Articles | Volume 18, issue 23
Atmos. Chem. Phys., 18, 17087–17097, 2018
https://doi.org/10.5194/acp-18-17087-2018
Atmos. Chem. Phys., 18, 17087–17097, 2018
https://doi.org/10.5194/acp-18-17087-2018

Research article 04 Dec 2018

Research article | 04 Dec 2018

Quantifying the large-scale electrification equilibrium effects in dust storms using field observations at Qingtu Lake Observatory

Huan Zhang and Xiaojing Zheng

Related authors

Effects of 3D electric field on saltation during dust storms: an observational and numerical study
Huan Zhang and You-He Zhou
Atmos. Chem. Phys., 20, 14801–14820, https://doi.org/10.5194/acp-20-14801-2020,https://doi.org/10.5194/acp-20-14801-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
PM2.5 surface concentrations in southern West African urban areas based on sun photometer and satellite observations
Jean-François Léon, Aristide Barthélémy Akpo, Mouhamadou Bedou, Julien Djossou, Marleine Bodjrenou, Véronique Yoboué, and Cathy Liousse
Atmos. Chem. Phys., 21, 1815–1834, https://doi.org/10.5194/acp-21-1815-2021,https://doi.org/10.5194/acp-21-1815-2021, 2021
Short summary
Observations on aerosol optical properties and scavenging during cloud events
Antti Ruuskanen, Sami Romakkaniemi, Harri Kokkola, Antti Arola, Santtu Mikkonen, Harri Portin, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, and Ari Leskinen
Atmos. Chem. Phys., 21, 1683–1695, https://doi.org/10.5194/acp-21-1683-2021,https://doi.org/10.5194/acp-21-1683-2021, 2021
Short summary
Assessing the vertical structure of Arctic aerosols using balloon-borne measurements
Jessie M. Creamean, Gijs de Boer, Hagen Telg, Fan Mei, Darielle Dexheimer, Matthew D. Shupe, Amy Solomon, and Allison McComiskey
Atmos. Chem. Phys., 21, 1737–1757, https://doi.org/10.5194/acp-21-1737-2021,https://doi.org/10.5194/acp-21-1737-2021, 2021
Short summary
An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021,https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Measurement report: aerosol hygroscopic properties extended to 600 nm in the urban environment
Chuanyang Shen, Gang Zhao, Weilun Zhao, Ping Tian, and Chunsheng Zhao
Atmos. Chem. Phys., 21, 1375–1388, https://doi.org/10.5194/acp-21-1375-2021,https://doi.org/10.5194/acp-21-1375-2021, 2021
Short summary

Cited articles

Aizawa, K., Cimarelli, C., Alatorre-Ibargüengoitia, M., Yokoo, A., Dingwell, D., and Iguchi, M.: Physical properties of volcanic lightning: Constraints from magnetotelluric and video observations at Sakurajima volcano, Japan, Earth Planet. Sci. Lett., 444, 45–55, https://doi.org/10.1016/j.epsl.2016.03.024, 2016. 
Alois, S., Merrison, J., Iversen, J. J., and Sesterhenn, J.: Contact electrification in aerosolized monodispersed silica microspheres quantified using laser based velocimetry, J. Aerosol Sci., 106, 1–10, https://doi.org/10.1016/j.jaerosci.2016.12.003, 2017. 
Alois, S., Merrison, J., Iversen, J. J., and Sesterhenn, J.: Quantifying the contact electrification of aerosolized insulating particles, Powder Technol., 332, 106–113, https://doi.org/10.1016/j.powtec.2018.03.059, 2018. 
Apodaca, M., Wesson, P., Bishop, K., Ratner, M., and Grzybowski, B.: Contact electrification between identical materials, Angew. Chem.-Int. Edit., 49, 946–949, https://doi.org/10.1002/anie.200905281, 2010. 
Baytekin, H., Baytekin, B., Soh, S., and Grzybowski, B.: Is water necessary for contact electrification?, Angew. Chem.-Int. Edit., 50, 6766–6770, https://doi.org/10.1002/anie.201008051, 2011a. 
Download
Short summary
We conducted an extensive observational analysis involving 10 dust storms to assess the electrical properties of dust particles. Using wavelet coherence analysis, we found that the space charge density and dust concentration were highly correlated over 10 min timescales. The significant linear relationship between space charge density and dust concentration at given ambient conditions suggests that the mean charge-to-mass ratio of dust particles was expected to remain constant.
Altmetrics
Final-revised paper
Preprint