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Abstract. The proximity of atmospheric aerosol particles to

equilibrium with their surrounding condensable vapours can

substantially impact their transformations, fate and impacts

and is the subject of vibrant research activity. In this study we

first compare equilibration timescales estimated by three dif-

ferent models for diffusion through aerosol particles to assess

any sensitivity to choice of model framework. Equilibration

times for diffusion coefficients with varying dependencies on

composition are compared for the first time. We show that

even under large changes in the saturation ratio of a semi-

volatile component (es) of 1–90 % predicted equilibration

timescales are in agreement, including when diffusion coef-

ficients vary with composition. For condensing water and a

diffusion coefficient dependent on composition, a plasticis-

ing effect is observed, leading to a decreased estimated equi-

libration time with increasing final es. Above 60 % final es

maximum equilibration times of around 1 s are estimated for

comparatively large particles (10 µm) containing a relatively

low diffusivity component (1× 10−25 m2 s−1 in pure form).

This, as well as other results here, questions whether particle-

phase diffusion through water-soluble particles can limit hy-

groscopic growth in the ambient atmosphere. In the second

part of this study, we explore sensitivities associated with the

use of particle radius measurements to infer diffusion coeffi-

cient dependencies on composition using a diffusion model.

Given quantified similarities between models used in this

study, our results confirm considerations that must be taken

into account when designing such experiments. Although

quantitative agreement of equilibration timescales between

models is found, further work is necessary to determine their

suitability for assessing atmospheric impacts, such as their

inclusion in polydisperse aerosol simulations.

1 Introduction

Recent attention on the phase state of atmospheric particles

has motivated questions about the means to model diffusion

through them. It had been conventionally assumed that par-

ticles possess a liquid phase state, such that timescales of

diffusion were much less than their atmospheric residence

times. However, several recent studies present evidence that

particles can exist in an amorphous solid state (Smith et

al., 2002; Murray and Bertram, 2008; Virtanen et al., 2010;

Vaden et al., 2011). Viscosities for amorphous solid parti-

cles will be higher than for liquid ones, resulting in lower

condensed phase diffusion coefficients and potentially lim-

iting the rate of gas-particle partitioning for condensing or

evaporating components. For such particles it is important to

critically assess models that attempt to predict or infer the ef-

fects of diffusion limitations in order to report findings with

confidence.

Fick’s first and second laws of diffusion state that the rate

of transport of a given component through a given area is

proportional to the concentration gradient normal to the area.

The Fickian diffusion coefficient (Di) is the proportionality

constant between the diffusive flux and the concentration gra-

dient (Eq. 1).

Recent attempts at modelling diffusion through particles

have centred on Fick’s second law, which in spherical coor-

dinates is

∂Ci(r, t)

∂t
=

1

r2

∂

∂r

(
r2Di∂Ci(r, t)

∂r

)
, (1)

where C is the concentration of species i, r is the radius from

the particle centre and t is time. Fick’s second law is applied

when the concentration gradient, and therefore flux, changes
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with time and distance, i.e. non-steady state. This study anal-

yses and compares three approximations of Eq. (1) used to

model diffusion through particles:

i. The ETH model presented by Zobrist et al. (2011),

based on the Euler forward step method;

ii. The “kinetic multi-layer model of gas-particle interac-

tions in aerosol and clouds” (KM-GAP) (Shiraiwa et al.,

2012), based on coupled differential equations;

iii. The Fick’s Second Law solved by partial differential

equation model (hereafter referred to as Fi-PaD), a for-

mulation of which was used in Smith et al. (2003).

A description of each model is provided in the method be-

low. For a system withDi independent of composition, it has

been reported that Fi-PaD and KM-GAP give very similar re-

sults (Shiraiwa et al., 2010). To our knowledge however, no

detailed comparison of all three approaches, including cases

ofDi dependent on composition, has yet been published. De-

spite this, a recent study by Lienhard et al. (2015) linked the

impact of particulate viscosity on ice nucleation using a com-

position dependent Di . A critical review of these models is

intended to guide those with an interest in simulating particle

evolution inside instruments, chamber experiments, and the

ambient atmosphere. For non-equilibrium viscous particles,

diffusivity (along with other properties such as volatility) de-

termines the temporal evolution of particle composition and

size- and number-distributions (Zaveri et al., 2014). These

are key factors determining aerosol impact on climate and

health, therefore the choice of diffusion model could have

far-reaching consequences (Pöschl, 2005). In addition to dif-

ferences in modelled particle size and composition change,

inappropriate choice of model formulation and assumptions

therein could lead to differences in inferred properties, such

as diffusion coefficients from single particle levitation mea-

surements (Lienhard et al., 2014; Zobrist et al., 2011).

