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Abstract. One of the challenges in representing warm rain
processes in global climate models (GCMs) is related to the
representation of the subgrid variability of cloud properties,
such as cloud water and cloud droplet number concentration
(CDNC), and the effect thereof on individual precipitation
processes such as autoconversion. This effect is convention-
ally treated by multiplying the resolved-scale warm rain pro-
cess rates by an enhancement factor (Eq ) which is derived
from integrating over an assumed subgrid cloud water dis-
tribution. The assumed subgrid cloud distribution remains
highly uncertain. In this study, we derive the subgrid varia-
tions of liquid-phase cloud properties over the tropical ocean
using the satellite remote sensing products from Moderate
Resolution Imaging Spectroradiometer (MODIS) and inves-
tigate the corresponding enhancement factors for the GCM
parameterization of autoconversion rate. We find that the
conventional approach of using only subgrid variability of
cloud water is insufficient and that the subgrid variability of
CDNC, as well as the correlation between the two, is also im-
portant for correctly simulating the autoconversion process
in GCMs. Using the MODIS data which have near-global
data coverage, we find that Eq shows a strong dependence
on cloud regimes due to the fact that the subgrid variability
of cloud water and CDNC is regime dependent. Our analy-
sis shows a significant increase of Eq from the stratocumulus

(Sc) to cumulus (Cu) regions. Furthermore, the enhancement
factor EN due to the subgrid variation of CDNC is derived
from satellite observation for the first time, and results re-
veal several regions downwind of biomass burning aerosols
(e.g., Gulf of Guinea, east coast of South Africa), air pol-
lution (i.e., East China Sea), and active volcanos (e.g., Ki-
lauea, Hawaii, and Ambae, Vanuatu), where the EN is com-
parable to or even larger than Eq , suggesting an important
role of aerosol in influencing the EN . MODIS observations
suggest that the subgrid variations of cloud liquid water path
(LWP) and CDNC are generally positively correlated. As a
result, the combined enhancement factor, including the ef-
fect of LWP and CDNC correlation, is significantly smaller
than the simple product of Eq ·EN . Given the importance of
warm rain processes in understanding the Earth’s system dy-
namics and water cycle, we conclude that more observational
studies are needed to provide a better constraint on the warm
rain processes in GCMs.
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1 Introduction

Marine boundary layer (MBL) clouds are a strong modula-
tor of Earth’s radiative energy budget (Klein and Hartmann,
1993; Trenberth et al., 2009). They can interact with other
components of the climate system, such as aerosols and pre-
cipitations, in various ways. The feedback of MBL clouds to
climate change remains one of the largest uncertainties in our
understanding of the climate sensitivity (Bony and Dufresne,
2005; Soden and Held, 2006). Despite their importance in
the climate system, simulating MBL clouds in general circu-
lation models (GCMs) has proved to be extremely challeng-
ing. A main difficulty is rooted in the fact the typical grid size
of GCMs (∼ 100 km) is much larger than the spatial scale of
many cloud microphysical processes, and as a result these
subgrid scale processes, as well as the subgrid cloud varia-
tions, have to be highly simplified and then parameterized as
functions of resolved, grid-level variables.

Of particular interest in this study is the warm rain pro-
cesses in MBL clouds, which have fundamental impacts on
the cloud water budget and lifetime. Although in reality it is
highly complicated and involves multiple factors, warm rain
formation in GCMs is usually parameterized as simple func-
tions of only key cloud parameters. For example, the driz-
zle in MBL clouds is initialized by the so-called autocon-
version process in which the collision–coalescence of cloud
droplets gives birth to large drizzle drops (Pruppacher and
Klett, 1997). In GCMs, for the sake of efficiency, this pro-
cess is usually parameterized as a power function of liquid
water content (LWC or symbol qc) and cloud droplet number
concentration (CDNC or symbolNc). One of the most widely
used parameterization schemes is developed by Khairoutdi-
nov and Kogan (2000) (KK2000 hereafter), which has the
form

∂qr

∂t
= C(qc)

βq (Nc)
βN , (1)

where ∂qr
∂t

is the rain water tendency due to the autoconver-
sion process, qc has the unit of kg kg−1, and Nc the unit
of cm−3. The three parameters C = 1350, βq = 2.47, and
βN =−1.79 are derived through a simple least-square fitting
of the autoconversion rate results from a large-eddy simu-
lation with bin microphysics that can simulate the process-
level physics. Even though this is highly simplified, the pa-
rameterization scheme still faces a great challenge. The cal-
culation of grid-mean autoconversion efficiency requires the
knowledge of subgrid distributions of LWC and CDNC, but
in the GCMs only grid-mean quantities 〈qc〉 and 〈Nc〉 are
known and available for use in the computation of the auto-
conversion rate. As pointed out by Pincus and Klein (2000),
for a process f (x) such as autoconversion that is nonlin-
early dependent on subgrid variables, x, the grid-mean value
〈f (x)〉 is not equal to the value estimated based on the grid-
mean 〈x〉, i.e., 〈f (x)〉 6= f (〈x〉). Mathematically, if f (x) is
convex, then f (〈x〉) < 〈f (x)〉 (Larson and Griffin, 2013;

Larson et al., 2001). To take this effect into account, a param-
eter E is often introduced in the GCM as part of the param-
eterization such that 〈f (x)〉 = E · f (〈x〉). It is referred to as
the enhancement factor in many studies as well as this study
because E > 1 for a convex function. Such a nonlinear effect
is not just limited to the autoconversion process. Some other
examples are the plane-parallel albedo bias (Barker, 1996;
Cahalan et al., 1994; Oreopoulos and Davies, 1998a), sub-
grid cloud droplet activation (Morales and Nenes, 2010), and
accretion (Boutle et al., 2014; Lebsock et al., 2013).

The value of E is determined primarily by two factors:
the nonlinearity of f (x) and the subgrid probability density
function (PDF) P(x). Given the same subgrid variation of
LWC, i.e., P(qc), the nonlinear effect impacts the autocon-
version parameterization more than it does the accretion be-
cause the former is a more nonlinear function of qc than the
latter. For the same f (x), a grid box with a narrow and sym-
metric P(x) would require a smaller E than another grid box
with a broader and nonsymmetric P(x). Ideally, the value
of the enhancement factor E should be diagnosed from the
subgrid cloud PDF P(x). Unfortunately, because this is not
possible in most conventional GCMs, the value of E is usu-
ally assumed to be a constant for the lack of better options.
The E for autoconversion due to subgrid LWC variation is
assumed to be 3.2 in the two-moment cloud microphysics pa-
rameterization schemes by Morrison and Gettelman (2008)
(MG scheme hereafter), which is employed in the widely
used Community Atmosphere Model (CAM). This choice of
E = 3.2 is based on an early study by Barker et al. (1996), in
which the mesoscale variation of column-integrated optical
thickness of the “overcast stratocumulus”, “broken stratocu-
mulus”, and “scattered stratocumulus” are studied. The value
E = 3.2 is derived based on the mesoscale variation of the
broken stratocumulus.

