Articles | Volume 17, issue 3
Atmos. Chem. Phys., 17, 2437–2458, 2017
Atmos. Chem. Phys., 17, 2437–2458, 2017
Research article
15 Feb 2017
Research article | 15 Feb 2017

How does downward planetary wave coupling affect polar stratospheric ozone in the Arctic winter stratosphere?

Sandro W. Lubis et al.

Related authors

The Teleconnection of Extreme ENSO Events to the Tropical North Atlantic in Coupled Climate Models
Jake W. Casselman, Joke F. Lübbecke, Tobias Bayr, Wenjuan Huo, Sebastian Wahl, and Daniela I. V. Domeisen
Weather Clim. Dynam. Discuss.,,, 2022
Preprint under review for WCD
Short summary
Identifying quasi-periodic variability using multivariate empirical mode decomposition: a case of the tropical Pacific
Lina Boljka, Nour-Eddine Omrani, and Noel S. Keenlyside
Weather Clim. Dynam. Discuss.,,, 2022
Revised manuscript under review for WCD
Short summary
FOCI-MOPS v1 – integration of marine biogeochemistry within the Flexible Ocean and Climate Infrastructure version 1 (FOCI 1) Earth system model
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024,,, 2022
Short summary
The Sun's role in decadal climate predictability in the North Atlantic
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys., 22, 7893–7904,,, 2022
Short summary
Twenty-first-century Southern Hemisphere impacts of ozone recovery and climate change from the stratosphere to the ocean
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171,,, 2022
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Driving mechanisms for the El Niño–Southern Oscillation impact on stratospheric ozone
Samuel Benito-Barca, Natalia Calvo, and Marta Abalos
Atmos. Chem. Phys., 22, 15729–15745,,, 2022
Short summary
Exploring the link between austral stratospheric polar vortex anomalies and surface climate in chemistry-climate models
Nora Bergner, Marina Friedel, Daniela I. V. Domeisen, Darryn Waugh, and Gabriel Chiodo
Atmos. Chem. Phys., 22, 13915–13934,,, 2022
Short summary
The impact of improved spatial and temporal resolution of reanalysis data on Lagrangian studies of the tropical tropopause layer
Stephen Bourguet and Marianna Linz
Atmos. Chem. Phys., 22, 13325–13339,,, 2022
Short summary
Dynamics of ENSO-driven stratosphere-to-troposphere transport of ozone over North America
John R. Albers, Amy H. Butler, Andrew O. Langford, Dillon Elsbury, and Melissa L. Breeden
Atmos. Chem. Phys., 22, 13035–13048,,, 2022
Short summary
Ozone–gravity wave interaction in the upper stratosphere/lower mesosphere
Axel Gabriel
Atmos. Chem. Phys., 22, 10425–10441,,, 2022
Short summary

Cited articles

Andrews, D. G., Holton, J. R., and Leovoy, C. B.: Middle Atmosphere Dynamics, in: vol. 40 of International Geophysics Series, Academic Press, Cambridge, Massachusetts, USA, 1987.
Austin, J. and Butchart, N.: Coupled chemistry–climate model simulations for the period 1980 to 2020: Ozone depletion and the start of ozone recovery, Q. J. Roy. Meteorol. Soc., 129, 3225–3249,, 2003.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous Weather Regimes, Science, 294, 581–584,, 2001.
Bloom, S. C., Takacs, L. L., da Silva, A. M., and Ledvina, D.: Data Assimilation Using Incremental Analysis Updates, Mon. Weather Rev., 124, 1256–1271,<1256:DAUIAU>2.0.CO;2, 1996.
Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S., Labows, G., Partyka, G., Pawson, S., Reale, O., Schubert, S. D., and Suarez, M.: MERRA-2: Initial Evaluation of the Climate, Technical Report Series on Global Modeling and Data Assimilation, Tech. Rep. NASA/TM-2015-104606, (last access: 12 July 2016), 2015.
Short summary
Downward wave coupling (DWC) events impact high-latitude stratospheric ozone in two ways: (1) reduced dynamical transport of ozone from low to high latitudes during individual events and (2) enhanced springtime chemical destruction of ozone via the cumulative impact of DWC events on polar stratospheric temperatures. The results presented here broaden the scope of the impact of wave–mean flow interaction on stratospheric ozone by highlighting the key role of wave reflection.
Final-revised paper