The numerical methods employed by all three models in-

volve discretisation in time and space. However, subtle dif-

ferences in how they define concentration gradients may in-

duce variations in estimated diffusion rate. Therefore, it is ex-

pected that any differences in rate will increase with greater

heterogeneity in the concentration-radius profile, i.e. an in-

creasingly steep diffusion front. Such fronts have been ob-

served when water and glassy organics diffuse through one

another (Nowakowski et al., 2015). It is currently unclear

which of the models investigated here, if any, is suitable to

such a situation, given the paucity of experimental data avail-

able.

Indeed, the Fickian framework may not be appropriate for

some systems; in polymer studies it is well known that non-

Fickian diffusion occurs for many examples of liquids diffus-

ing through glassy polymers (Thomas and Windle, 1982; Kee

et al., 2005), and in such systems a narrow diffusion front

is often observed (e.g. Thomas and Windle, 1982). Non-

Fickian diffusion results from structural changes following

diffusion and the resultant composition change. It arises

when the rate of deformation is comparable to that of diffu-

sion (Crank, 1975). Alternative models have been proposed,

such as the free volume model (He et al., 2006; Price et al.,

2014) and the Maxwell-Stefan model (Krishna and Wessel-

ingh, 1997). The aim of this study, however, is to compare

the estimated equilibration timescales of the Fickian diffu-

sion models that are used in atmospheric aerosol science and,

in turn, assess sensitivities of derived diffusion coefficients

in such particles. In most test cases below the diffusing semi-

volatile component has the self-diffusion coefficient of water

at room temperature, and the resulting diffusion timescales

are most relevant to water and water-soluble particles, how-

ever, the findings regarding consistency between models

are applicable to components with self-diffusion coefficients

across the investigated range (2× 10−9–1× 10−25 m2 s−1).

2 Method

2.1 Model description

The ETH model, KM-GAP and Fi-PaD used the same rep-

resentation of an aerosol particle: it was assumed spherical,

and split into concentric shells. A comparatively thin surface

shell was assumed to equilibrate instantly with the gas-phase

in all simulations (for the purpose of comparing particle-

phase diffusion models and gaining insight into the limitation

imposed by particle-phase diffusion on mass-transfer this

assumption is reasonable). The initial concentration profile

in bulk shells (those below the surface) was homogeneous,

and in equilibrium with the initial gas phase concentration.

Figure 1a demonstrates how the particle is represented in a

2-D view. Figure 1b illustrates the concentration-radius pro-

files of a semi-volatile component at several time steps us-

ing the ETH model in the case of an instantaneous increase

in saturation ratio from 1 to 90 % when the diffusion coef-

ficient is independent of composition. In contrast, Fig. 1c

shows the same information but when the diffusion coeffi-

cient has a logarithmic dependence on composition and the

self-diffusion coefficients of the two components are very

different, that of the non-volatile (D0
nv)= 1× 10−21 m2 s−1

and for the semi-volatile (D0
sv)= 2×10−9 m2 s−1. The “dif-

fusion front” is clear in this example and arises from the very

different diffusion coefficient values in neighbouring shells

that result from variations in shell composition.

The e-folding time for the difference in concentration of

the semi-volatile component at the surface ([sv]eq) and of

its average concentration across the particle bulk ([sv]b) was

used as a metric for diffusion time by Zaveri et al. (2014).

It is readily transferable to other studies, and is the chosen

metric for diffusion timescale here. The ratio of the concen-

tration difference in the surface and bulk-average of the semi-

volatile component at any time (t) to that difference at t = 0
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Figure 1. (a) A schematic of a particle split into shells, as used in the diffusion models, with shell boundaries represented by lines, and

symbols relating to those used in the model equations (αi , Xi and es are the accommodation coefficient, particle-phase mole fraction and

vapour-phase saturation ratio of the semi-volatile, respectively). The relative width of the surface shell is shown larger than that used in

models for clarity. (b, c) The concentration-radius profiles estimated using the ETH model at various times during diffusion for a semi-

volatile component diffusing inwards with an initial mole fraction of 0.01 and equilibrium mole fraction of 0.90 (instantaneous change in

saturation ratio of 1–90 % assuming ideality), where te is the e-folding time. Note that the axes are relative, and normalised by the total

radius (Rp) of the particle on the abscissa and by the equilibrium concentration ([i]eq) on the ordinate. (b) is for the diffusion coefficient

independent of composition and (c) is for the diffusion coefficient with a logarithmic dependence on mole fraction (D0
nv = 1× 10−25,

D0
sv = 2× 10−9 m2 s−1).

is

Q=

∣∣[sv]eq−[sv]b,t≥0

∣∣∣∣[sv]eq−[sv]b,t=0

∣∣ . (2)

The e-folding time was therefore the time taken for Q to

increase/decrease by a factor of e1. Figure 1b and c there-

fore demonstrate the concentration-radius profiles at several

steps between Q= 1, which occurs at t = 0, and Q= e−1,

which marks the e-folding time. Comparing e-folding times

between models strictly only tests model consistency at this

particular stage of diffusion and not before this. However, e-

folding time agreement would indicate agreement at previous

times (and future ones), because the underlying equations are

identical. For reassurance on this, concentration-radius pro-

files at times prior to the e-folding time were compared. All

models were run on a 12 core Intel Core i7 processor with a

speed of 3.2 GHz.