Clearly, a simple constant E is not adequate. The fol-
lowing is a list of attempts to better understand the subgrid
cloud variations and the implications for warm rain simula-
tions in GCMs. Several previous studies have shown that the
mesoscale cloud water variation is a strong function of cloud
regime – the subgrid cloud water variation of Sc clouds is
much different from that of Cu clouds (Barker et al., 1996;
Lee et al., 2010; Oreopoulos and Cahalan, 2005; Wood and
Hartmann, 2006). As the first part of a two-part study, Lar-
son and Griffin (2013) first laid out a systematic theoretical
basis for understanding the effects of subgrid cloud prop-
erty variations on simulating various nonlinear processes in
GCMs, including not only the autoconversion but also the
accretion, condensation, evaporation, and sedimentation pro-
cesses. In the second part, using cloud fields from a large-
eddy simulation (LES), Griffin and Larson (2013) showed
that inclusion of the enhancement factor indeed leads to more
rainwater at surface in single-column simulations and makes
them agree better with high-resolution large-eddy simula-
tions. Recently, using the ground-based observations from
three Department of Energy (DOE) Atmospheric Radiation
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Measurement (ARM) sites, Xie and Zhang (2015) devel-
oped a scale-aware parameterization scheme for GCMs to
account for subgrid cloud water variation. Also using ARM
measurement, Ahlgrimm and Forbes (2016) analyzed the de-
pendence of cloud water variability on cloud regime. Al-
though these previous studies have shed important light on
subgrid cloud variation and the implications for GCM, they
lack a global perspective because they are only based on lim-
ited data (e.g., LES cases, in situ and ground-based mea-
surement). Currently, satellite remote sensing observation is
the only way to achieve a global perspective. Using the ob-
servations from the spaceborne radar CloudSat, Lebsock et
al. (2013) showed that the subgrid cloud water variance is
smaller over the Sc region than over the Cu region, and as
a result the enhancement factor shows an increasing trend
from Sc to Cu regions. They also highlighted importance of
considering the subgrid covariability of cloud water and rain
water in the computation of the accretion rate. Using a com-
bination of in situ measurement and satellite remote sens-
ing data, Boutle et al. (2014) analyzed the spatial variation
of both cloud and rain water, as well as their covariation,
and developed a simple parameterization scheme to relate
the subgrid cloud water variance to the grid-mean cloud frac-
tion. Later, the study of Boutle et al. (2014) was extended by
Hill et al. (2015), who developed a cloud-regime-dependent
and scale-aware parameterization scheme for simulating sub-
grid cloud water variation. On the modeling side, Guo et
al. (2014) investigated the sensitivity of cloud simulations in
the Geophysical Fluid Dynamics Laboratory (GFDL) atmo-
spheric general circulation model (AM) to the subgrid cloud
water parameterization schemes. A similar study was carried
out by Bogenschutz et al. (2013) using the National Center
for Atmospheric Research (NCAR) CAM. Both studies show
that the more sophisticated subgrid parameterization scheme
– Cloud Layers Unified by Binormals (CLUBB) (Golaz et
al., 2002a, b; Larson et al., 2002) – lead to a better simula-
tion of clouds in the model. However, a more recent study
by Song et al. (2018b) reveals that the CLUBB in CAM ver-
sion 5.3 (CAM5.3) overestimates the enhancement factor in
the trade wind cumulus cloud region, which in turn leads to
excessive drizzle in the model and “empty clouds” with near-
zero cloud water. In addition to CLUBB, the so-called super-
parameterization (a.k.a. multiscale modeling framework –
MMF), which uses cloud resolving models embedded in the
GCM grids to diagnose subgrid cloud variations (Randall et
al., 2003), has also gained increasing popularity. Takahashi
et al. (2017) compared the subgrid cloud water variations
simulated by a CAM-MMF model with those derived from
A-Train observations and found reasonable agreement.

Despite these previous studies, many questions remain
unanswered. First of all, all the previous studies, as far as
we know, have focused on the impact of subgrid cloud wa-
ter qc variation. The potential impact of subgrid variation
of Nc and the covariability of Nc with qc have been over-
looked so far. Given the same amount of qc, a cloud with a

smaller Nc would have larger droplets and therefore larger
precipitation efficiency than another cloud with a larger Nc.
For the same reason, other things being equal, a grid with a
positive correlation of subgrid Nc and qc would be less effi-
cient in terms of autoconversion than a grid with a negative
correlation of the two. Secondly, most of previous studies
are based on the assumption that the subgrid cloud property
variation follows certain well-behaved distributions, usually
either gamma (e.g., Barker, 1996; Morrison and Gettelman,
2008; Oreopoulos and Barker, 1999; Oreopoulos and Caha-
lan, 2005) or lognormal (e.g., Boutle et al., 2014; Larson
and Griffin, 2013; Lebsock et al., 2013). However, the va-
lidity and performance of the assumed PDF shape are sel-
dom checked. Furthermore, although the study by Lebsock et
al. (2013) has depicted a global picture of the enhancement
factor for the autoconversion modeling in GCM, the picture
is far from clear due to the small sampling rate of CloudSat
observations.

In this study, we revisit the subgrid variations of liquid-
phase cloud properties over the tropical ocean using 10 years
of MODIS cloud observations, with the overarching goal to
better understand the potential impacts of subgrid cloud vari-
ations on the warm rain processes in the conventional GCMs.
Similar to previous studies, we will quantify the subgrid
cloud water variations based on MODIS observations. Going
one step further, we will also attempt to unveil for the first
time the subgrid Nc variation, as well as its correlation with
cloud water, and investigate the implications for warm rain
simulations in GCM. Moreover, we will take advantage of
the wide spatial coverage of MODIS data to achieve a more
detailed picture of the enhancement factor for the autocon-
version simulation. Last but not least, we will evaluate the
two widely used distributions, i.e., lognormal and gamma,
in terms of their performance and limitations for simulating
the enhancement factor. We will first explain the theoretical
background in Sect. 2 and introduce the data and methodol-
ogy in Sect. 3. The MODIS observations will be presented
and discussed in Sect. 4. The implications for the autocon-
version parameterization in the GCMs will be discussed in
Sect. 5. The main findings will be summarized in Sect. 6 with
an outlook for future studies.

2 Theoretical background

2.1 Theoretical distributions to describe subgrid cloud
property variations

In previous studies, the spatial variations of cloud proper-
ties, such as cloud optical thickness (COT), cloud liquid wa-
ter path (LWP) and cloud LWC, are often described using
either of two theoretical distributions – the gamma and log-
normal distribution. The PDF from a gamma distribution is a
two-parameter function as follows (Barker, 1996; Oreopou-
los and Davies, 1998b):
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PG (x)=
1

0(v)
ανxν−1 exp(−αx), (2)

where 0 is the gamma function, v is the so-called inverse
relative variance, and α the so-called rate parameter. If x fol-
lows the gamma distribution, its mean value is given by

〈x〉 =

∞∫
0

xPG (x)dx =
v

α
(3)

and variance given by

Var(x)=

∞∫
0

(x−〈x〉)2PG (x)dx =
v

α2 . (4)

It follows from Eqs. (3) and (4) that the so-called inverse
relative variance is

v =
1
η
=
〈x〉2

Var(x)
, (5)

where η = Var(x)
〈x〉2

is the relative variance. If x follows the
gamma distribution for a physical process M(x) that is a
power function of x,

M(x)=Kxβ , (6)

then the expected value 〈M(x)〉 is given by

〈M(x)〉G =K

∞∫
0

xβPG (x)dx

=
0(v+β)

0 (v)vβ
K〈(x)〉β , β >−v. (7)

As explained in the introduction, for a nonlinear process
M(x), 〈M(x)〉 6=M(〈x〉). The ratio between the two E val-
ues is by definition the enhancement factor:

E(PG,v,β)=
〈Kxβ〉

K〈x〉β
=

1
〈x〉β

∞∫
0

xβPG (x)dx

=
0(v+β)

0 (v)vβ
. (8)

The PDF of a lognormal distribution is given as follows
(Larson and Griffin, 2013; Lebsock et al., 2013):

PL (x)=
1

√
2πxσ

exp

(
−
(lnx−µ)2

2σ 2

)
, (9)

where µ= 〈lnx〉 and σ 2
= Var(lnx) correspond to the mean

and variance of lnx, respectively. The mean value of the log-
normal distribution is given by

