S.: Aeronomy of the middle atmosphere,
Chemistry and physics of the stratosphere, Springer, New York, 2005.
Brewer, A. W.: Evidence for a world circulation provided by the measurements
of helium and water vapour distribution in the stratosphere, Q. J. Roy.
Meteor. Soc., 75, 351–363, https://doi.org/10.1002/qj.49707532603,
1949.
Brühl, C. and Crutzen, P. J.: Scenarios of possible changes in
atmospheric temperatures and ozone concentrations due to man's activities,
estimated with a one-dimensional coupled photochemical climate model, Clim.
Dyn., 2, 173–203, https://doi.org/10.1007/BF01053474, 1988.
Butchart, N, Cionni, I., Eyring, V., Shepherd, T. G., Waugh, D. W., Akiyoshi, H., Austin, J., Brühl, C., Chipperfield, M. P., Cordero, E., Dameris, N., Deckert, R., Dhomse, S., Frith, S. M., Garcia., R. R., Gettelman, A., Giorgetta, M. A., Kinnison, D. E., Li, F., Mancini, E., McLandress, C., Pawson., S., Pirati, G., Plummer, D. A., Rozanov, E., Sassi, F., Scinocca, J. F., Shibata, K., Steil, B., and Tian, W.: Chemistry–climate model simulations of
twenty-first century stratospheric climate and circulation changes, J. Climate,
23, 5349–5374, https://doi.org/10.1175/2010JCLI3404.1, 2010.
Caldwell, P. M., Zelinka, M. D., Taylor, K. E., and Marvel, K.: Quantifying the
sources of intermodal spread in equilibrium climate sensitivity, J. Climate,
29, 513–524, https://doi.org/10.1175/JCLI-D-15-0352.1, 2016.
Cai, M. and Lu, J.: A new framework for isolating individual feedback
processes in coupled general circulation climate models. Part II: Method
demonstrations and comparisons, Clim. Dyn., 32, 887–900,
https://doi.org/10.1007/s00382-008-0424-4, 2009.
Cariolle, D.: The ozone budget in the stratosphere: Results of a one-dimensional photochemical model, Planet. Space Sci., 31, 1033–1052, https://doi.org/10.1016/0032-0633(83)90093-4, 1983.
Deckert, R. and Dameris, M.: Higher tropical SSTs strengthen the tropical
upwelling via deep convection, Geophys. Res. Lett., 35, L10813,
https://doi.org/10.1029/2008GL033719, 2008.
Dietmüller, S., Ponater, M., and Sausen, R.: Interactive ozone induces a negative feedback in CO2‐driven climate change simulations. J. Geophys. Res.-Atmos., 119, 1796–1805,
https://doi.org/10.1002/2013JD020575, 2014.
Dobson, G. M. B.: Origin and distribution of the polyatomic molecules in the
atmosphere, Proc. Math. Phys. Eng. Sci., 236, 187–193,
https://doi.org/10.1098/rspa.1956.0127, 1956.
Fomichev, V. I., Jonsson, A. I., De Grandpre, J., Beagley, S. R., McLandress,
C., Semeniuk, K., and Shepherd, T. G.: Response of the middle atmosphere to
CO2 doubling: Results from the Canadian Middle Atmosphere Model, J.
Climate, 20, 1121–1141, https://doi.org/10.1175/JCLI4030.1, 2007.
Fu, Q. and Liou, K. N.: On the correlated k-distribution method for
radiative transfer in nonhomogeneous atmospheres, J. Atmos. Sci, 49,
2139–2156, https://doi.org/10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2, 1992.
Fu, Q. and Liou, K. N.: Parameterization of the radiative properties of
cirrus clouds, J. Atmos. Sci, 50, 2008–2025,
https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2 1993.
Hu, X., Y. Li, S. Yang, Y. Deng, and Cai. M.: Process-based decomposition of
the decadal climate difference between 2002–13 and 1984–95, J. Climate, 30,
4373–4393, https://doi.org/10.1175/JCLI-D-15-0742.1, 2017.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Kamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marchall, S.: The Community Earth System Model: A framework for
collaborative research, B. Am. Meteorol., 94, 1339–1360,
https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.
Jonsson, A. I., de Grandpré, J., Fomichev, V. I., McConnell, J. C., and Beagley, S. C.: Doubled CO2-induced cooling in the middle atmosphere: Photochemical analysis of the ozone radiative feedback, J. Geophys. Res.-Atmos., 109, D24103, https://doi.org/10.1029/2004JD005093, 2004.
Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R., Sassi,
F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess, P.,
Orlando, J. J., Tie, X. X., Randall, W., Pan, L. L., Gettelman, A., Granier,
C., Diehl, T., Niemeijer, Y., and Simmons, A. J.: Sensitivity of chemical tracers
to meteorological parameters in the MOZART-3 chemical transport model, J.