Fick’s first law, which assumes a constant concentration

gradient and therefore flux, with time, is the basis of the ETH

model. However, following the Euler forward step method,

if time steps are sufficiently short this model should be able

to capture changes in concentration gradient, and therefore

flux, and therefore replicate the second law. The flux between

shells is thus found by

Jbk,bk−1,i =−AbkDbk,bk−1,i

([i]bk − [i]bk−1)

0.5(δbk + δbk−1)
, (3)

where J is the flux (mol s−1) between bulk (b) shell num-

bers k and k− 1 (ascending from k = 1 for the near-surface

shell to k = n at the centre). If k = 1, then k−1 is the surface

layer (s). A is the surface area of the shell’s outer surface.

Dbk,bk−1,i is the diffusion coefficient at the shell boundary

and here is found using one of the dependencies on composi-

tion given in Sect. 2.3. [i] is concentration of component i at

the shell centre and δ is shell width. Figure 1a demonstrates

how these terms relate to the physical representation of the

particle. From Eq. (3) the change in number of moles in a

shell is found by:

1Nbk,i = (Jbk,bk−1,i − Jbk+1,bk,i)1t, (4)

where 1t is the time interval (setting of 1t is described in

Sect. 2.2). The version of the ETH model we have written

was tested against the model output in Zobrist et al. (2011),

and found to replicate their results accurately (Fig. A1 in the

Appendix for the replica plot).

In KM-GAP the number of moles of a component in a

shell is found by integrating the following coupled ordinary

differential equations (ode) with respect to time:

dNs,i

dt
= (Jb1,s,i − Js,b1,i), (5)
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dNb1,i

dt
=(Js,b1,i − Jb1,s,i)+ (Jb2,b1,i − Jb1,b2,i), (6)

dNbk,i

dt
=(Jbk+1,bk,i − Jbk,bk+1,i) (7)

+ (Jbk−1,bk,i − Jbk,bk−1,i), (k = 2, . . .,n− 1),

dNbn,i

dt
=(Jbn−1,bn,i − Jbn,bn−1,i). (8)

The flux is found by

Jbk,bk±1,i =Kbk,bk±1,i[i]bkAbk, (9)

where K is the transport rate coefficient (m s−1):

Kbk,bk±1,i =
2Dbk,bk±1,i

(δbk + δbk±1)
, (10)

where δ is shell width. Dbk,bk±1,i is the diffusion coeffi-

cient at the shell boundary (Sect. 2.3). Note that in Eqs. (9)

and (10), if k = 1, then k− 1 is the surface shell (s).

Equations (5)–(10) were solved in Matlab software using

the ode23tb numerical solver, which has an adaptive time

step. It was found that the solver became increasingly un-

stable as the gradient ofDi with r increased, thus error toler-

ances (given in the Appendix) were increased appropriately.

ode23tb uses a Runge–Kutta method of two stages: a trape-

zoidal rule followed by a backward differentiation formula

stage.

Fi-PaD treats Eq. (1) as an initial-boundary problem, with

initial conditions:

Cbk,i(r < Rp,0)= Ci,eq0 , (11)

Cs,i(Rp,0)= Ci,eq, (12)

where eq represents the equilibrium condition. Equation (11)

states that initial concentrations in the bulk shells are in equi-

librium with the original es value, whilst Eq. (12) states that

the initial concentration at the surface is in equilibrium with

the new es. The boundary conditions were

∂Ni(0, t)

∂t
= 0, (13)

∂Ci(Rp, t)

∂t
= 0, (14)

whereRp is the particle radius. Equation (13) states that there

is no flux at the centre of the particle and Eq. (14) states that

the concentration of components at the surface is constant.

For Fi-PaD the numerical solver pdepe in Matlab software

was used. The solver uses the method of lines, which dis-

cretises the problem in space to gain a system of ordinary

differential equations that are then solved using the numer-

ical solver ode15s in Matlab. ode15s is similar to ode23tb

in that both are designed for stiff systems, however, ode15s

has a high order of accuracy for a given error tolerance. The

default error tolerances for pdepe were found to provide sta-

ble solutions across the range of parameter spaces used here;

the contrast to the variable error tolerances used in KM-GAP

is attributed to the difference in the accuracy of their ode

solvers.