〈x〉 =

∞∫
0

xPL (x)dx = eµ+
σ2
2 (10)

and the variance by

Var(x)=

∞∫
0

(x−〈x〉)2PL (x)dx = e2µ+σ 2
(
eσ

2
− 1

)
. (11)

It follows from Eqs. (10) and (11) that the inverse relative
variance can be derived from the following equation:

eσ
2
= 1+

Var(x)
〈x〉2

= 1+
1
v
. (12)

If x follows the lognormal distribution, the expected value of
〈M(x)〉 is

〈M(x)〉L =K

∞∫
0

xβPL (x)dx =
(

1+
1
v

) β2
−β
2
K〈x〉β . (13)

Evidently, the corresponding enhancement factor is given by

E(PL,v,β)=
〈Kxβ〉

K〈x〉β
=

(
1+

1
v

) β2
−β
2
. (14)

Note that Eqs. (7) and (8) are only valid when β >−v be-
cause gamma function 0(v+β) can run into singular values
when v+β < 0. In contrast, Eqs. (13) and (14) are valid for
any real value β. This is one advantage of the lognormal dis-
tribution over the gamma distribution.

An example of the gamma and lognormal distributions for
qc is shown in Fig. 1a. In this example, both distributions
have the same mean 〈qc〉 = 0.5 g kg−1 and also the same in-
verse relative variance vq = 3. Although the general shapes
of the two PDFs are similar, they differ significantly at the
two ends; the gamma PDF is larger than lognormal PDF
over the small values of qc, and the opposite is true over
the large values of qc. The gamma and lognormal distribu-
tions can also be used to describe the spatial variation of Nc
(Gultepe and Isaac, 2004). An example is given in Fig. 1c,
in which qc is a constant of 0.5 g kg−1, 〈Nc〉 = 50 cm−3, and
vN = 5.0. Figure 1b shows the autoconversion rate based on
the KK2000 parameterization scheme for the gamma PG (qc)

and lognormal PL (qc) that are shown in Fig. 1a. Interest-
ingly, although the cumulative autoconversion rates based on
the two types of PDFs are almost identical, the contributions
to the total autoconversion rate from the different LWC bins
are quite different. As shown in Fig. 1a, the PL(qc) has a
longer tail than the PG(qc); i.e., the occurrence probability of
large qc (e.g., qc > 2.0 g kg−1) is much higher in the lognor-
mal than in gamma PDF. This difference is further amplified
in the autoconversion rate computation in Fig. 1b because the
autoconversion rate is proportional to q2.47

c .
The enhancement factors based on the gamma (i.e.,

E(PG,β) in Eq. 8) and lognormal (i.e., E(PL,β) in Eq. 14)
PDFs for βq = 2.47 are plotted as a function of the inverse
relative variance v in Fig. 2. When subgrid clouds are more
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Figure 1. (a) The probability density function (PDF) and cumulative distribution function (CDF) of cloud LWC (qc) that follow the gamma
(dashed) and lognormal (solid) distribution. For the both distributions, 〈qc〉 = 0.5g kg−1 and vq = 3.0. (b) The PDF and CDF of autoconver-
sion rate computed based on the KK2000 scheme in Eq. (15) and the PDF of qc. In the computation, the Nc is kept at a constant of 50 cm−1.
(c) The PDF and CDF of Nc that follow the gamma (dashed) and lognormal (solid) distribution. For the both distributions, 〈Nc〉 = 50 cm−3

and vN = 5.0. (d) The PDF and CDF of the autoconversion rate computed based on the KK2000 scheme in Eq. (15) and the PDF of Nc. The
qc is kept at 0.5 g kg−1 in the computation.

Figure 2. Enhancement factors based on lognormal E(PL, β) and
gamma E(PG, β) subgrid PDFs for different β as a function of the
inverse relative variance v.

homogenous, e.g., v > 1, the enhancement factor based on
the two PDFs are similar. However, for more inhomogeneous
grids, e.g., v < 1, the E(PL,β) is significantly larger than
E(PG,β), which is probably because of the longer tail of
PL(qc) as shown in Fig. 1a and b.

2.2 Impacts of subgrid cloud variations on warm rain
parameterization in GCM

The warm rain process in MBL clouds involves many inter-
acting microphysical processes. In this study, we focus only
on the simulation of autoconversion in GCM. Other nonlin-
ear processes, such as accretion and evaporation, have been
investigated in previous studies (Boutle et al., 2014; Lebsock
et al., 2013).

Ideally, if the subgrid variations of qc and Nc are known,
then the grid-mean in-cloud autoconversion rate should be
derived from the following integral:

〈
∂qr

∂t

〉
=

∞∫
0

∞∫
0

C(qc)
βq (Nc)

βNP (qc,Nc)dqcdNc, (15)

where P (qc,Nc) is the joint PDF of qc and Nc. Unfortu-
nately, most conventional GCMs lack the capability of pre-
dicting the subgrid variations of cloud properties, with only
a couple of exceptions (Thayer-Calder et al., 2015). What is
known from the GCM is usually the in-cloud grid-mean val-
ues 〈qc〉 and 〈Nc〉. As a result, instead of using Eq. (15), the
autoconversion rate in GCMs is usually computed from the
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following equation:〈
∂qr

∂t

〉
= E ·C(〈qc〉)

βq (〈Nc〉)
βN , (16)

where E is the enhancement factor defined as

E =

∫
∞

0

∫
∞

0 (qc)
βq (Nc)

βNP (qc,Nc)dqcdNc

(〈qc〉)
βq (〈Nc〉)

βN
. (17)

The value of the enhancement factor depends on the subgrid
variations of qc and Nc. If clouds are homogenous on the
subgrid scale, then E ∼ 1. In the special case where qc and
Nc are independent, then the joint PDF P (qc,Nc) becomes
P (qc,Nc)= P(qc)P (Nc), where P (qc) and P(Nc) are the
PDF of the subgrid qc and Nc. Consequently, Eq. (15) re-
duces to〈
∂qr

∂t

〉
= C

∞∫
0

(qc)
βqP(qc)dqc

∞∫
0

(Nc)
βNP (Nc)dNc (18)

and Eq. (17) to

E = Eq ·EN , (19)

where Eq is the enhancement factor due to the subgrid vari-
ation of cloud water, which has the form

Eq =

∫
∞

0 (qc)
βqP (qc)dqc

(〈qc〉)
βq

, (20)

and theEN is the enhancement factor due to the subgrid vari-
ation of CDNC, which has the form

EN =

∫
∞

0 (Nc)
βNP (Nc)dNc

(〈Nc〉)
βN

. (21)

Obviously, if P (qc) and P (Nc) follow either a gamma or
lognormal distribution, then the above equations reduce to
Eqs. (8) or (14), respectively.