Geophys. Res.-Atmos., 112, D20302, https://doi.org/10.1029/2006JD007879,
2007.
Langematz, U.: Stratospheric ozone: down and up through the
anthropocene, ChemTexts, 5, 8, https://doi.org/10.1007/s40828-019-0082-7, 2019.
Lindzen, R. S.: Turbulence stress owing to gravity wave and tidal breakdown,
J. Geophys. Res.-Oceans, 86, 9707–9714,
https://doi.org/10.1029/JC086iC10p09707, 1981.
Lu, J. and Cai, M.: A new framework for isolating individual feedback processes in coupled general circulation climate model. Part I: Formulation, Clim. Dynam, 32, 873–885, https://doi.org/10.1007/s00382-008-0425-3, 2009.
Manabe, S. and Wetherald, R. T.: The effects of doubling the CO2
concentration on the climate of a general circulation model, J. Atmos.
Sci, 32, 3–15, 1975.
Marsh, D. R., Mills, M. J. Kinnison, D. E., Lamarque, J. F., Calvo, N., and Polvani,
L. M.: Climate change from 1850 to 2005 simulated in CESM1(WACCM), J. Climate,
26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1, 2013.
McFarlane, N. A.: The effect of orographically excited wave drag on the
general circulation of the lower stratosphere and troposphere, J. Atmos.
Sci, 44, 1775–1800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2 , 1987.
Neale, R., Richter, J., Park, S., Lauritzen, P., Vavrus, S., Rasch, P., and
Zhang, M: The mean climate of the Community Atmosphere Model (CAM4) in
forced SST and fully coupled experiments, J. Climate, 26, 5150–5168,
https://doi.org/10.1175/JCLI-D-12-00236.1, 2013.
Nowack, P. J., Abraham, N. L., Maycock, A. C., Braesicke, P., Gregory, J. M., Joshi, M. M., Osprey, A., and Pyle, J. A.: A large ozone-circulation feedback and its implications for global warming assessments, Nat. Clim. Change, 5, 41–45, 2015, https://doi.org/10.1038/NCLIMATE2451, 2015.
Oberländer, S., Langematz, U., and Meul, S.: Unraveling impact factors
for future changes in the Brewer-Dobson circulation, J. Geophys. Res.-Atmos., 118, 10296–10312, https://doi.org/10.1002/jgrd.50775, 2013.
Ramaswamy, V., Collins, W., Haywood, J., Lean, J., Mahowald, N., Myhre, G.,
Naik, V., Shine, K. P., Soden, B., Stenchikov, G., and Storelvmo, T.:
Radiative forcing of climate: The historical evolution of the radiative
forcing concept, the forcing agents and their quantification, and
application, Meteorol. Monogr., 59, 14.1–14.99, https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0001.1, 2019.
Ramaswamy, V., Chanin, M.-L., Angell, J., Barnett, J., Gaffen, D., Gelman, M., Keckhut, P., Koshelhov, Y., Labitzke, K., Lin, J.-J. R., O'Neill, A., Nash, J., Randel, W., Rood, R., Shine, K., Shiotani, M., Swinbank, R.: Stratospheric temperature trends: Observations and
model simulations, Rev. Geophys., 39.1, 71–122,
https://doi.org/10.1029/1999RG000065, 2001.
Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a physically based gravity
wave source parameterization in a general circulation model, J. Atmos. Sci,
67, 136–156, https://doi.org/10.1175/2009JAS3112.1, 2010.
Rieger, V. S., Dietmüller, S., and Ponater, M.: Can feedback
analysis be used to uncover the physical origin of climate sensitivity and
efficacy differences?, Clim. Dyn., 49, 2831–2844,
https://doi.org/10.1007/s00382-016-3476-x, 2017.
Riese, M., Ploeger, F., Rap, A., Vogel, B., Konopka, P., Dameris, M., and Forster, P.: Impact of uncertainties in atmospheric mixing on simulated UTLS
composition and related radiative effects, J. Geophys. Res.-Atmos., 117, D16305, https://doi.org/10.1029/2012JD017751, 2012.
Royer, J. F., Planton, S., and Déqué, M.: A sensitivity experiment for the removal of Arctic sea ice with the French spectral general circulation model, Clim. Dyn., 5, 1–17, https://doi.org/10.1007/BF00195850, 1990.
Schmidt, H., Brasseur, G. P, Charron, M., Manzini, E., Giorgetta, M. A.,
Diehl, T., Fomichev, V., Kinnison, D., Marsh, D., and Walters, S.: The HAMMONIA
Chemistry Climate Model: Sensitivity of the mesopause region to the 11-year
solar cycle and CO2 doubling, J. Climate, 19, 3903–3931,
https://doi.org/10.1175/JCLI3829.1, 2006.