2.2 Particle representation

Particles were assumed to consist of two components: a

non-volatile (nv) and semi-volatile (sv), which were as-

signed the molar mass and density of sucrose and water, re-

spectively. In general, components with relatively high mo-

lar masses are expected to have comparatively low diffu-

sion coefficients (Haynes, 2015). To test the effect of us-

ing a high molar mass component against using sucrose

on equilibration times, a molar mass (M) of 700 g mol−1

(M of sucrose= 342.296 g mol−1) and density (p) of

2.0× 103 kg m−3 (p of sucrose= 1.5805× 103 kg m−3) was

assigned to the non-volatile component and its self-diffusion

coefficient was set relatively low: 1.0× 10−25 m2 s−1. When

the saturation ratio of the semi-volatile component (es) in-

creased from 1–90 % the e-folding times for all three models

increased between 13–16 % from those using sucrose values

(since the molar volume of the non-volatile component in-

creased a decreased semi-volatile component concentration

was required to attain equilibrium, leading to a decreased

concentration gradient for the same change in es). Since these

changes to e-folding times are similar across the models and

are for a comparatively large change in es, our conclusions

are expected to be applicable to a broad range of component

M and p values.

All models assumed ideality for most simulations (see

later) so that at equilibrium the value of es equalled the mole

fraction of the semi-volatile component in the condensed

phase. While estimates of accommodation coefficients for

semi-volatiles cover a wide range, for the purposes of this

study we have held it constant at unity (as has been found

reasonable for that of water vapour on liquid water in mul-

tiple studies, e.g. Kolb et al., 2010). Assuming ideality, the

volume of a component was equal to the product of its num-

ber of moles (N) and molar volume. The volume of a shell

was therefore given by

Vbk =Nnv,bk

(
Mnv

pnv

)
+Nsv,bk

(
Msv

psv

)
, (15)

where M is molar mass and p is density.

To accurately simulate the size change in particles result-

ing from condensation (growth) or evaporation (shrinkage),

at the end of each time interval, shell volumes were recalcu-

lated using the new values ofNi,bk . In KM-GAP and Fi-PaD,

a maximum change to the particle radius of 0.1 % was al-

lowed per time step; if the radius change exceeded 0.1 % the

interval was iteratively shortened until the change was ac-

ceptable. Decreasing this maximum acceptable change did

not change e-folding times significantly (< 2 % for both KM-

GAP and Fi-PaD when a maximum radius change of 0.01 %

was used instead), thus it was considered sufficient to ac-

count for volume change. For the ETH model, it has been

recommended that to ensure model stability, the number of

moles inside any shell should not change by more than 2 %

over a single time interval (Zobrist et al., 2011). The same
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condition was used here because values below 2 % did not

change predicted e-folding times significantly (< 1 % change

when maximum change in number of moles was 0.01 % in-

stead).

Bulk shells (those below the surface) were initially set to

have equal widths. The surface shell represents the sorption

layer, where transfer between the condensed and gas-phase

occurs. Since the surface shell is contained within the ini-

tial particle diameter, the width should be sufficiently thin to

not significantly affect the e-folding time, i.e. one must not

decrease the width of bulk shells such that diffusion is accel-

erated. A factor of 1× 10−3 of the particle radius was chosen

to calculate the surface shell width because using lower fac-

tors resulted in no significant change to estimated e-folding

time.

During condensation the surface shell expands; however,

since this shell simulates the boundary between the shell and

the gas-phase it should remain comparatively thin. Therefore,

if the surface shell grew to double its initial width, it was re-

duced back to its initial width by transferring the excess vol-

ume to the near-surface shell, or, if this near-surface shell had

a width greater than the total radius divided by the number of

shells, the transferred material was used to make a new near-

surface shell. The concentration of components in the trans-

ferred material was the same as in the surface shell (i.e. at

equilibrium with the gas phase). This approach had potential

to introduce numerical diffusion by decreasing the distance

for diffusion in the case of introducing a new shell and de-

creasing the concentration gradient in the case of transfer.

To gain an indication of whether numerical diffusion in-

fluenced one model more than another, e-folding times were

found with this approach (transfer on) and without it (trans-

fer off). For the latter case the surface shell was allowed to

grow without adjustment, leading to an unrealistically wide

shell and comparatively longer equilibration times, but elim-

inating the possibility of numerical diffusion. If numerical

diffusion affected one model more than another we would ex-

pect the difference in e-folding times between the transfer on

and transfer off cases to vary between them. However, there

was no substantial difference between models: for a change

in es of 1–90 % all models had an increase of 20–30 % in

e-folding times from the transfer on to the transfer off case;

and for a change in es of 60–80 % the increase was between

6 and 10 %. These differences are negligible in comparison

to the several orders of magnitude change in e-folding times

seen across the range of non-volatile component diffusivity

used below.

During evaporation the width of the surface shell de-

creased and the mass of non-volatile component in the sur-

face shell tended toward zero. If the surface shell decreased

below a factor of 1× 10−1 of its initial width it was returned

to its initial width by transferring a sufficient volume from

the near-surface shell. The concentration of components in

the transferred material was equal to that in the surface shell,

thus the concentration in the surface shell was maintained

and any excess semi-volatile component was presumed to

evaporate. Similarly, if the near-surface shell shrank to below

a factor of 1× 10−1 of the initial width of the surface shell,

then the two shells were coalesced into a new surface shell at

equilibrium concentration. It was found that decreasing the

width at which transfer and coalescence were invoked led

to a decrease and convergence of predicted e-folding times,

indicating decreasing numerical diffusion (which could oc-

cur due to steepening of the concentration gradient through

either coalescence or transfer). A decrease of no more than

1 % was seen across models and changes in es when using

lower factors than 1× 10−1 of the initial width of the surface

shell, thus this factor was concluded to be sufficiently low to

effectively prevent numerical diffusion.