If qc and Nc both have significant subgrid variations and
they are not independent, the enhancement factor should ide-
ally be diagnosed from Eq. (17). However, the joint PDF
P (qc,Nc) may not be known, and the integration can be
time-consuming. Some previous studies proposed to approx-
imate the P (qc,Nc) as a bivariate lognormal distribution as
follows:

P (qc,Nc)=
1

2πqcNcσqσN
√

1− ρ2
exp

(
−
ζ

2

)
ζ =

1
1− ρ2

[(
lnqc−µq

σq

)2

− 2ρ
(

lnqc−µq

σq

)(
lnNc−µN

σN

)

+

(
lnNc−µN

σN

)2
]
, (22)

where ρ is the correlation coefficient between qc and Nc
(Larson and Griffin, 2013; Lebsock et al., 2013). As such,

both qc and Nc follow a marginal lognormal distribution in
Eq. (9). Substituting Eq. (22) into Eq. (17), we obtain the en-
hancement factor for the bivariate lognormal distribution that
consists of three terms:

E = Eq
(
PL,vq ,βq

)
·EN (PL,vN ,βN )

·ECOV
(
ρ,βq ,βNvq ,vN

)
, (23)

where Eq
(
PL,vq ,βq

)
=

(
1+ 1

vq

) β2
q−βq

2 and EN (PL, vN ,

βN )=
(

1+ 1
vN

) β2
N
−βN
2 correspond to the impacts of subgrid

qc and Nc variance, respectively (i.e., Eq. 14), and

ECOV
(
ρ,βq ,βN ,vq ,vN

)
= exp

(
ρβqβNσqσN

)
(24)

corresponds to the impact of the covariation of qc and Nc
on the enhancement factor. Obviously, Eq. (23) reduces
to Eq. (19) when qc and Nc are uncorrelated (i.e., ρ =
0,ECOV = 1). If qc and Nc are negatively correlated (i.e.,
ρ < 0 and ECOV > 1), clouds with a larger qc would tend
to have a smaller Nc. The autoconversion rate in such a case
would be larger than that in the case where qc and Nc are
positively correlated (i.e., ρ > 0 and ECOV < 1). A positive
correlation would exist, for instance, if all droplets in clouds
were the same size, but some parcels had more droplets than
other parcels.

Most current GCMs do not have the capability to simulate
the subgrid cloud property variations. They usually have to
use predefined subgrid cloud variations in the computation
of grid-mean autoconversion rate instead of using prognos-
tic values. For example, in the MG scheme for the CAM5.3,
the subgrid qc is assumed to follow the gamma distribu-
tion in Eq. (2) with a fixed vq = 1 and, as a result, a con-
stant Eq = 3.2. Lately, advanced subgrid parameterization
schemes, such as CLUBB, have been implemented in sev-
eral GCMs, including CAM6 and GFDL AM model (Bogen-
schutz et al., 2018; Guo et al., 2015, 2014), which provides
information on the subgrid qc variation to the host model.
The information can then be used to dynamically diagnose
the enhancement factor Eq , which will help the model sim-
ulate the cloud regime dependence of Eq (Guo et al., 2010,
2014).

However, as explained above, not only the subgrid varia-
tion of qc but the subgrid variation of Nc can also influence
the enhancement factor. Unfortunately, this aspect has been
ignored by almost all GCMs, even the latest CAM6 with
CLUBB. Physically, provided the same qc, a cloud with a
smaller Nc would have a larger droplet size and therefore
larger precipitation efficiency than the cloud with a larger
Nc. Because the autoconversion rate depends nonlinearly on
Nc, the grid-mean autoconversion rate computed based on
a skewed PDF of Nc (i.e.,

∫
∞

0 (Nc)
βNP (Nc)dNc) would be

different from that computed based on the mean of Nc (i.e.,
(〈Nc〉)

βN ). The autoconversion enhancement factor based on
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the lognormal PDF E(PL,β) for βN =−1.79 is given in
Fig. 2. Interestingly, at the same inverse relative variance
v, the enhancement factor based on the same lognormal
PDF E(PLβ) for βN =−1.79 is actually larger than that for
βq = 2.47 because of the formula of the exponent in Eq. (14)

(i.e., β
2
−β
2 ). Moreover, the correlation betweenNc and qc can

also be important. Going back to Eq. (23), evidently, E > Eq
if and only if EN ·ECOV > 1. After some manipulation, we
can show that if βN < 0 and σN > 0, then

EN ·ECOV > 1, if ρ <
σN

σq
·
(1−βN )

2βq
. (25)

This equation reveals that when qc andNc are weakly or neg-
atively correlated (ρ ≤ 0), considering onlyEq would tend to
underestimate E. On the other hand, however, if qc and Nc
are highly positively correlated (ρ ∼ 1), then considering Eq
only would tend to overestimate E.

3 Data and methodology

To derive the above-mentioned enhancement factors, we will
use 10 years (2007–2016) of the latest collection 6 (C6) daily
mean level-3 cloud retrieval product from the Aqua MODIS
instrument (product name MYD08_D3), which contains the
gridded statistics of cloud properties computed from pixel-
level (i.e., level-2) retrievals. As summarized in Platnick
et al. (2003, 2017), the operational level-2 MODIS cloud
product provides cloud masking (Ackerman et al., 1998),
cloud top height (Menzel et al., 1983), cloud top thermody-
namic phase determination (Menzel et al., 2006), and COT,
cloud effective radius (CER), and LWP retrievals based on
the bispectral solar reflectance method (Nakajima and King,
1990). All MODIS level-2 atmosphere products, including
the cloud, aerosol, and water vapor products, are aggregated
to 1◦× 1◦ spatial resolution on a daily, 8-day, and monthly
basis. Aggregations include a variety of scalar statistical
information, including mean, standard deviation, and max
and min occurrences, as well as histograms including both
marginal and joint histograms. For COT, CER, and LWP, the
MODIS level-3 product provides both their in-cloud grid-
mean values (〈x〉) and subgrid standard deviations (σx). The
inverse relative variance v can then be derived from Eq. (5),
i.e., v = 〈x〉2/σ 2

x . Note that the operational MODIS product
provides two CER retrievals: one based on the observation
from the band 7 centered around 2.1 µm and the other from
band 20 at 3.7 µm. As discussed in several previous studies
(Cho et al., 2015; Zhang and Platnick, 2011; Zhang et al.,
2012, 2016), the 3.7 µm band CER retrieval is more resilient
to the 3-D effects and retrieval failure than the 2.1 µm band
retrievals. For these reasons, it is used as the observational
reference in this study.

Given the COT and CER retrieval, the operational MODIS
product estimates the LWP of clouds using

LWP=
2
3
ρwCOT ·CER, (26)

where ρw is the density of water. Several studies have argued
that a smaller coefficient of 5/9, instead of 2/3, should be
used in estimation of LWP (Lebsock et al., 2011; Seethala
and Horváth, 2010; Wood and Hartmann, 2006). The choice
of coefficient does not matter in this study because it is a
common factor in the calculation of v. The choice of the co-
efficient has no impact on our study because we are inter-
ested in the relative inverse variance v = 〈x〉2/σ 2

x . We note
here that it is the LWC qc, instead of the LWP, that is used
in the KK2000 scheme. So, the spatial variability of LWC is
what is most relevant. However, the remote sensing of cloud
water vertical profiles from satellite sensors for liquid-phase
clouds is extremely challenging even with active sensors. It
is why most previous studies using the satellite observations
analyzed the spatial variation of LWP rather than LWC. In
fact, even Lebsock et al. (2013), who used the level-2 Cloud-
Sat observations, had to use the vertically averaged LWC in
their analysis. Airborne in situ measurement faces a similar
challenge. For example, Boutle et al. (2014) used the LWC
observation along horizontal flight tracks to study the spatial
variability of cloud water, which only samples the LWC at
certain levels of MBL clouds. Ground-based observations are
much better than satellite and airborne observations in this
regard. Recently, Xie and Zhang (2015) analyzed the cloud
water profiles retrieved using ground-based radars from the
three ARM sites and found no obvious in-cloud vertical de-
pendence of the spatial variability of LWC. Following these
previous studies, we assume that the horizontal subgrid vari-
ation of LWC is not strongly dependent on height, and its
value can be inferred from the spatial variability of the ver-
tically integrated quantities of LWP. The uncertainty caused
by this assumption will be assessed in future studies.

