Articles | Volume 16, issue 8
https://doi.org/10.5194/acp-16-5299-2016
https://doi.org/10.5194/acp-16-5299-2016
Research article
 | 
28 Apr 2016
Research article |  | 28 Apr 2016

The rate of equilibration of viscous aerosol particles

Simon O'Meara, David O. Topping, and Gordon McFiggans

Related authors

Determination of the Atmospheric Volatility of Pesticides using Chemical Ionisation Mass Spectrometry
Olivia Mae Jackson, Aristeidis Voliotis, Thomas J. Bannan, Simon P. O'Meara, Gordon McFiggans, Dave Johnson, and Hugh Coe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2380,https://doi.org/10.5194/egusphere-2024-2380, 2024
Short summary
Impact of HO2∕RO2 ratio on highly oxygenated α-pinene photooxidation products and secondary organic aerosol formation potential
Yarê Baker, Sungah Kang, Hui Wang, Rongrong Wu, Jian Xu, Annika Zanders, Quanfu He, Thorsten Hohaus, Till Ziehm, Veronica Geretti, Thomas J. Bannan, Simon P. O'Meara, Aristeidis Voliotis, Mattias Hallquist, Gordon McFiggans, Sören R. Zorn, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 24, 4789–4807, https://doi.org/10.5194/acp-24-4789-2024,https://doi.org/10.5194/acp-24-4789-2024, 2024
Short summary
Characterisation of the Manchester Aerosol Chamber facility
Yunqi Shao, Yu Wang, Mao Du, Aristeidis Voliotis, M. Rami Alfarra, Simon P. O'Meara, S. Fiona Turner, and Gordon McFiggans
Atmos. Meas. Tech., 15, 539–559, https://doi.org/10.5194/amt-15-539-2022,https://doi.org/10.5194/amt-15-539-2022, 2022
Short summary
PyCHAM (v2.1.1): a Python box model for simulating aerosol chambers
Simon Patrick O'Meara, Shuxuan Xu, David Topping, M. Rami Alfarra, Gerard Capes, Douglas Lowe, Yunqi Shao, and Gordon McFiggans
Geosci. Model Dev., 14, 675–702, https://doi.org/10.5194/gmd-14-675-2021,https://doi.org/10.5194/gmd-14-675-2021, 2021
Short summary
Maxwell–Stefan diffusion: a framework for predicting condensed phase diffusion and phase separation in atmospheric aerosol
Kathryn Fowler, Paul J. Connolly, David O. Topping, and Simon O'Meara
Atmos. Chem. Phys., 18, 1629–1642, https://doi.org/10.5194/acp-18-1629-2018,https://doi.org/10.5194/acp-18-1629-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024,https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024,https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024,https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024,https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024,https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary

Cited articles

Crank, J.: The Mathematics of Diffusion, 2nd Edn., Clarendon Press, Oxford, 1975.
Debenedetti, P. G. and Stillinger, F. H.: Supercooled Liquids and the Glass Transition, Nature, 410, 259–267, 2001.
Haynes, W. M. (Ed.): CRC Handbook of Chemistry and Physics, 96th Edn., Internet Version 2016, available at: www.hbcpnetbase.com, 2015.
He, X., Fowler, A., and Toner, M.: Water Activity and Mobility in Solutions of Glycerol and Small Molecular Weight Sugars: Implication for Cryo- and Lyopreservation, J. Appl. Phys., 100, 074702, https://doi.org/10.1063/1.2336304, 2006.
Kee, D. D., Liu, Q., and Hinestroza, J.: Viscoelastic (non-Fickian) Diffusion, Can. J. Chem. Eng., 83, 913–929, 2005.
Download
Short summary
To understand the effect of atmospheric particulate matter on climate and human health we need to know how it evolves. We investigate how best to estimate diffusion of components through particles by comparing diffusion times from three approaches to solving Fick's Law and find that they agree. This means that scientists can simulate Fickian diffusion through atmospheric particles using the approach best suited to their requirements and have confidence that their model is mathematically sound.
Altmetrics
Final-revised paper
Preprint