2.3 D Dependence

At any point in the particle the diffusion coefficient of both

components was the same, i.e., we assumed symmetrical dif-

fusion coefficients, which is valid for an ideal binary mixture

(Wesselingh and Bollen, 1997) . We compared models using

three functions of Di :

i. Di independent of the semi-volatile mole fraction (xsv)

and therefore fixed throughout the simulation;

ii. Di with a logarithmic dependence on semi-volatile

mole fraction, which has been observed for ideal sys-

tems by Vignes (1966):

Di(xsv)=D
0xsv

sv D0(1−xsv)

nv , (16)

where D0
sv is the self-diffusion coefficient of the semi-

volatile component and D0
nv is the self-diffusion coeffi-

cient of the non-volatile component;

iii. Di with a sigmoidal dependence on xsv, which was ob-

served for the citric acid-water system by Lienhard et

al. (2014):

Di(xsv)=D
0xsv∝

sv D0(1−xsv∝)

nv , (17)

where ∝ is a correction parameter given by

ln(∝)= (1− xsv)
2
[C+ 3D− 4D(1− xsv)]. (18)

Where the values of C and D were chosen as −3.105

and 3.300 respectively. These provided a relatively steep

“cliff-edge” sigmoidal dependence and therefore a sub-

stantial variation from the logarithmic dependence, en-

abling a test of consistency between models across a

wide range of dependencies. Examples of these depen-

dencies are shown in Fig. 2.
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Figure 2. Example dependencies of Di on the mole fraction of

the semi-volatile component. For the constant case both compo-

nents have a value of 2× 10−9 m2 s−1 and for the other cases the

self-diffusion coefficient of the semi-volatile component is set to

2× 10−9 m2 s−1 and that of the non-volatile is 1× 10−25 m2 s−1.

For the latter two cases Di(xsv) was calculated within the

numerical solvers of KM-GAP and Fi-PaD, whilst for the

ETH model it was calculated at the start of each time step. xsv

at a shell boundary was found using the arithmetic mean con-

centration of the semi-volatile component across the bound-

ing shells.

In the first part of the study we compare the equilibration

timescales estimated by models when the diffusion coeffi-

cient is constant and when it follows the logarithmic and

sigmoidal dependencies on composition given above. Self-

diffusion coefficients of the non-volatile and semi-volatile

components range between that of water at room tempera-

ture, 2.0× 10−9 m2 s−1 (Starr et al., 1999), and a compara-

tively low value of 1.0× 10−25 m2 s−1, which according to

the Stokes–Einstein relationship between diffusivity and vis-

cosity, is representative of a glassy material (Debenedetti

and Stillinger, 2001). e-folding times are found for sev-

eral changes in the vapour-phase saturation ratio of a semi-

volatile component, and across a range of particle sizes and

differences in the self-diffusion coefficient of components.

Finally, we present an example of the differences in mod-

elled particle size change with time when different dependen-

cies of Di on composition are assumed, thereby providing

guidance on the most effective experimental procedure for

inference of diffusion coefficient dependencies on composi-

tion. For actual inferences one would preferably have good

knowledge of the system’s deviation from ideality. In an at-

tempt to replicate a real system, we therefore use the estima-

tion for water activity and density as a function of sucrose

weight fraction presented in Zobrist et al. (2011). The initial

and surface shell water activity were set equal to the initial

and current gas-phase saturation ratio of water (the saturation

ratio changed with time), respectively, with the accommoda-

tion coefficient of water assumed to be one.

3 Results

Numerical convergence of e-folding times was observed with

increasing spatial resolution for all three models due to im-

proved resolution of concentration gradients and therefore

changes in Di (when dependent on composition) and flux

with space. e-folding times showed an exponential relation-

ship with shell number (e.g. Fig. A2), thus the criteria for

shell number was that at which the e-folding time was within

10 % of the asymptote. Generally as the gradient of Di with

particle radius increased, the shell number increased to main-

tain convergence (Table A2). However, increasing the shell

number increases the possibility of accumulating significant

round-off error, in addition to requiring greater computer

time. The round-off error at the chosen resolution was in-

vestigated by halving the number of significant numbers

assigned to variable values. The difference in predicted e-

folding times between the two precisions was found to be

negligible, with a maximum of 2 %, indicating that round-off

error was not a substantial source of inaccuracy.