The current MODIS level-3 cloud product does not pro-
vide CDNC retrievals. Following previous studies (Bennartz,
2007; Bennartz and Rausch, 2017; Grosvenor and Wood,
2014; McCoy et al., 2018), we estimate Nc of liquid-phase
clouds from the MODIS-retrieved COT (τ ) and CER (re)
based on the classic adiabatic cloud model

Nc (τ,re)=

√
5

2πk

√
fad0w
√
ρwQe

τ
1
2 r
−

5
2

e

=

√
15

2πk

√
fad0w

ρw
√

2Qe
LWP

1
2 r−3

e , (27)

where ρw is the density of water,Qe ≈ 2 is the extinction ef-
ficiency of cloud droplets, k is the ratio of re to mean volume-
equivalent radius, fad is the adiabaticity of the cloud, and 0w
is the LWC lapse rate. Following previous studies, we assume
k = 0.8 and fad = 1.0 to be constant and compute 0w from
the grid-mean liquid cloud top temperature and pressure.
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Figure 3. The (a) LWP and (b) CDNC as a function of COT and CER. (c) An example of the COT–CER joint histogram observed by Aqua
MODIS on 9 January 2007 at 1◦ S and 1◦W.

The theoretical basis and main uncertainty sources of the
CDNC estimation based on the adiabatic cloud model from
MODIS-like passive cloud retrievals are nicely reviewed by
Grosvenor et al. (2018).

Ideally, the values of LWP and CDNC should be esti-
mated on a pixel-by-pixel basis from the level-2 MODIS
product. However, pixel-by-pixel estimation is highly time-
consuming, which makes it difficult to achieve a global per-
spective. Using an alternative method, many previous stud-
ies estimate the grid-level CDNC statistics from the joint
histogram of COT vs. CER provided in the level-3 MODIS
cloud products (Bennartz, 2007; McCoy et al., 2017, 2018).
For a given 1◦× 1◦ grid box, the liquid-phase COT–CER
joint histogram provides the counts of successful cloud prop-
erty retrievals with respect to 108 joint COT–CER bins that
are bounded by 13 COT bin boundaries, ranging from 0 to
150, and 10 CER bin boundaries, ranging from 4 to 30 µm.
With the joint histogram, which is essentially the joint PDF
of COT and CER P(τre), we can estimate the grid mean and
variance of CDNC from the following equations:

〈x〉 =

∫ ∫
x (τ,re)P (τ,re)dτdre, (28)

Var(x)=
∫ ∫

(x (τ,re)−〈Nc〉)
2P (τ,re)dτdre, (29)

where x can be either LWP or CDNC. Figure 3a shows the
LWP in Eq. (26) as a function of the 13 COT bins and 10 CER
bins from the MODIS level-3 product. As expected, the
largest LWP values are found when both COT and CER are
large. Figure 3b shows the CDNC in Eq. (27) as a function of
the COT and CER bins. As expected, the largest CDNC val-
ues are found when both COT is large and CER is small. Fig-
ure 3c shows an example of the COT–CER joint histogram
from the Aqua MODIS daily level-3 product MYD08_D3 on
9 January 2007 at the grid box 1◦ S and 1◦W. In this partic-
ular grid box, a combination of ∼ 2–4 COT and ∼ 10–12 µm
CER is the most frequently observed cloud value. Using the
joint histogram in Fig. 3c, we can derive the mean and vari-
ance of both LWP and COT using Eqs. (28) and (29).

The efficiency of using the level-3 MODIS product is ac-
companied by three important limitations. First of all, as
mentioned earlier, MODIS provides only LWP retrievals,
while LWC is needed in the KK2000 scheme. Second, the
current level-3 MODIS cloud product has a fixed 1◦× 1◦ spa-
tial resolution. Although this resolution is highly relevant to
the current generation of GCMs, i.e., Coupled Model Inter-
comparison Project Phase 6 (CMIP6) (Eyring et al., 2016),
future GCMs may have significantly finer resolution. Third,
it is difficult to subsample the pixels with the best retrieval
quality. These limitations will have to be addressed in future
studies.

4 Grid-mean and subgrid variations of liquid-phase
cloud properties

In this study, we limit our analysis to tropical oceans only
where warm rain is frequent and MODIS cloud retrievals
have a relatively better quality than over land or over high
latitudes. The annual mean total cloud fraction (ftot), liquid-
phase cloud fraction (fliq), in-cloud COT, CER from the
3.7 µm band, LWP, and estimated CDNC over the tropical
oceans based on 10 years Aqua MODIS retrievals are shown
in Fig. 4. The highest fliq in the tropics is usually found in
the stratocumulus (Sc) decks over the eastern boundary of
the ocean, e.g., the SE Pacific off the coast of Peru, the NE
Pacific off the coast of California, and the SE Atlantic off the
coast of Namibia. The liquid-cloud fraction reduces signifi-
cantly toward the open ocean trade wind regions, where the
dominant cloud types are broken cumulus (Cu). Close to the
continents, the Sc decks are susceptible to the influence of the
continental air mass with a higher loading of aerosols in com-
parison with a pristine ocean environment, which is proba-
bly the reason the SC decks have a smaller CER and higher
CDNC than the open-ocean trade cumulus (Fig. 4d and f).
The in-cloud COT (Fig. 4c) and LWP (Fig. 4e) generally in-
crease from the Sc decks to the open-ocean Cu regime, al-
though less dramatically than the transition of cloud fraction.
The Sc decks and the Sc-to-Cu transition are the most promi-
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Figure 4. Ten-year (2007–2016) averaged annual mean (a) total cloud fraction, (b) liquid cloud fraction, (c) cloud optical thickness, (d) cloud
effective radius retrieved from the 3.7 µm band, (e) cloud water path, and (f) cloud droplet concentration retrievals from Aqua MODIS over
the tropical (30◦ S–30◦ N) oceans. All quantities are in-cloud means that are averaged over the cloudy part of the grid only.

nent features of liquid-phase clouds in the tropics. However,
as mentioned in the introduction, simulating these features
in the GCMs proves to be an extremely challenging task, and
most GCMs suffer from some common problems, such as the

“too few, too bright” problem and the abrupt Sc-to-Cu tran-
sition problem (Kubar et al., 2014; Nam et al., 2012; Song et
al., 2018a).
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Figure 5. Median value of the inverse relative variance (i.e., v = 〈x〉2/Var(x)) for (a) COT, (b) CER, (c) LWP, and (d) CDNC and (e) median
value of the correlation coefficient between LWP and CDNC derived from 10 years of MODIS observations. Note that the color scale of
CER is different from others’.

Switching the focus now from grid-mean values to sub-
grid variability, we will show the grid-level inverse relative
variances v = 〈x〉2/Var(x)) for several key cloud properties.
Here, we first derive the daily mean v and then aggregate the
result to monthly mean values. Therefore, for each grid box
we have 120 samples (i.e., 10 years× 12 months) of monthly
mean v for analysis and visualization. Because the value of
v can be ill behaved when Var(x) approaches zero, instead
of the mean value, we plot the median value of ṽ based on

120 months of MODIS observations in Fig. 5. There are sev-
eral interesting and important features in Fig. 5. First of all,
the ṽ values of all four sets of cloud properties (i.e., COT,
CER, LWP, and CDNC) all exhibit a clear and similar Sc-
to-Cu transition, with larger values in the Sc regions and
smaller values in the broken Cu regions. This indicates that
cloud properties, including both optical and microphysical
properties, are more homogenous, in terms of spatial distri-
bution within the grid, in the Sc region than in the Cu region.
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Secondly, the value of ṽ of CER (i.e., 10–100 in Fig. 5b) is
larger than that of the other properties (i.e., 1–10) by almost
an order of magnitude, indicating that the subgrid variability
of CER is very small. On the other hand, however, it is im-
portant to note that the ṽ of CDNC (Fig. 5d) is comparable
with that of COT (Fig. 5a) and LWP (Fig. 5c). The reason
is probably in part because the highly nonlinear relationship

between CDNC and CER (i.e.,Nc ∼ r
−

5
2

e ) leads to a stronger
variability of CDNC than CER and also in part because the
variability of CDNC is also contributed by the subgrid vari-
ation of COT. In some regions, the Gulf of Guinea, the East
and South China Sea, and Bay of Bengal for example, the ṽ
of CDNC is close to unity, indicating the subgrid standard
deviation of CDNC is comparable to the grid-mean values in
these regions. As discussed in the next section, the significant
subgrid variability of CDNC in these regions should be taken
into account when modeling the nonlinear processes, such as
the autoconversion, in GCM to avoid systematic biases due
to the nonlinearity effect.

