Articles | Volume 19, issue 7
Atmos. Chem. Phys., 19, 4367–4382, 2019
https://doi.org/10.5194/acp-19-4367-2019
Atmos. Chem. Phys., 19, 4367–4382, 2019
https://doi.org/10.5194/acp-19-4367-2019
Research article
04 Apr 2019
Research article | 04 Apr 2019

Spatial and temporal variability of turbulence dissipation rate in complex terrain

Nicola Bodini et al.

Related authors

Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign
Norman Wildmann, Nicola Bodini, Julie K. Lundquist, Ludovic Bariteau, and Johannes Wagner
Atmos. Meas. Tech., 12, 6401–6423, https://doi.org/10.5194/amt-12-6401-2019,https://doi.org/10.5194/amt-12-6401-2019, 2019
Short summary
Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign
Nicola Bodini, Julie K. Lundquist, and Rob K. Newsom
Atmos. Meas. Tech., 11, 4291–4308, https://doi.org/10.5194/amt-11-4291-2018,https://doi.org/10.5194/amt-11-4291-2018, 2018
Short summary
Three-dimensional structure of wind turbine wakes as measured by scanning lidar
Nicola Bodini, Dino Zardi, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 2881–2896, https://doi.org/10.5194/amt-10-2881-2017,https://doi.org/10.5194/amt-10-2881-2017, 2017
Short summary
Year-to-year correlation, record length, and overconfidence in wind resource assessment
Nicola Bodini, Julie K. Lundquist, Dino Zardi, and Mark Handschy
Wind Energ. Sci., 1, 115–128, https://doi.org/10.5194/wes-1-115-2016,https://doi.org/10.5194/wes-1-115-2016, 2016
Short summary

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A change in the relation between the Subtropical Indian Ocean Dipole and the South Atlantic Ocean Dipole indices in the past four decades
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 23, 345–353, https://doi.org/10.5194/acp-23-345-2023,https://doi.org/10.5194/acp-23-345-2023, 2023
Short summary
Characterising the dynamic movement of thunderstorms using very low- and low-frequency (VLF/LF) total lightning data over the Pearl River Delta region
Si Cheng, Jianguo Wang, Li Cai, Mi Zhou, Rui Su, Yijun Huang, and Quanxin Li
Atmos. Chem. Phys., 22, 10045–10059, https://doi.org/10.5194/acp-22-10045-2022,https://doi.org/10.5194/acp-22-10045-2022, 2022
Short summary
Evolution of turbulent kinetic energy during the entire sandstorm process
Hongyou Liu, Yanxiong Shi, and Xiaojing Zheng
Atmos. Chem. Phys., 22, 8787–8803, https://doi.org/10.5194/acp-22-8787-2022,https://doi.org/10.5194/acp-22-8787-2022, 2022
Short summary
Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic
Simon Kirschler, Christiane Voigt, Bruce Anderson, Ramon Campos Braga, Gao Chen, Andrea F. Corral, Ewan Crosbie, Hossein Dadashazar, Richard A. Ferrare, Valerian Hahn, Johannes Hendricks, Stefan Kaufmann, Richard Moore, Mira L. Pöhlker, Claire Robinson, Amy J. Scarino, Dominik Schollmayer, Michael A. Shook, K. Lee Thornhill, Edward Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 8299–8319, https://doi.org/10.5194/acp-22-8299-2022,https://doi.org/10.5194/acp-22-8299-2022, 2022
Short summary
The effect of ice supersaturation and thin cirrus on lapse rates in the upper troposphere
Klaus Gierens, Lena Wilhelm, Sina Hofer, and Susanne Rohs
Atmos. Chem. Phys., 22, 7699–7712, https://doi.org/10.5194/acp-22-7699-2022,https://doi.org/10.5194/acp-22-7699-2022, 2022
Short summary

Cited articles

Aitken, M. L., Rhodes, M. E., and Lundquist, J. K.: Performance of a wind-profiling lidar in the region of wind turbine rotor disks, J. Atmos. Ocean. Tech., 29, 347–355, https://doi.org/10.1175/JTECH-D-11-00033.1, 2012. a
Albertson, J. D., Parlange, M. B., Kiely, G., and Eichinger, W. E.: The average dissipation rate of turbulent kinetic energy in the neutral and unstable atmospheric surface layer, J. Geophys. Res.-Atmos., 102, 13423–13432, 1997. a
Alemany, S., Beltran, J., Perez, A., and Ganzfried, S.: Predicting Hurricane Trajectories using a Recurrent Neural Network, arXiv preprint, arXiv 1802.02548, 2018. a
Babić, K., Bencetić Klaić, Z., and Večenaj, Ž.: Determining a turbulence averaging time scale by Fourier analysis for the nocturnal boundary layer, Geofizika, 29, 35–51, 2012. a
Baik, J.-J. and Kim, J.-J.: A numerical study of flow and pollutant dispersion characteristics in urban street canyons, J. Appl. Meteorol., 38, 1576–1589, 1999. a
Download
Short summary
To improve the parameterization of the turbulence dissipation rate (ε) in numerical weather prediction models, we have assessed its temporal and spatial variability at various scales in the Columbia River Gorge during the WFIP2 field experiment. The turbulence dissipation rate shows large spatial variability, even at the microscale, with larger values in sites located downwind of complex orographic structures or in wind farm wakes. Distinct diurnal and seasonal cycles in ε have also been found.
Altmetrics
Final-revised paper
Preprint