Zobrist et al. (2011) reported requiring up to several thou-

sand shells in the ETH model to resolve concentration gradi-

ents. However, we found that using of the order of hundreds

gave convergence for the cases with steepest concentration

gradients (Fig. A2). The difference in required shell resolu-

tion between the studies could be due to differences inDi de-

pendence on composition. Using the Matlab software it was

found that computational time for the case of diffusion co-

efficient independent of composition was quickest, gradually

increasing as the steepness of the diffusion coefficient depen-

dence on composition increased, largely due to the greater

spatial resolution. For Di independent of composition the

ETH model took of the order 1 s to reach the e-folding state

while KM-GAP and Fi-PaD were of the order 102 s. For

a steep diffusion coefficient dependence, the chosen exam-

ple was the logarithmic dependence, with D0
nv =1× 10−25

and D0
sv =2× 10−9 m2 s−1 and es instantaneously increased

from 1 to 90 %: to reach e-folding states the ETH model took

of the order 102 s while both KM-GAP and Fi-PaD took of

the order 104 s.

In the first model comparison, e-folding times were found

when Di was independent of xsv. For a complete analysis

of model output, initial particle diameters (Dp,t=0) were var-

ied between 1× 10−5 and 1× 10−8 m, which covers most

of the size range observed in the ambient atmosphere (Se-

infeld and Pandis, 2006) and Di ranged between 2.0× 10−9

and 1.0× 10−25 m2 s−1. e-folding times were found across

this parameter space for a change in es of 1–90 and 90–1 %

for all three models. This relatively large change in es was

chosen to create a large concentration gradient, as this would

most likely induce disagreement between models. However,

all models agreed very well across the whole range of parti-

cle size and Di (Fig. A3).

In the next case Di varied logarithmically with mole

fraction of the semi-volatile, between a maximum of

Atmos. Chem. Phys., 16, 5299–5313, 2016 www.atmos-chem-phys.net/16/5299/2016/
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Figure 3. e-folding time contour plots for different changes to

the saturation ratio of the semi-volatile component (1es) and dif-

ferent diffusion coefficient dependencies: (a) 1es = 1–90 % log-

arithmic dependence, (b) 1es = 90–1 %, logarithmic dependence,

(c) 1es = 1–90 %, sigmoidal dependence, and (d) 1es = 90–1 %

sigmoidal dependence. D0
nv is the diffusion coefficient at a semi-

volatile mole fraction of 0, while D0
sv (diffusion coefficient at a

semi-volatile mole fraction of 1) was fixed at 2.0× 10−9 m2 s−1.

2.0× 10−9 m2 s−1 at xsv = 1 and a minimum given by D0
nv

(i.e. Di at xsv = 0). D0
nv ranged between 2.0× 10−9 and

1.0× 10−25 m2 s−1. Contour plots of e-folding times as a

function of D0
nv and Dp,t=0 and for a 1–90 and a 90–1 %

change in es are shown in Fig. 3a and b, respectively.

For both changes in es there is good agreement of e-

folding times between all models, with a maximum varia-

tion of 10 %, which is well within the uncertainty caused by

varying degrees of numerical convergence and potential nu-

merical diffusion. Diffusion times are much shorter than in

the constant Di case due to the high diffusivity of the semi-

volatile component. Figure 3a shows that even when starting

with a glassy particle, if the saturation ratio of a plasticising

semi-volatile component increases sufficiently, the e-folding

state can be reached in less than 1 s. For the decreasing es

used in Fig. 3b a low diffusivity outer casing will form on

the particle, impeding diffusion and evaporation. However,

Fig. 3b shows that if a particle initially of water-like diffusiv-

ity is quickly dried, the e-folding state is reached within 10 s,

even when the non-volatile component has a relatively low

diffusivity.

e-folding times for 1–90 and 90–1 % changes in es were

also found using the sigmoidal dependence of Di on xsv;

the results are given in Fig. 3c and d, respectively. In the

90–1 % case an unpractical computer time (> 12 h) was re-

quired to attain numerical convergence at low values of D0
nv,

therefore the minimumD0
nv is 1× 10−20 m2 s−1. For this rel-

atively large change in es the sigmoidal dependence induces

a steeper diffusion front than the logarithmic dependence.

Despite this, the models show good agreement here also. In

the 1–90 % case, a maximum variation in e-folding times of

5 % is seen while for 90–1 % this value is 30 %. This latter

variation is between KM-GAP and the other two models and
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Figure 4. e-folding time contour plots for different changes to the

saturation ratio of the semi-volatile component (1es) and differ-

ent diffusion coefficient dependencies: (a) 1es = 10–20 % loga-

rithmic dependence, (b) 1es = 20–10 %, logarithmic dependence,

(c)1es = 10–20 %, sigmoidal dependence, and (d)1es = 20–10 %

sigmoidal dependence. D0
nv is the diffusion coefficient at a semi-

volatile mole fraction of 0, while D0
sv (diffusion coefficient at a

semi-volatile mole fraction of 1) was fixed at 2.0× 10−9 m2 s−1.