The values of ṽ in Fig. 5 from this study are in reason-
able agreement with previous studies. Barker (1996) selected
a few dozens of cloud scenes, each about 100–200 km in
size, from the Landsat observation and analyzed their spa-
tial variability of COT. It is found that the typical value of v
for overcast stratocumulus, broken stratocumulus, and scat-
tered cumulus is 7.9, 1.2, and 0.7, respectively (see their
Table 3), which is consistent with the Sc-to-Cu transition
pattern seen in Fig. 5. Oreopoulos and Cahalan (2005) de-
rived the subgrid inhomogeneity of COT on a global scale
from the level-3 Terra MODIS retrievals. Although using a
different metric (i.e., their inhomogeneity parameter is de-
fined as χ = exp(ln〈τ 〉)/〈τ 〉), they also found a systematic
increase of inhomogeneity (decreasing value of χ ) from the
Sc region to Cu region. Also using the MODIS cloud prop-
erty retrievals, Wood and Hartmann (2006) investigated the
mesoscale spatial variability of LWP in the NE Pacific and
SE Pacific regions. The v of LWP is found to increase sys-
tematically with mesoscale cloud fraction, and the relation-
ship between the two can be reasonably explained by a sim-
ple PDF cloud thickness model in Considine et al. (1997).
See also Kawai and Teixeira (2010).

As explained in Sect. 2, the correlation between cloud wa-
ter and CDNC can also influence the computation of en-
hancement factor and thereby the grid-mean autoconversion
rate. Figure 5e shows the median value of the LWP and
CDNC correlation coefficient ρ̃. Similar to the derivation of
median ṽ, we first compute the monthly mean ρ from daily
MODIS observations and then derive the median value of ρ̃
for each grid from the 120 months of observation. As shown
in Fig. 5e, at the subgrid level, the LWP and CDNC tend
to be positively correlated almost over all tropical oceans.
Mathematically, this is not surprising because as shown in
Fig. 5b and c, the subgrid variability of re is 1 order of mag-
nitude smaller than that of LWP. Since CDNC is proportional

to LWP
1
2 r−3

e according to Eq. (27), the subgrid variability
of CDNC is mainly determined by the variability of LWP,
leading to the positive correlation. Physically, the correlation
can be explained by several mechanisms. For example, Wood
et al. (2018) and O et al. (2018) found that a large amount
of low-level water clouds over the stratocumulus-to-cumulus
transition are “optically thin veil clouds”. These clouds are
usually associated with low LWP and low CDNC (therefore
positive correlation) and probably caused by the strong pre-
cipitation scavenging process in the active cumulus. Note
that our definition of ρ is the subgrid spatial correlation of
LWP and CDNC. It may be different from the definition used
in many aerosol indirect effect studies where the temporal
correlation of monthly mean LWP and CDNC is more inter-
esting.

5 Implications for warm rain simulations in GCM

5.1 Influence of subgrid variation of cloud water

As discussed in Sect. 2.2, most current GCMs only consider
the impact of subgrid cloud water variation on autoconver-
sion rate but ignore the impact of subgrid CDNC variation.
To make our analysis relevant to the current GCMs, we first
analyze Eq in Eq. (20) based on observations. The impacts
of subgrid CDNC variation (i.e., EN ) and its correlation with
cloud water (i.e., ECOV) will be analyzed in the next section.

We derive Eq using two approaches. First, we derive it
from the observed LWP PDF based on Eq. (20). As such,
we do not have to make any assumptions about the shape
of LWP PDF, although solving the integration in Eq. (20) is
time-consuming. In the second approach, we first derive the
relative inverse relative variance v of LWP and then derive
the enhancement factor by assuming the subgrid PDF to be
either gamma or lognormal. This approach is more efficient,
but it may be subject to error if the true PDF deviates from the
assumed PDF shape. Figure 6a shows the annual mean en-
hancement factor Eq in the tropical region derived based on
Eq. (20) (i.e., the first approach) from 10 years of MODIS ob-
servations. Figure 6b and c show the annual mean enhance-
ment factor Eq derived by assuming the subgrid cloud water
follows the lognormal (i.e., Eq. 14) and gamma distribution
(i.e., Eq. 8), respectively. There are a couple of interesting
and important points to note. First of all, similar to the grid-
mean quantities in Fig. 4, the enhancement factor Eq also
shows a clear Sc-to-Cu transition. Over the Sc decks, be-
cause clouds are more homogeneous (̃v > 5), the enhance-
ment factor Eq is only around 1–2.5, while over the Cu re-
gions, the more inhomogeneous clouds with ṽ < 1 leads to
a larger enhancement factor Eq around 3–5. As mentioned
previously, in the current CAM5.3, Eq is assumed to be a
constant of 3.2. While this value is within the observational
range, it obviously cannot capture the Sc-to-Cu transition. In
fact, the constant value 3.2 overestimates the Eq over the Sc
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Figure 6. The annual mean factor for the KK2000 scheme due to subgrid variation of LWP computed (a) directly from observation, i.e., Eq
in Eq. (20), (b) from relative variance assuming lognormal PDF of LWP, i.e., Eq in Eq. (14), and (c) from relative variance assuming the
gamma PDF of LWP, i.e., Eq in Eq. (8).

region and underestimates the Eq over the Cu region, which
could lead to unrealistic drizzle production in both regions
and to consequential impacts on cloud water budget, radi-
ation, and even aerosol indirect effects on the model. The
second point to note is that the Eq based on the lognormal
PDF assumption in Fig. 6b agrees well with the results in
Fig. 6a derived directly from the observation. In contrast, the
Eq based on the gamma PDF assumption in Fig. 6c tends to
be smaller, especially in the Cu regions. This result seems to
suggest that the lognormal distribution provides a better fit to
the observed subgrid cloud water variation than the gamma
distribution, which has rarely been noted and reported in the
previous studies.

A flexible, cloud-regime-dependent Eq could help im-
prove the simulation of Sc-to-Cu transition in the GCM. If a
GCM employs an advanced cloud parameterization scheme,
such as CLUBB, that is able to provide regime-dependent
information on subgrid cloud variation, i.e., v, then the en-
hancement factor Eq could be diagnosed from v. However,
most traditional cloud parameterization schemes do not pro-
vide information on subgrid cloud variation. In such cases,
if one does not wish to use a constant Eq but a varying
regime-dependent scheme, then either v or Eq need to be
parameterized as a function of some grid-mean cloud prop-

erties resolved by the GCM. In fact, several attempts have
been made along this line. Based on the combination airborne
in situ measurements and satellite remote sensing products,
Boutle et al. (2014) parameterized the “fractional standard
deviation” (which is equivalent to 1/

√
v in our definition) of

liquid-phase cloud as a function of grid-mean cloud fraction.
This scheme was later updated and tested in a host GCM
in Hill et al. (2015) and was found to reduce the shortwave
cloud radiative forcing biases in the model. In a recent study,
Xie and Zhang (2015) derived the subgrid cloud variations
from the ground-based observations from three DOE ARM
sites, and then parameterized the inverse relative variance v
as a function of the atmospheric stability.

