Articles | Volume 16, issue 8
https://doi.org/10.5194/acp-16-5299-2016
https://doi.org/10.5194/acp-16-5299-2016
Research article
 | 
28 Apr 2016
Research article |  | 28 Apr 2016

The rate of equilibration of viscous aerosol particles

Simon O'Meara, David O. Topping, and Gordon McFiggans

Related authors

Theory informed, experiment based, constraint on the rate of autoxidation chemistry – An analytical approach
Lukas Pichelstorfer, Simon P. O'Meara, and Gordon B. McFiggans
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-40,https://doi.org/10.5194/ar-2024-40, 2024
Preprint under review for AR
Short summary
Determination of the Atmospheric Volatility of Pesticides using Chemical Ionisation Mass Spectrometry
Olivia Mae Jackson, Aristeidis Voliotis, Thomas J. Bannan, Simon P. O'Meara, Gordon McFiggans, Dave Johnson, and Hugh Coe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2380,https://doi.org/10.5194/egusphere-2024-2380, 2024
Short summary
Impact of HO2∕RO2 ratio on highly oxygenated α-pinene photooxidation products and secondary organic aerosol formation potential
Yarê Baker, Sungah Kang, Hui Wang, Rongrong Wu, Jian Xu, Annika Zanders, Quanfu He, Thorsten Hohaus, Till Ziehm, Veronica Geretti, Thomas J. Bannan, Simon P. O'Meara, Aristeidis Voliotis, Mattias Hallquist, Gordon McFiggans, Sören R. Zorn, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 24, 4789–4807, https://doi.org/10.5194/acp-24-4789-2024,https://doi.org/10.5194/acp-24-4789-2024, 2024
Short summary
Characterisation of the Manchester Aerosol Chamber facility
Yunqi Shao, Yu Wang, Mao Du, Aristeidis Voliotis, M. Rami Alfarra, Simon P. O'Meara, S. Fiona Turner, and Gordon McFiggans
Atmos. Meas. Tech., 15, 539–559, https://doi.org/10.5194/amt-15-539-2022,https://doi.org/10.5194/amt-15-539-2022, 2022
Short summary
PyCHAM (v2.1.1): a Python box model for simulating aerosol chambers
Simon Patrick O'Meara, Shuxuan Xu, David Topping, M. Rami Alfarra, Gerard Capes, Douglas Lowe, Yunqi Shao, and Gordon McFiggans
Geosci. Model Dev., 14, 675–702, https://doi.org/10.5194/gmd-14-675-2021,https://doi.org/10.5194/gmd-14-675-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Warming effects of reduced sulfur emissions from shipping
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024,https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024,https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024,https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024,https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024,https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary

Cited articles

Crank, J.: The Mathematics of Diffusion, 2nd Edn., Clarendon Press, Oxford, 1975.
Debenedetti, P. G. and Stillinger, F. H.: Supercooled Liquids and the Glass Transition, Nature, 410, 259–267, 2001.
Haynes, W. M. (Ed.): CRC Handbook of Chemistry and Physics, 96th Edn., Internet Version 2016, available at: www.hbcpnetbase.com, 2015.
He, X., Fowler, A., and Toner, M.: Water Activity and Mobility in Solutions of Glycerol and Small Molecular Weight Sugars: Implication for Cryo- and Lyopreservation, J. Appl. Phys., 100, 074702, https://doi.org/10.1063/1.2336304, 2006.
Kee, D. D., Liu, Q., and Hinestroza, J.: Viscoelastic (non-Fickian) Diffusion, Can. J. Chem. Eng., 83, 913–929, 2005.
Download
Short summary
To understand the effect of atmospheric particulate matter on climate and human health we need to know how it evolves. We investigate how best to estimate diffusion of components through particles by comparing diffusion times from three approaches to solving Fick's Law and find that they agree. This means that scientists can simulate Fickian diffusion through atmospheric particles using the approach best suited to their requirements and have confidence that their model is mathematically sound.
Altmetrics
Final-revised paper
Preprint