Articles | Volume 19, issue 2
Atmos. Chem. Phys., 19, 1077–1096, 2019
https://doi.org/10.5194/acp-19-1077-2019
Atmos. Chem. Phys., 19, 1077–1096, 2019
https://doi.org/10.5194/acp-19-1077-2019

Research article 28 Jan 2019

Research article | 28 Jan 2019

Subgrid variations of the cloud water and droplet number concentration over the tropical ocean: satellite observations and implications for warm rain simulations in climate models

Zhibo Zhang et al.

Related authors

Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: regional and interannual variability
Qianqian Song, Zhibo Zhang, Hongbin Yu, Paul Ginoux, and Jerry Shen
Atmos. Chem. Phys., 21, 13369–13395, https://doi.org/10.5194/acp-21-13369-2021,https://doi.org/10.5194/acp-21-13369-2021, 2021
Short summary
Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020
Hongbin Yu, Qian Tan, Lillian Zhou, Yaping Zhou, Huisheng Bian, Mian Chin, Claire L. Ryder, Robert C. Levy, Yaswant Pradhan, Yingxi Shi, Qianqian Song, Zhibo Zhang, Peter R. Colarco, Dongchul Kim, Lorraine A. Remer, Tianle Yuan, Olga Mayol-Bracero, and Brent N. Holben
Atmos. Chem. Phys., 21, 12359–12383, https://doi.org/10.5194/acp-21-12359-2021,https://doi.org/10.5194/acp-21-12359-2021, 2021
Short summary
Subgrid-scale Horizontal and Vertical Variations of Cloud Water in Stratocumulus Clouds: A case study based on LES and comparisons with in-situ observations
Justin A. Covert, David B. Mechem, and Zhibo Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-656,https://doi.org/10.5194/acp-2021-656, 2021
Preprint under review for ACP
Short summary
Vertical dependence of horizontal variation of cloud microphysics: observations from the ACE-ENA field campaign and implications for warm-rain simulation in climate models
Zhibo Zhang, Qianqian Song, David B. Mechem, Vincent E. Larson, Jian Wang, Yangang Liu, Mikael K. Witte, Xiquan Dong, and Peng Wu
Atmos. Chem. Phys., 21, 3103–3121, https://doi.org/10.5194/acp-21-3103-2021,https://doi.org/10.5194/acp-21-3103-2021, 2021
Short summary
A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations
Chenxi Wang, Steven Platnick, Kerry Meyer, Zhibo Zhang, and Yaping Zhou
Atmos. Meas. Tech., 13, 2257–2277, https://doi.org/10.5194/amt-13-2257-2020,https://doi.org/10.5194/amt-13-2257-2020, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Statistical properties of a stochastic model of eddy hopping
Izumi Saito, Takeshi Watanabe, and Toshiyuki Gotoh
Atmos. Chem. Phys., 21, 13119–13130, https://doi.org/10.5194/acp-21-13119-2021,https://doi.org/10.5194/acp-21-13119-2021, 2021
Short summary
Understanding the model representation of clouds based on visible and infrared satellite observations
Stefan Geiss, Leonhard Scheck, Alberto de Lozar, and Martin Weissmann
Atmos. Chem. Phys., 21, 12273–12290, https://doi.org/10.5194/acp-21-12273-2021,https://doi.org/10.5194/acp-21-12273-2021, 2021
Short summary
Impact of high- and low-vorticity turbulence on cloud–environment mixing and cloud microphysics processes
Bipin Kumar, Rahul Ranjan, Man-Kong Yau, Sudarsan Bera, and Suryachandra A. Rao
Atmos. Chem. Phys., 21, 12317–12329, https://doi.org/10.5194/acp-21-12317-2021,https://doi.org/10.5194/acp-21-12317-2021, 2021
Short summary
Preconditioning of overcast-to-broken cloud transitions by riming in marine cold air outbreaks
Florian Tornow, Andrew S. Ackerman, and Ann M. Fridlind
Atmos. Chem. Phys., 21, 12049–12067, https://doi.org/10.5194/acp-21-12049-2021,https://doi.org/10.5194/acp-21-12049-2021, 2021
Short summary
Aitken mode particles as CCN in aerosol- and updraft-sensitive regimes of cloud droplet formation
Mira L. Pöhlker, Minghui Zhang, Ramon Campos Braga, Ovid O. Krüger, Ulrich Pöschl, and Barbara Ervens
Atmos. Chem. Phys., 21, 11723–11740, https://doi.org/10.5194/acp-21-11723-2021,https://doi.org/10.5194/acp-21-11723-2021, 2021
Short summary

Cited articles

Ackerman, S., Strabala, K., Menzel, W., Frey, R., Moeller, C., and Gumley, L.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157, 1998. 
Ahlgrimm, M. and Forbes, R. M.: Regime dependence of cloud condensate variability observed at the Atmospheric Radiation Measurement Sites, Q. J. Roy. Meteor. Soc., 142, 1605–1617, https://doi.org/10.1002/qj.2783, 2016. 
Barker, H. W.: A Parameterization for Computing Grid-Averaged Solar Fluxes for Inhomogeneous Marine Boundary Layer Clouds. Part I: Methodology and Homogeneous Biases, J. Atmos. Sci., 53, 2289–2303, https://doi.org/10.1175/1520-0469(1996)053<2289:APFCGA>2.0.CO;2, 1996. 
Barker, H. W., Wiellicki, B. A., and Parker, L.: A Parameterization for Computing Grid-Averaged Solar Fluxes for Inhomogeneous Marine Boundary Layer Clouds. Part II: Validation Using Satellite Data, J. Atmos. Sci., 53, 2304–2316, https://doi.org/10.1175/1520-0469(1996)053<2304:APFCGA>2.0.CO;2, 1996. 
Bennartz, R.: Global assessment of marine boundary layer cloud droplet number concentration from satellite, J. Geophys. Res.-Atmos., 112, D02201, https://doi.org/10.1029/2006JD007547, 2007. 
Download
Altmetrics
Final-revised paper
Preprint