Figure 7a shows the variation of inverse relative variance
v as a function of the grid-mean liquid-phase cloud fraction
fliq. In general, the value of v increases with the increasing
fliq, which is expected from the Sc-to-Cu increase of fliq in
Fig. 4b and the Sc-to-Cu decrease of v in Fig. 5c. The v(fliq)

pattern in Fig. 7a is also consistent with the results reported
in Wood and Hartmann (2006) and Lebsock et al. (2013). In
the hope of obtaining a simple parameterization scheme for
v(fliq) that can be used in GCMs, we fit the median value of
v as a simple third-order polynomial of fliq as follows:
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Figure 7. (a) The inverse relative variance v and (b) autoconversion enhancement factor due to LWP subgrid variability assuming lognormal
PDF as a function of grid-mean liquid cloud fraction, where the solid line, dark shaded area, and light shaded area correspond to the median
value, 25 %–75 % percentiles, and 10 %–90 % percentiles, respectively. The dotted lines correspond to simple third-order polynomial fitting.
For reference, the vq (fliq) parameterization scheme based on Boutle et al. (2014) is also plotted in panel (a).

v(fliq)= 2.38− 4.95fliq+ 8.74f 2
liq

− 0.49f 3
liq, fliq ∈ [0,1]. (30)

For comparison, we also plotted the v(fliq) parameteriza-
tion developed by Boutle et al. (2014) for grid size of
100 km (dashed line in the figure). Apparently, comparing
with Eq. (30), it generates slightly smaller v for a given the
fliq. This difference is probably because our results are based
on different data.

To test the performance of this simple parameterization,
we first substitute the fliq from the MODIS daily mean level-
3 product into the above equation and then use the resultant
v to compute the enhancement factor Eq . Unfortunately, the
enhancement factor Eq computed based on the parameter-
ized v(fliq) as shown in Fig. 8a substantially underestimates
the observation-based results in Fig. 6, especially over the
Cu regions. The deviation is probably because the relation-
ship between Eq and v is highly nonlinear (e.g., Eqs. 8 and
14), and therefore the above parameterization scheme that
is designed for v is not able to capture the variability of Eq .
Based on this consideration, we tried an alternative approach.
Instead of parameterization of v, we directly parameterize the
enhancement factor Eq as a function of fliq. Figure 7b shows
the variation ofEq as a function of fliq. As expected,Eq gen-
erally decreases with increasing fliq. The median value ofEq
is fitted with the following third-order polynomial of fliq:

Eq(fliq)= 2.72+ 7.33fliq− 19.17f 2
liq

+ 10.69f 3
liq, fliq ∈ [0,1]. (31)

As shown in Fig. 8b, the value of Eq based on the above
equation clearly agrees with the observation-based values
in Fig. 6 better than that based on the parameterization of
v(fliq). The elimination of the middle step indeed improves
the parameterization results. While this is encouraging, it

should be kept in mind that Eq. (31) has very limited applica-
tion; i.e., it is only useful for the autoconversion rate compu-
tation for a particular value of the autoconversion exponent
beta, i.e., βq = 2.47. A good parameterization of v could be
useful not only for autoconversion, but also for accretion and
radiation computations. Another caution is that, if applied to
a GCM, the performance of the Eq(fliq) parameterization in
Eq. (31) will be dependent on the simulated accuracy of fliq
in the model.

5.2 Influence of subgrid variance of CDNC

Now we will investigate the impacts of subgrid CDNC vari-
ation on the autoconversion rate simulation. For the moment,
we will consider EN only. The impact of CDNC and cloud
water correlation will be discussed in the next section. Sim-
ilar to Eq we first derive EN from the CDNC PDF based
on Eq. (21). The annual mean result based on 10 years of
MODIS observations is shown in Fig. 9a. There are several
intriguing points to note. First of all, the value of EN is actu-
ally larger than Eq in Fig. 9 such that we even have to use a
different color scale for this plot. Secondly, the regions with
escalatedEN seem to coincide with the downwind regions of
biomass burning aerosols (e.g., Gulf of Guinea, east coast of
South Africa), air pollution (i.e., East China Sea), and, most
interestingly, active volcanos (e.g., Kilauea, Hawaii, and Am-
bae, Vanuatu). We have also checked the seasonal variation
of the EN and the results also support this observation. An-
other interesting feature to note is that, although the dust out-
flow regions, such as the tropical East Atlantic and Arabian
Sea, have heavy aerosol loading, the value of EN there is
only moderate. Figure 9b shows the value of EN computed
based on Eq. (14) from the inverse relative variance of v,
assuming that the subgrid CDNC follows a lognormal PDF.
Although the overall pattern is consistent with Fig. 9a, the
assumption of the lognormal PDF seems to underestimate
EN . A closer examination indicates that the lognormal PDF

www.atmos-chem-phys.net/19/1077/2019/ Atmos. Chem. Phys., 19, 1077–1096, 2019



1090 Z. Zhang et al.: Subgrid cloud property variations and covariations from satellite

Figure 8. Annual mean value of the enhancement factor EN computed based on the (a) v(fliq)= 2.38− 4.95fliq+ 8.74f 2
liq− 0.49f 3

liq
parameterization scheme in Eq. (30) and (b) Eq (fliq)= 2.72+ 7.33fliq− 19.17f 2

liq+ 10.69f 3
liq parameterization scheme in Eq. (31).

tends to underestimate the population of clouds with a small
CDNC and therefore underestimate the variance of CDNC as
well asEN . We did not compute theEN based on the gamma
distribution because of the singular value problem mentioned
in Sect. 2.1.

We could not find any previous observation-based study
on the global pattern of the subgrid variation of CDNC and
the corresponding EN . So, it is difficult for us to corroborate
our results. On the one hand, the magnitude of EN is surpris-
ingly large. As explained in Sect. 3, the CDNC is estimated
based on Eq. (27) from the MODIS retrieval of COT and
CER. Several previous studies have shown that the subpixel-
level surface contamination, subpixel cloud inhomogeneity,
and three-dimensional radiative transfer effects can cause
significant errors in the MODIS CER retrievals, especially
over broken cloud regions (Zhang and Platnick, 2011; Zhang
et al., 2012, 2016). Given the fact that the CDNC retrieval

is highly sensitive to CER error as a result of Nd ∼ r
−

5
2

e , the
influence of retrieval uncertainty on subgrid CDNC variation
cannot be ruled out. On the other hand, the pattern of EN in
Fig. 9a seems to suggest that there are some underlying phys-
ical mechanisms controlling the subgrid variation of CDNC,
in which aerosols seem to play an important role. To achieve
a better understanding, we analyzed the dependence of EN
on liquid cloud fraction and grid-mean CDNC in Fig. 10,
which reveals that EN has a stronger dependence on CDNC
than cloud fraction. This result seems to indicate that the
pattern of EN in Fig. 9 is largely determined by physical
mechanisms rather than retrieval uncertainties. Interestingly,
the largest EN is usually found when liquid cloud fraction
is small and CDNC is large and decreases with decreasing
CDNC and increasing cloud fraction. This pattern leads us to
the following hypothesis: In the regions where aerosol is lim-

ited, even weak updrafts can activate most cloud condensa-
tion nuclei (CCN). As a result, even if there is significant sub-
grid variation of turbulence at cloud base, the subgrid varia-
tion of CDNC remains small. In contrast, in regions where
aerosol is abundant, the subgrid variation of turbulence be-
comes important. The subgrid variation of updraft leads to
subgrid variation CDNC and thereby a large EN .