is greater than expected from different degrees of numerical

convergence. However, given the gradual divergence of the

e-folding isolines in Fig. 3d, we do not attribute the discrep-

ancy to model framework differences, but to an insufficient

shell resolution in KM-GAP. Diffusion is quicker using the

sigmoidal dependence than the logarithmic dependence, par-

ticularly for the 90–1 % scenario. This is explained by the

higher Di values at xsv > 0.5 (Fig. 2).

es changes more realistic of the atmosphere were also

tested. Results for 60–80 and 80–60 % (Fig. A4) are sim-

ilar to those for 1–90 and 90–1 % for their respective Di
dependency; there is good model agreement, and across the

Dp,t=0 and D0
nv range and for both dependencies, e-folding

time is less than 1 s. Results for 10–20 and 20–10 %, given

in Fig. 4, also show agreement between models. For both de-

pendencies diffusion is much slower than in the 1–90 and

60–80 % simulations, approaching 1 ky at low D0
nv and high

Dp,t=0. This shows that at low saturation ratios of semi-

volatile component, gas-particle partitioning can be limited

by condensed-phase diffusion in viscous particles.

e-folding times between models were also found to be

in good agreement for these changes in es when D0
nv was

fixed at 1.0× 10−25 m2 s−1 and D0
sv was varied between

1.0× 10−25 and 2× 10−9 m2 s−1. As discussed, the agree-

ment between models in estimating e-folding times indi-

cates that the estimated profiles of concentration with par-

ticle radius prior to the e-folding state are consistent be-

tween models because the underlying equations are the same.

By comparing concentration-radius profiles at various stages

of diffusion we indeed found good model agreement across

all cases. In Fig. 5 we show the example of the logarith-
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Figure 5. The concentration ([sv])-radius (r) profiles of the semi-

volatile component at times (t) preceding and including the e-

folding time (te) as estimated by the three models given in the leg-

end, for the case of logarithmic dependence ofDi on xsv, an instan-

taneous increase in es from 1 to 90 % and with D0
nv = 1× 10−25

and D0
sv = 2× 10−9 m2 s−1. Note that for clarity the radius axis

begins at 2× 10−6 m and not 0 m.

mic dependence of Di on xsv, an instantaneous change in

saturation ratio of 1–90 % and with D0
nv = 1× 10−25 and

D0
sv = 2× 10−9 m2 s−1. At several times preceding and in-

cluding e-folding time the concentration-radius profiles are

in good agreement.

In the final part of this study the estimated temporal profile

of particle radius was compared between the sigmoidal and

logarithmic Di dependencies. We have used the water activ-

ity and density dependence on sucrose weight fraction as de-

scribed in Zobrist et al. (2011) for the sucrose-water system

in an attempt to replicate a non-ideal system. The ETH model

was employed, though the results above indicate that KM-

GAP and Fi-PaD would produce identical profiles. For the

inference of Di dependency from radius measurements the

signal to noise ratio is minimised by inducing a large change

in radius relative to the measurement accuracy over a time-

span that is large compared to the measurement frequency.

Taking the case of water as the semi-volatile component,

from Fig. 3 it is clear that for certain values of D0
nv and

certain changes in es attaining a large ratio of equilibrium

time to measurement frequency may be difficult, even if

the change in radius is large. Indeed, the radius-time pro-

files in Figs. 6 and 7 for instantaneous changes in es and

a D0
nv = 1× 10−25 m2 s−1 confirm that for changes with a

high final es, significant radius change is estimated to oc-

cur over less than 1 s, while the measurement frequency re-

ported in the studies of Zobrist et al. (2011) and Lienhard

et al. (2014) is approximately 15 s. Nevertheless, for the es

change of 1–90 % in Fig. 5, there is a notable difference in

the radius profiles between the dependencies. Despite hav-

ing lower Di at low xsv, the radius change from the sig-

moidal dependence is more rapid than the logarithmic, in-
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Figure 6. The radius (Rp) change with time for a single particle

subject to the changes in es shown by the orange curve and right

vertical axis. Here D0
sv = 2× 10−9 and D0

nv = 1× 10−25 m2 s−1

using the Di dependencies given in the legend.

dicating that the Di at higher xsv has a dominating effect

on the profile. The inference of Di dependency using such

a large change in es is therefore poorly constrained for lower

xsv. For better constraint smaller changes in es are required,

such as those used in Lienhard et al. (2014). An example

of the radius profiles following incremental changes in es,

D0
nv = 1× 10−25, D0

sv = 2× 10−9 m2 s−1 and using both de-

pendencies is shown in Fig. 7. This plot demonstrates the

need for consideration of the time a given es is maintained in

measurement experiments, since the difference in the equi-

librium timescales between the es increments covers several

orders of magnitude. Indeed, over low changes in es such as

between 1–10 %, equilibration time may be too long to be

practical for gaining a useful measurement of radius change.

It is worthwhile to note that the rate of change of es over an

increment is preferably much greater than the rate of equili-

bration, as this provides the greatest potential for a clear sig-

nature of theDi dependence and therefore greatest constraint

on inference.

