Articles | Volume 16, issue 13
https://doi.org/10.5194/acp-16-8511-2016
https://doi.org/10.5194/acp-16-8511-2016
Research article
 | 
13 Jul 2016
Research article |  | 13 Jul 2016

Why did the storm ex-Gaston (2010) fail to redevelop during the PREDICT experiment?

Thomas M. Freismuth, Blake Rutherford, Mark A. Boothe, and Michael T. Montgomery

Related authors

The genesis of Hurricane Nate and its interaction with a nearby environment of very dry air
Blake Rutherford, Timothy Dunkerton, Michael Montgomery, and Scott Braun
Atmos. Chem. Phys., 17, 10349–10366, https://doi.org/10.5194/acp-17-10349-2017,https://doi.org/10.5194/acp-17-10349-2017, 2017
Short summary
The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment – Part 3: Dynamics of low-level spin-up during the genesis
L. L. Lussier III, M. T. Montgomery, and M. M. Bell
Atmos. Chem. Phys., 14, 8795–8812, https://doi.org/10.5194/acp-14-8795-2014,https://doi.org/10.5194/acp-14-8795-2014, 2014
Asymmetric and axisymmetric dynamics of tropical cyclones
J. Persing, M. T. Montgomery, J. C. McWilliams, and R. K. Smith
Atmos. Chem. Phys., 13, 12299–12341, https://doi.org/10.5194/acp-13-12299-2013,https://doi.org/10.5194/acp-13-12299-2013, 2013
An examination of two pathways to tropical cyclogenesis occurring in idealized simulations with a cloud-resolving numerical model
M. E. Nicholls and M. T. Montgomery
Atmos. Chem. Phys., 13, 5999–6022, https://doi.org/10.5194/acp-13-5999-2013,https://doi.org/10.5194/acp-13-5999-2013, 2013

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Dependency of vertical velocity variance on meteorological conditions in the convective boundary layer
Noviana Dewani, Mirjana Sakradzija, Linda Schlemmer, Ronny Leinweber, and Juerg Schmidli
Atmos. Chem. Phys., 23, 4045–4058, https://doi.org/10.5194/acp-23-4045-2023,https://doi.org/10.5194/acp-23-4045-2023, 2023
Short summary
Triggering effects of large topography and boundary layer turbulence on convection over the Tibetan Plateau
Xiangde Xu, Yi Tang, Yinjun Wang, Hongshen Zhang, Ruixia Liu, and Mingyu Zhou
Atmos. Chem. Phys., 23, 3299–3309, https://doi.org/10.5194/acp-23-3299-2023,https://doi.org/10.5194/acp-23-3299-2023, 2023
Short summary
A change in the relation between the Subtropical Indian Ocean Dipole and the South Atlantic Ocean Dipole indices in the past four decades
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 23, 345–353, https://doi.org/10.5194/acp-23-345-2023,https://doi.org/10.5194/acp-23-345-2023, 2023
Short summary
Characterising the dynamic movement of thunderstorms using very low- and low-frequency (VLF/LF) total lightning data over the Pearl River Delta region
Si Cheng, Jianguo Wang, Li Cai, Mi Zhou, Rui Su, Yijun Huang, and Quanxin Li
Atmos. Chem. Phys., 22, 10045–10059, https://doi.org/10.5194/acp-22-10045-2022,https://doi.org/10.5194/acp-22-10045-2022, 2022
Short summary
Evolution of turbulent kinetic energy during the entire sandstorm process
Hongyou Liu, Yanxiong Shi, and Xiaojing Zheng
Atmos. Chem. Phys., 22, 8787–8803, https://doi.org/10.5194/acp-22-8787-2022,https://doi.org/10.5194/acp-22-8787-2022, 2022
Short summary

Cited articles

Bolton, D.: The computation of equivalent potential temperature, Mon. Weather Rev., 108, 1046–1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2, 1980.
Davis, C. A. and Ahijevych, D. A.: Mesoscale structural evolution of three tropical weather systems observed during PREDICT, J. Atmos. Sci., 69, 1284–1305, https://doi.org/10.1175/JAS-D-11-0225.1, 2012.
Davis, C. A. and Ahijevych, D. A.: Thermodynamic environments of deep convection in atlantic tropical disturbances, J. Atmos. Sci., 70, 1912–1928, https://doi.org/10.1175/JAS-D-12-0278.1, 2013.
Dunkerton, T. J., Montgomery, M. T., and Wang, Z.: Tropical cyclogenesis in a tropical wave critical layer: easterly waves, Atmos. Chem. Phys., 9, 5587–5646, https://doi.org/10.5194/acp-9-5587-2009, 2009.
Gjorgjievska, S. and Raymond, D. J.: Interaction between dynamics and thermodynamics during tropical cyclogenesis, Atmos. Chem. Phys., 14, 3065–3082, https://doi.org/10.5194/acp-14-3065-2014, 2014.
Download
Short summary
Numerical model analyses are used to investigate the role of dry, environmental air in the failed redevelopment of a tropical cyclone (ex-Gaston, 2010). As early as 12:00 UTC 2 September 2010, a dry layer at and above 600 hPa results in a decrease in the vertical mass flux and vertical, relative vorticity. The intrusion of dry air led to a reduction in vorticity and a compromised pouch at these middle levels. This study supports work looking at the role of dry air in moist convection.
Altmetrics
Final-revised paper
Preprint