As far as we know, the results in Figs. 9 and 10 mark
the first attempt based on satellite observations to unveil the
global pattern of the subgrid variations of CDNC and inves-
tigate the consequential impacts on warm rain simulations
in GCMs. Although obscured by satellite retrieval uncertain-
ties, the results still provide valuable insights. First of all,
the enhancement factor EN due to the subgrid variations of
CDNC is non-negligible, even comparable to the effect of
subgrid cloud water variation (i.e., Eq ). Second, the global
pattern of EN in Fig. 9 provides a valuable map for future
studies.

5.3 The combined effect of subgrid variations of cloud
water and CDNC

Finally, in this section we examine the combined effect of
subgrid variations of cloud water and CDNC, as well as their
correlation, on the autoconversion rate simulation. The an-
nual mean combined enhancement factor E derived based
on Eq. (17) from 10 years of MODIS COT and CER ob-
servations is shown in Fig. 11a. Comparing with the Eq in
Fig. 6 and EN in Fig. 9, the combined enhancement factor is
generally larger. It is easy to see that in some regions (e.g.,
Gulf of Guinea, east coast of South Africa, and East China
Sea), the combined enhancement factor E resembles EN ,
while in other regions (i.e., trade wind cumulus regions over
open ocean) it resembles more of Eq . Interestingly, because
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Figure 9. Annual mean value of the enhancement factor EN derived from (a) observation based on Eq. (21) and (b) from Eq. (14) assuming
lognormal subgrid CDNC distribution.

Figure 10. Dependence of EN on fliq and Nd. The color map cor-
responds to the mean value of EN for a given Nd and fliq bin. The
white contour lines correspond to the relative sampling frequency
of Nd and fliq bins (i.e., the most frequently observed combination
is Nd ∼ 50 cm−3 and fliq ∼ 0.1).

both Eq and EN are small over the Sc decks, those regions
have the smallest combined enhancement factor E. As dis-
cussed in Sect. 2.2, only when the subgrid variation of cloud
water is uncorrelated with the subgrid variation of CDNC
can the combined enhancement factor E be decomposed into
the simple product of Eq and EN (i.e., Eq. 19). Figure 11b
shows the annual mean value of the simple product Eq ·EN ,
without considering the correlation between cloud water and
CDNC. Evidently, the simple product substantially overes-
timates the combined enhancement factor derived from the
joint PDF of LWP and CDNC. This result can be explained
by the mostly positive subgrid correlation between LWP and
CDNC in Fig. 5e. As explained in Sect. 2.2, the positive cor-

relation means that clouds with more water also tend to have
more CDNC. The autoconversion rate of such configurations
is lower than that when LWP and CDNC have no correlation.

Together, the Eq in Fig. 6, EN in Fig. 9, and the combined
enhancement factor in Fig. 11 lead us to the following impor-
tant conclusion. It is not sufficient to consider only the impact
of subgrid variation of cloud water (i.e., Eq ) on the auto-
conversion rate simulation. The influences of subgrid CDNC
variation, as well as the correlation between cloud water and
CDNC, must also be taken into account to avoid significant
error.

Finally, the combined enhancement factor derived based
on Eq. (23), assuming that the LWP and CDNC follow the
bivariate lognormal distribution, is shown in Fig. 11c. De-
spite the tendency of overestimation, the result agrees reason-
ably well with that based on observed joint PDFs in Fig. 11a,
clearly better than the simple productEq ·EN . This is encour-
aging as it suggests that the bivariate lognormal distribution
can be used in the future to model the combined effect of
cloud water and CDNC on autoconversion rate simulation in
GCMs.

6 Summary and outlook

One of the difficulties in GCM simulation of the warm rain
parameterization is how to account for the impact of sub-
grid variations of cloud properties, such as cloud water and
CDCN, on nonlinear precipitation processes such as auto-
conversion. In practice, this impact is often treated by adding
the enhancement factor term to the parameterization scheme.
In this study, we derived the subgrid variations of liquid-
phase cloud properties over the tropical ocean using the satel-
lite remote sensing products from MODIS and investigated
the corresponding enhancement factors for parameterizations
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Figure 11. The combined enhancement factor derived (a) based on Eq. (17) from the observed joint PDF of LWP and CDNC, (b) assuming
that subgrid variations of LWP and CDNC are uncorrelated, i.e., Eq ·EN only, and (c) based on Eq. (23) assuming that the subgrid LWP and
CDNC following the bivariate lognormal distribution.

of autoconversion rate. In comparison with previous work,
our study is able to shed some new light on this problem in
the following regards.

1. A theoretical framework is presented to explain the im-
portance of the subgrid variation of CDNC and its corre-
lation with cloud water on the autoconversion rate sim-
ulation in GCMs.

2. The wide spatial coverage of the level-3 MODIS prod-
uct enables us to depict a detailed quantitative picture of
the enhancement factor Eq , which shows a clear cloud
regime dependence, i.e., a Sc-to-Cu increase. The con-
stant Eq = 3.2 used in the current CAM5.3 model over-
estimates and underestimates the observed Eq in the Sc
and Cu regions, respectively.

3. The Eq based on the lognormal PDF assumption per-
forms significantly better than that based on the gamma
PDF assumption. A simple parameterization scheme is
provided to relateEq to the grid-mean liquid cloud frac-
tion, which can be readily used in GCMs.

4. For the first time, the enhancement factor EN due to
the subgrid variation of CDNC is derived from satel-
lite observation, and the results reveal several regions

downwind of biomass burning aerosols (e.g., Gulf of
Guinea, east coast of South Africa), air pollution (i.e.,
East China Sea), and active volcanos (e.g., Kilauea,
Hawaii, and Ambae, Vanuatu). The largest EN is usu-
ally found where CDNC is large and liquid cloud frac-
tion is small and decreases with decreasing CDNC and
increasing cloud fraction.

5. MODIS observations suggest that the subgrid LWP and
CDNC are mostly positively correlated. As a result, the
combined enhancement factor is significantly smaller
than the simple product of Eq ·EN (i.e., assuming no
correlation). The combined enhancement factor derived
assuming LWP and CDNC follow the bivariate lognor-
mal distribution agrees with the observation-based re-
sults reasonably well.

As noted in the previous sections, this study has several
important limitations, most of which are a result of using
the level-3 MODIS observations. The fixed 1◦× 1◦ spa-
tial resolution of the MODIS level-3 product makes it im-
possible for us to investigate the scale dependence of sub-
grid cloud variation. Similar to previous studies, we have to
make several assumptions when estimating the CDNC from
the level-3 MODIS product. Furthermore, the retrieval un-
certainties associated with the optically thin clouds in the

Atmos. Chem. Phys., 19, 1077–1096, 2019 www.atmos-chem-phys.net/19/1077/2019/



Z. Zhang et al.: Subgrid cloud property variations and covariations from satellite 1093

MODIS product pose a challenging obstacle for the quan-
tification of subgrid cloud property variations and the corre-
sponding enhancement factors. These limitations have to be
addressed using additional independent observations from,
for example, ground-based remote sensing products and/or
in situ measurements from airborne field campaigns. Re-
cently, a few novel methods have been developed to provide
certain information on the subgrid cloud property variations
to the host GCM. Most noticeable examples are the super-
parameterization method (a.k.a. multiscale modeling frame-
work) (Wang et al., 2015) and the PDF-based higher-order
turbulence closure methods, e.g., Cloud Layer Unified By Bi-
normals (CLUBB) (Golaz et al., 2002a; Guo et al., 2015; Lar-
son et al., 2002) and Eddy-Diffusivity Mass Flux (EDMF)
(Sušelj et al., 2013). The subgrid cloud property variations
derived in this study provide the valuable observational basis
for the evaluation and improvement of these schemes.
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