Articles | Volume 17, issue 18
https://doi.org/10.5194/acp-17-11605-2017
https://doi.org/10.5194/acp-17-11605-2017
Research article
 | 
28 Sep 2017
Research article |  | 28 Sep 2017

Secondary organic aerosol from atmospheric photooxidation of indole

Julia Montoya-Aguilera, Jeremy R. Horne, Mallory L. Hinks, Lauren T. Fleming, Véronique Perraud, Peng Lin, Alexander Laskin, Julia Laskin, Donald Dabdub, and Sergey A. Nizkorodov

Related authors

Modeling reactive ammonia uptake by secondary organic aerosol in CMAQ: application to the continental US
Shupeng Zhu, Jeremy R. Horne, Julia Montoya-Aguilera, Mallory L. Hinks, Sergey A. Nizkorodov, and Donald Dabdub
Atmos. Chem. Phys., 18, 3641–3657, https://doi.org/10.5194/acp-18-3641-2018,https://doi.org/10.5194/acp-18-3641-2018, 2018
Short summary
Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene
Mallory L. Hinks, Julia Montoya-Aguilera, Lucas Ellison, Peng Lin, Alexander Laskin, Julia Laskin, Manabu Shiraiwa, Donald Dabdub, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 18, 1643–1652, https://doi.org/10.5194/acp-18-1643-2018,https://doi.org/10.5194/acp-18-1643-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Enhanced sulfate formation in mixed biomass burning and sea-salt interactions mediated by photosensitization: effects of chloride, nitrogen-containing compounds, and atmospheric aging
Rongzhi Tang, Jialiang Ma, Ruifeng Zhang, Weizhen Cui, Yuanyuan Qin, Yangxi Chu, Yiming Qin, Alexander L. Vogel, and Chak K. Chan
Atmos. Chem. Phys., 25, 425–439, https://doi.org/10.5194/acp-25-425-2025,https://doi.org/10.5194/acp-25-425-2025, 2025
Short summary
Heterogeneous formation and light absorption of secondary organic aerosols from acetone photochemical reactions: remarkably enhancing effects of seeds and ammonia
Si Zhang, Yining Gao, Xinbei Xu, Luyao Chen, Can Wu, Zheng Li, Rongjie Li, Binyu Xiao, Xiaodi Liu, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 14177–14190, https://doi.org/10.5194/acp-24-14177-2024,https://doi.org/10.5194/acp-24-14177-2024, 2024
Short summary
Experimental observation of the impact of nanostructure on hygroscopicity and reactivity of fatty acid atmospheric aerosol proxies
Adam Milsom, Adam M. Squires, Ben Laurence, Ben Wōden, Andrew J. Smith, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 24, 13571–13586, https://doi.org/10.5194/acp-24-13571-2024,https://doi.org/10.5194/acp-24-13571-2024, 2024
Short summary
Technical note: High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 1: Continuous flow analysis of the SIGMA-D ice core using the wide-range Single-Particle Soot Photometer and a high-efficiency nebulizer
Kumiko Goto-Azuma, Remi Dallmayr, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Motohiro Hirabayashi, Jun Ogata, Kyotaro Kitamura, Kenji Kawamura, Koji Fujita, Sumito Matoba, Naoko Nagatsuka, Akane Tsushima, Kaori Fukuda, and Teruo Aoki
Atmos. Chem. Phys., 24, 12985–13000, https://doi.org/10.5194/acp-24-12985-2024,https://doi.org/10.5194/acp-24-12985-2024, 2024
Short summary
Particulate emissions from cooking: emission factors, emission dynamics, and mass spectrometric analysis for different cooking methods
Julia Pikmann, Frank Drewnick, Friederike Fachinger, and Stephan Borrmann
Atmos. Chem. Phys., 24, 12295–12321, https://doi.org/10.5194/acp-24-12295-2024,https://doi.org/10.5194/acp-24-12295-2024, 2024
Short summary

Cited articles

Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
Atkinson, R., Tuazon, E. C., Arey, J., and Aschmann, S. M.: Atmospheric and indoor chemistry of gas-phase indole, quinoline, and isoquinoline, Atmos. Environ., 29, 3423–3432, https://doi.org/10.1016/1352-2310(95)00103-6, 1995.
Baluja, S., Bhalodia, R., Bhatt, M., Vekariya, N., and Gajera, R.: Solubitily of a pharmacological intermediate drug isatin in different solvents at various temperatures, Int. Lett. Chem. Phys. Astron., 17, 36–46, https://doi.org/10.18052/www.scipress.com/ILCPA.17.36, 2013.
Cardoza, Y. J., Lait, C. G., Schmelz, E. A., Huang, J., and Tumlinson, J. H.: Fungus-induced biochemical changes in peanut plants and their effect on development of beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae) larvae, Environ. Entomol., 32, 220–228, https://doi.org/10.1603/0046-225X-32.1.220, 2003.
Carreras-Sospedra, M., Griffin, R. J., and Dabdub, D.: Calculations of incremental secondary organic aerosol reactivity, Environ. Sci. Technol., 39, 1724–1730, https://doi.org/10.1021/es0495359, 2005.
Download
Short summary
Various plant species emit a chemical compound called indole under stressed conditions or during flowering events. Our experiments show that indole can be oxidized in the atmosphere to produce a brownish haze containing well-known indole-derived dyes, such as indigo dye. An airshed model that includes indole chemistry shows that indole aerosol makes a significant contribution to the total aerosol burden and to visibility.
Altmetrics
Final-revised paper
Preprint