Shaw, T. A. and Shepherd T. G.: Atmospheric science: Raising the roof, Nat.
Geosci., 1, 12–13, https://doi.org/10.1038/ngeo.2007.53, 2008.
Shepherd, T. G.: Dynamics, stratospheric ozone and climate change,
Atmos. Ocean, 46, 117–138, https://doi.org/10.3137/ao.460106, 2008.
Shepherd, T. G. and McLandress, C.: A robust mechanism for strengthening of
the Brewer–Dobson circulation in response to climate change: critical layer
control of subtropical wave breaking, J. Atmos. Sci, 68, 784–797,
https://doi.org/10.1175/2010JAS3608.1, 2011.
Shine, K. P., Bouqui, M. S., Forster, de F. Forster, P. M., Hare, S. H. E., Langematz, U., Braesicke, P., Grewe, V., Ponater, M., Schnadt, C., Smith, C. A., Haigh, J. D., Austin, J., Butchart, N., Shindell, D. T., Randel, W. J., Nagashima, T., Portmann, R. W., Solomon, S., Seidel, D. J., Lanzante, J., Klein, S., Ramaswamy, V., and Schwarzkopf, M. D.: A comparison of model-simulated trends in
stratospheric temperatures, Q. J. Roy. Meteor. Soc.
Sci., 129, 1565–1588, https://doi.org/10.1256/qj.02.186, 2003.
Sigmond, M., Siegmund, P. C., Manzini, E., and Kelder, H.: A simulation of the
separate climate effects of middle-atmospheric and tropospheric CO2
doubling, J. Climate, 17, 2352–2367,
https://doi.org/10.1175/1520-0442(2004)017<2352:ASOTSC>2.0.CO;2, 2004.
Soden, B. and Held, I. M.: An assessment of climate feedbacks in coupled ocean-atmosphere models, J. Climate, 19, 3354–3360,
https://doi.org/10.1175/JCLI3799.1, 2006.
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M.,
Sanford, T. J., and Plattner, G. K.: Contributions of stratospheric water
vapor to decadal changes in the rate of global warming, Science, 327,
1219–1223, https://doi.org/10.1126/science.1182488, 2010.
Song, X. and Zhang, G. J.: Role of climate feedback in El Niño-like SST
response to global warming, J. Climate, 27, 7301–7318, https://doi.org/10.1175/JCLI-D-14-00072.1, 2014.
Taylor, P. C., Cai, M., Hu, A., Meehl, J., Washington, W., and Zhang, G. J.: A decomposition of feedback contributions to polar warming amplification, J.
Climate, 26, 7023–7043, https://doi.org/10.1175/JCLI-D-12-00696.1, 2013.
WMO (World Meteorological Organization): Scientific Assessment of Ozone
Depletion: 2018, Global Ozone Research and Monitoring Project – Report No.
58, Geneva, Switzerland, 588 pp., available at: https://www.esrl.noaa.gov/csl/assessments/ozone/2018/downloads/2018OzoneAssessment.pdf (last access: 26 October 2020), 2018.
Zhang, P., Wu, Y., Simpson, I. R., Smith, K. L., Zhang, X., De, B., and
Callaghan, P.: A stratospheric pathway linking a colder Siberia to
Barents-Kara Sea sea ice loss, Sci. Adv., 4, eaat6025,
https://doi.org/10.1126/sciadv.aat6025, 2018.
Zheng, J., Zhang, Q., Li, Q., Zhang, Q., and Cai, M.: Contribution of sea ice albedo and insulation effects to Arctic amplification in the EC-Earth Pliocene simulation, Clim. Past, 15, 291–305, https://doi.org/10.5194/cp-15-291-2019, 2019.
Zhu, X., Yee, J.-H., Cai, M., Swartz, W. H., Coy, L., Aquila, V., Garcia, R.,
and Talaat, E. R.: Diagnosis of middle-atmosphere climate sensitivity by the
climate feedback-response analysis method, J. Atmos. Sci., 73, 3–23, https://doi.org/10.1175/JAS-D-15-0013.1, 2016.
Short summary
In this study, we quantify the temperature changes in the middle atmosphere due to different feedback processes using the climate feedback response analysis method. We have found that the change due to the increase in CO2 alone cools the middle atmosphere. The combined effect of the different feedbacks causes the atmosphere to cool less. The ozone feedback is the most important feedback process, while the cloud, water vapour and albedo feedback play only a minor role.
In this study, we quantify the temperature changes in the middle atmosphere due to different...
Altmetrics
Final-revised paper
Preprint