Articles | Volume 18, issue 11
https://doi.org/10.5194/acp-18-8065-2018
https://doi.org/10.5194/acp-18-8065-2018
Research article
 | 
08 Jun 2018
Research article |  | 08 Jun 2018

Bifurcation of potential vorticity gradients across the Southern Hemisphere stratospheric polar vortex

Jonathan Conway, Greg Bodeker, and Chris Cameron

Related authors

The application and modification of WRF-Hydro/Glacier to a cold-based Antarctic glacier
Tamara Pletzer, Jonathan P. Conway, Nicolas J. Cullen, Trude Eidhammer, and Marwan Katurji
Hydrol. Earth Syst. Sci., 28, 459–478, https://doi.org/10.5194/hess-28-459-2024,https://doi.org/10.5194/hess-28-459-2024, 2024
Short summary
Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments
Jonathan P. Conway, Jakob Abermann, Liss M. Andreassen, Mohd Farooq Azam, Nicolas J. Cullen, Noel Fitzpatrick, Rianne H. Giesen, Kirsty Langley, Shelley MacDonell, Thomas Mölg, Valentina Radić, Carleen H. Reijmer, and Jean-Emmanuel Sicart
The Cryosphere, 16, 3331–3356, https://doi.org/10.5194/tc-16-3331-2022,https://doi.org/10.5194/tc-16-3331-2022, 2022
Short summary
Reconstructing the mass balance of Brewster Glacier, New Zealand, using MODIS-derived glacier-wide albedo
Pascal Sirguey, Holly Still, Nicolas J. Cullen, Marie Dumont, Yves Arnaud, and Jonathan P. Conway
The Cryosphere, 10, 2465–2484, https://doi.org/10.5194/tc-10-2465-2016,https://doi.org/10.5194/tc-10-2465-2016, 2016
Short summary
Cloud effects on surface energy and mass balance in the ablation area of Brewster Glacier, New Zealand
J. P. Conway and N. J. Cullen
The Cryosphere, 10, 313–328, https://doi.org/10.5194/tc-10-313-2016,https://doi.org/10.5194/tc-10-313-2016, 2016
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Hemispheric asymmetry in recent stratospheric age of air changes
Kimberlee Dubé, Susann Tegtmeier, Felix Ploeger, and Kaley A. Walker
Atmos. Chem. Phys., 25, 1433–1447, https://doi.org/10.5194/acp-25-1433-2025,https://doi.org/10.5194/acp-25-1433-2025, 2025
Short summary
Transport into the polar stratosphere from the Asian monsoon region
Xiaolu Yan, Paul Konopka, Felix Ploeger, and Aurélien Podglajen
Atmos. Chem. Phys., 25, 1289–1305, https://doi.org/10.5194/acp-25-1289-2025,https://doi.org/10.5194/acp-25-1289-2025, 2025
Short summary
Stratospheric Aerosol Intervention Experiment for the Chemistry-Climate Model Intercomparison Project
Simone Tilmes, Ewa M. Bednarz, Andrin Jörimann, Daniele Visioni, Douglas E. Kinnison, Gabriel Chiodo, and David Plummer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3586,https://doi.org/10.5194/egusphere-2024-3586, 2024
Short summary
Age of air from in situ trace gas measurements: insights from a new technique
Eric A. Ray, Fred L. Moore, Hella Garny, Eric J. Hintsa, Bradley D. Hall, Geoff S. Dutton, David Nance, James W. Elkins, Steven C. Wofsy, Jasna Pittman, Bruce Daube, Bianca C. Baier, Jianghanyang Li, and Colm Sweeney
Atmos. Chem. Phys., 24, 12425–12445, https://doi.org/10.5194/acp-24-12425-2024,https://doi.org/10.5194/acp-24-12425-2024, 2024
Short summary
Tropospheric links to uncertainty in stratospheric subseasonal predictions
Rachel W.-Y. Wu, Gabriel Chiodo, Inna Polichtchouk, and Daniela I. V. Domeisen
Atmos. Chem. Phys., 24, 12259–12275, https://doi.org/10.5194/acp-24-12259-2024,https://doi.org/10.5194/acp-24-12259-2024, 2024
Short summary

Cited articles

Ajtic, J., Connor, B. J., Lawrence, B. N., Bodeker, G. E., Hoppel, K. W., Rosenfield, J. E., and Heuff, D. N.: Dilution of the Antarctic ozone hole into southern midlatitudes, 1998–2000, J. Geophys. Res., 109, 1–9, https://doi.org/10.1029/2003JD004500, 2004. a
Bodeker, G. E., Struthers, H., and Connor, B. J.: Dynamical containment of Antarctic ozone depletion, Geophys. Res. Lett., 29, 1098, https://doi.org/10.1029/2001gl014206, 2002. a, b, c
Butchart, N. and Remsberg, E. E.: The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface, J. Atmos. Sci., 43, 1319–1339, https://doi.org/10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2, 1986. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Dunkerton and Delisi: Evolution of Potential Vorticity in the winter Stratosphere of January-February 1979, J. Geophys. Res., 91, 1199–1208, https://doi.org/10.1029/JD091iD01p01199, 1986. a
Download
Short summary
Strong westerly winds occur in the stratosphere during winter and spring. These winds, the polar vortex, limit how much air is mixed between mid- and high-latitudes. We present a new view of the polar vortex mixing barrier in the Southern Hemisphere, revealing a frequent double-walled barrier with two distinct regions of weak mixing. This double-walled structure is expected to alter the spatial and temporal variation of trace gas concentrations (e.g. ozone) across the polar vortex.
Share
Altmetrics
Final-revised paper
Preprint