Articles | Volume 18, issue 13
https://doi.org/10.5194/acp-18-9457-2018
https://doi.org/10.5194/acp-18-9457-2018
Research article
 | Highlight paper
 | 
06 Jul 2018
Research article | Highlight paper |  | 06 Jul 2018

The diurnal cycle of cloud profiles over land and ocean between 51° S and 51° N, seen by the CATS spaceborne lidar from the International Space Station

Vincent Noel, Hélène Chepfer, Marjolaine Chiriaco, and John Yorks

Related authors

Investigating long-term changes in polar stratospheric clouds above Antarctica during past decades: a temperature-based approach using spaceborne lidar detections
Mathilde Leroux and Vincent Noel
Atmos. Chem. Phys., 24, 6433–6454, https://doi.org/10.5194/acp-24-6433-2024,https://doi.org/10.5194/acp-24-6433-2024, 2024
Short summary
Incorporating EarthCARE observations into a multi-lidar cloud climate record: the ATLID (Atmospheric Lidar) cloud climate product
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, and Frederic Szczap
Atmos. Meas. Tech., 16, 3363–3390, https://doi.org/10.5194/amt-16-3363-2023,https://doi.org/10.5194/amt-16-3363-2023, 2023
Short summary
Locations for the best lidar view of mid-level and high clouds
Matthias Tesche and Vincent Noel
Atmos. Meas. Tech., 15, 4225–4240, https://doi.org/10.5194/amt-15-4225-2022,https://doi.org/10.5194/amt-15-4225-2022, 2022
Short summary
Comparison of scattering ratio profiles retrieved from ALADIN/Aeolus and CALIOP/CALIPSO observations and preliminary estimates of cloud fraction profiles
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, Rodrigo Guzman, Cyprien Gindre, Po-Lun Ma, and Marjolaine Chiriaco
Atmos. Meas. Tech., 15, 1055–1074, https://doi.org/10.5194/amt-15-1055-2022,https://doi.org/10.5194/amt-15-1055-2022, 2022
Short summary
Mesoscale simulations of tropical cyclone Enawo (March 2017) and its impact on TTL water vapor
Damien Héron, Stephanie Evan, Joris Pianezze, Thibaut Dauhut, Jerome Brioude, Karen Rosenlof, Vincent Noel, Soline Bielli, Christelle Barthe, and Jean-Pierre Cammas
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-870,https://doi.org/10.5194/acp-2020-870, 2020
Publication in ACP not foreseen
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A survey of radiative and physical properties of North Atlantic mesoscale cloud morphologies from multiple identification methodologies
Ryan Eastman, Isabel L. McCoy, Hauke Schulz, and Robert Wood
Atmos. Chem. Phys., 24, 6613–6634, https://doi.org/10.5194/acp-24-6613-2024,https://doi.org/10.5194/acp-24-6613-2024, 2024
Short summary
Extensive coverage of ultrathin tropical tropopause layer cirrus clouds revealed by balloon-borne lidar observations
Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 24, 5935–5952, https://doi.org/10.5194/acp-24-5935-2024,https://doi.org/10.5194/acp-24-5935-2024, 2024
Short summary
The effects of warm-air intrusions in the high Arctic on cirrus clouds
Georgios Dekoutsidis, Martin Wirth, and Silke Groß
Atmos. Chem. Phys., 24, 5971–5987, https://doi.org/10.5194/acp-24-5971-2024,https://doi.org/10.5194/acp-24-5971-2024, 2024
Short summary
The characteristics of cloud macro-parameters caused by the seeder–feeder process inside clouds measured by millimeter-wave cloud radar in Xi'an, China
Huige Di and Yun Yuan
Atmos. Chem. Phys., 24, 5783–5801, https://doi.org/10.5194/acp-24-5783-2024,https://doi.org/10.5194/acp-24-5783-2024, 2024
Short summary
Shallow- and deep-convection characteristics in the greater Houston, Texas, area using cell tracking methodology
Kristofer S. Tuftedal, Bernat Puigdomènech Treserras, Mariko Oue, and Pavlos Kollias
Atmos. Chem. Phys., 24, 5637–5657, https://doi.org/10.5194/acp-24-5637-2024,https://doi.org/10.5194/acp-24-5637-2024, 2024
Short summary

Cited articles

Bouniol, D., Roca, R., Fiolleau, T., and Poan, D. E.: Macrophysical, Microphysical, and Radiative Properties of Tropical Mesoscale Convective Systems over Their Life Cycle, J. Climate, 29, 3353–3371, https://doi.org/10.1175/JCLI-D-15-0551.1, 2016. 
Bourgeois, E., Bouniol, D., Couvreux, F., Guichard, F., Marsham, J. H., Garcia-Carreras, L., Birch, C. E., and Parker, D. J.: Characteristics of mid-level clouds over West Africa, Q. J. Roy. Meteor. Soc., 113, D04210, https://doi.org/10.1002/qj.3215, 2018. 
Cesana, G. and Chepfer, H.: Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP, J. Geophys. Res., 118, 7922–7937, https://doi.org/10.1002/jgrd.50376, 2013. 
Cesana, G., Chepfer, H., Winker, D. M., Getzewich, B., Cai, X., Okamoto, H., Hagihara, Y., Jourdan, O., Mioche, G., Noel, V., and Reverdy, M.: Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO, J. Geophys. Res.-Atmos., 121, 5788–5808, https://doi.org/10.1002/2015JD024334, 2016. 
Chepfer, H., Bony, S., Winker, D., Cesana, G., Dufresne, J. L., Minnis, P., Stubenrauch, C. J., and Zeng, S.: The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP), J. Geophys. Res., 115, D00H16, https://doi.org/10.1029/2009JD012251, 2010. 
Download
Short summary
From 3 years of observations from the CATS lidar on the International Space Station we document the daily cycle of the vertical distribution of clouds. This is the first time this is documented over several continents and oceans using finely resolved measurements on a near-global scale from a single instrument. We show that other instruments observing clouds from space, like CALIPSO, document extremes of the daily cycle over ocean and closer to the average over land.
Altmetrics
Final-revised paper
Preprint