Articles | Volume 19, issue 8
Atmos. Chem. Phys., 19, 5529–5541, 2019
Atmos. Chem. Phys., 19, 5529–5541, 2019
Research article
26 Apr 2019
Research article | 26 Apr 2019

Estimation of hourly land surface heat fluxes over the Tibetan Plateau by the combined use of geostationary and polar-orbiting satellites

Lei Zhong et al.

Related authors

Long-term variations in actual evapotranspiration over the Tibetan Plateau
Cunbo Han, Yaoming Ma, Binbin Wang, Lei Zhong, Weiqiang Ma, Xuelong Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3513–3524,,, 2021
Short summary
Development and evaluation of spectral nudging strategy for the simulation of summer precipitation over the Tibetan Plateau using WRF (v4.0)
Ziyu Huang, Lei Zhong, Yaoming Ma, and Yunfei Fu
Geosci. Model Dev., 14, 2827–2841,,, 2021
Short summary
A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau
Yaoming Ma, Zeyong Hu, Zhipeng Xie, Weiqiang Ma, Binbin Wang, Xuelong Chen, Maoshan Li, Lei Zhong, Fanglin Sun, Lianglei Gu, Cunbo Han, Lang Zhang, Xin Liu, Zhangwei Ding, Genhou Sun, Shujin Wang, Yongjie Wang, and Zhongyan Wang
Earth Syst. Sci. Data, 12, 2937–2957,,, 2020
Short summary
Impact of topography on black carbon transport to the southern Tibetan Plateau during the pre-monsoon season and its climatic implication
Meixin Zhang, Chun Zhao, Zhiyuan Cong, Qiuyan Du, Mingyue Xu, Yu Chen, Ming Chen, Rui Li, Yunfei Fu, Lei Zhong, Shichang Kang, Delong Zhao, and Yan Yang
Atmos. Chem. Phys., 20, 5923–5943,,, 2020
Short summary
Combining MODIS, AVHRR and in situ data for evapotranspiration estimation over heterogeneous landscape of the Tibetan Plateau
Y. Ma, Z. Zhu, L. Zhong, B. Wang, C. Han, Z. Wang, Y. Wang, L. Lu, P. M. Amatya, W. Ma, and Z. Hu
Atmos. Chem. Phys., 14, 1507–1515,,, 2014

Related subject area

Subject: Radiation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Radiative closure and cloud effects on the radiation budget based on satellite and shipborne observations during the Arctic summer research cruise, PS106
Carola Barrientos-Velasco, Hartwig Deneke, Anja Hünerbein, Hannes J. Griesche, Patric Seifert, and Andreas Macke
Atmos. Chem. Phys., 22, 9313–9348,,, 2022
Short summary
Impacts of active satellite sensors' low-level cloud detection limitations on cloud radiative forcing in the Arctic
Yinghui Liu
Atmos. Chem. Phys., 22, 8151–8173,,, 2022
Short summary
Record-breaking statistics detect islands of cooling in a sea of warming
Elisa T. Sena, Ilan Koren, Orit Altaratz, and Alexander B. Kostinski
Atmos. Chem. Phys. Discuss.,,, 2022
Revised manuscript accepted for ACP
Short summary
Longwave radiative effect of the cloud–aerosol transition zone based on CERES observations
Babak Jahani, Hendrik Andersen, Josep Calbó, Josep-Abel González, and Jan Cermak
Atmos. Chem. Phys., 22, 1483–1494,,, 2022
Short summary
Ice and mixed-phase cloud statistics on the Antarctic Plateau
William Cossich, Tiziano Maestri, Davide Magurno, Michele Martinazzo, Gianluca Di Natale, Luca Palchetti, Giovanni Bianchini, and Massimo Del Guasta
Atmos. Chem. Phys., 21, 13811–13833,,, 2021
Short summary

Cited articles

Abdolghafoorian, A., Farhadi, L., Bateni, S. M., Margulis, S., and Xu, T. R.: Characterizing the effect of vegetation dynamics on the bulk heat transfer coefficient to improve variational estimation of surface turbulent fluxes, J. Hydrometeorol., 18, 321–333, 2017. 
Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., Kramber, W., Lorite, I., and Robison, C. W.: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) – Applications, J. Irrig. Drain. E., 133, 395–406,, 2007. 
Bastiaanssen, W. G., Menenti, M., Feddes, R. A., and Holtslag, A. A. M.: A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, J. Hydrol., 212, 198–212,, 1998. 
Bateni, S. M., Entekhabi, D., and Castelli, F.: Mapping evaporation and estimation of surface control of evaporation using remotely sensed land surface temperature from a constellation of satellites, Water Resour. Res., 49, 950–968,, 2013. 
Boos, W. R. and Kuang, Z. M.: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating, Nature, 463, 218–223,, 2010. 
Short summary
Fine-temporal-resolution turbulent heat fluxes at the plateau scale have significant importance for studying diurnal variation characteristics of atmospheric boundary and weather systems in the Tibetan Plateau (TP) and its surroundings. Time series of land surface heat fluxes with high temporal resolution over the entire TP were derived. The derived surface heat fluxes proved to be in good agreement with in situ measurements and were superior to GLDAS flux products.
Final-revised paper