Articles | Volume 19, issue 6
Atmos. Chem. Phys., 19, 4075–4091, 2019
https://doi.org/10.5194/acp-19-4075-2019
Atmos. Chem. Phys., 19, 4075–4091, 2019
https://doi.org/10.5194/acp-19-4075-2019

Research article 02 Apr 2019

Research article | 02 Apr 2019

Mechanistic and kinetics investigations of oligomer formation from Criegee intermediate reactions with hydroxyalkyl hydroperoxides

Long Chen et al.

Related authors

Origin and transformation of ambient volatile organic compounds during a dust-to-haze episode in northwest China
Yonggang Xue, Yu Huang, Steven Sai Hang Ho, Long Chen, Liqin Wang, Shuncheng Lee, and Junji Cao
Atmos. Chem. Phys., 20, 5425–5436, https://doi.org/10.5194/acp-20-5425-2020,https://doi.org/10.5194/acp-20-5425-2020, 2020
Short summary

Cited articles

Anglada, J. M. and Solé, A.: Impact of water dimer on the atmospheric reactivity of carbonyl oxides, Phys. Chem. Chem. Phys., 18, 17698–17712, https://doi.org/10.1039/c6cp02531e, 2016. 
Anglada, J. M., Aplincourt, P., Bofill, J. M., and Cremer, D.: Atmospheric formation of OH radicals and H2O2 from alkene ozonolysis under humid conditions, Chem. Phys. Chem., 2, 215–221, https://doi.org/10.1002/1439-7641(20020215)3:2<215::AID-CPHC215>3.0.CO;2-3, 2002. 
Anglada, J. M., González, J., and Torrent-Sucarrat, M.: Effects of the substituents on the reactivity of carbonyl oxides. A theoretical study on the reaction of substituted carbonyl oxides with water, Phys. Chem. Chem. Phys., 13, 13034–13045, https://doi.org/10.1039/c1cp20872a, 2011. 
Aplincourt, P. and Anglada, J. M.: Theoretical studies of the isoprene ozonolysis under tropospheric conditions. 2. unimolecular and water-assisted decomposition of the α-hydroxy hydroperoxides, J. Phys. Chem. A, 107, 5812–5820, https://doi.org/10.1021/jp034203w, 2003. 
Aplincourt, P. and Ruiz-López, M. F.: Theoretical investigation of reaction mechanisms for carboxylic acid formation in the atmosphere, J. Am. Chem. Soc., 122, 8990–8997, https://doi.org/10.1021/ja000731z, 2000.  
Download
Short summary
The present calculations show that the sequential addition of CIs to HHPs affords oligomers containing CIs as chain units. The addition of an –OOH group in HHPs to the central carbon atom of CIs is identified as the most energetically favorable channel, with a barrier height strongly dependent on both CI substituent number (one or two) and position (syn- or anti-). In particular, the introduction of a methyl group into the anti-position significantly increases the rate coefficient.
Altmetrics
Final-revised paper
Preprint