4 Discussion and conclusion

The results above show that despite variations in their numer-

ical methods, all three Fickian-based diffusion models tested

here: the ETH model, KM-GAP and Fi-PaD give good agree-

ment of estimated e-folding timescales over a wide range of

changes to the saturation ratio of the semi-volatile compo-

nent and over a wide range of differences in the self-diffusion

coefficient of the semi-volatile and non-volatile components.

Furthermore, there is good agreement between models when

different dependencies of diffusion coefficient on composi-

tion are used. This result has not been reported before to our

knowledge and verifies consistency between existing Fickian
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Figure 7. (a) Radius (Rp) change with time for a single particle ex-

periencing the changes in saturation ratio of the semi-volatile com-

ponent (es) shown by the orange curve (allied with the right vertical

axis), for D0
sv = 2× 10−9 and D0

nv = 1× 10−25 m2 s−1 and using

theDi dependencies given in the legend. (b–e) Time intervals of (a)

over select changes in es (as shown by their orange curve and right

vertical axes).

diffusion models. The maximum disagreement in e-folding

times for results gained with satisfactory shell resolution is

10 %, which is within the uncertainty generated by varying

degrees of numerical convergence and potential numerical

diffusion. The consistency in modelled concentration-radius

profiles at times preceding and including the e-folding state

(Fig. 5) shows that if used for a polydisperse aerosol popula-

tion, the models would give agreement in changes to the size

distribution. In addition, if the diffusing component were re-

active the rate of particle-phase reaction would depend on its

concentration; therefore model agreement in concentration-

radius profiles would give consistent reaction rates across the

particle (which in turn could affect diffusion rate).

Using the three diffusion models as described above and

with the spatial resolutions presented in the Appendix, the

ETH model takes approximately 2 orders of magnitude less

computer time than Fi-PaD or KM-GAP for a given diffu-

sion scenario. With the models giving consistent estimates of

diffusion, the ETH model therefore appears to be favourable.

The e-folding times given in Fig. 3 for changes in es of 1–

90 and 90–1 %, and in Fig. A4 for changes of 60–80 and 80–

60 %, show that for a semi-volatile component with water-

like (at room temperature) diffusivity, given a sufficiently

high starting/finishing es, attainment of the e-folding state is

effectively instant compared to residence times in the atmo-

sphere and chamber experiments. This is due to the plasticis-

ing effect of water (and applies to any semi-volatile com-

ponent with a sufficiently high self-diffusion coefficient).

At lower values of es diffusion time can be much longer

(Fig. 4), consistent with measurement studies (e.g. Zobrist

et al., 2011; Lienhard et al., 2014). The question therefore

arises that for a givenD0
sv, at what es can equilibration be as-

sumed instant? Figure 7 indicates that for water condensing

at room temperature equilibration time is less than 1 s when

the final es is greater than 50 % for the sigmoidal dependence

used here and when it is greater than 60 % for the logarith-

mic dependence. These results indicate no limitation on mass

transfer of water from particle-phase diffusion at high rela-

tive humidity and at ambient temperature, and therefore no

impediment to the formation of cloud droplets. Experimental

results from Lienhard et al. (2014) and Zobrist et al. (2011)

indicate that this is also true down to ∼ 250 K.

For a hygroscopicity tandem differential mobility analyser

(HTDMA), which has a typical residence time of 20–25 s

(Zardini et al., 2008) and es increase of ∼ 90 % from an ini-

tial value < 10 %, Figs. 3 and 5 show that equilibration is

attained even when sampling relatively large (∼ 1×10−5 m)

particles containing components of relatively low diffusivity

(self-diffusion coefficients ∼ 1× 10−25 m2 s−1).

Note, however, that we have not considered extreme de-

pendencies of Di on composition. If, for example, a very

high mole fraction of water were required before the “cliff-

edge” in the sigmoidal dependence (Fig. 2) was reached,

longer diffusion times than those shown here would be ex-

pected.
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Regarding the inference of diffusion coefficient depen-

dence on composition from particle radius measurements,

we have shown that incremental changes in es provide the

best constraint, and note that changes should occur over a

short time compared to the equilibration time. The consis-

tency between the diffusion models shown here indicates that

the choice of model does not affect the accuracy of the in-

ferred dependence (as long as sufficient spatial and temporal

resolution is used).

In a follow-up study we intend to investigate the imple-

mentation of composition-dependent Di in the Model for

Simulating Aerosol Interactions and Chemistry (MOSAIC)

(Zaveri et al., 2008). MOSAIC is used for chamber and am-

bient studies and can therefore include, among other factors,

multiple components, chemistry and volatility. Furthermore,

it can model polydisperse aerosol, providing insight into how

composition-dependent diffusion coefficients affect the evo-

lution of size distributions.

As mentioned, Fickian-diffusion is, strictly speaking, lim-

ited to ideal-systems. Thus, for cases where dissolution oc-

curs, for example, the employed or derived diffusion coef-

ficients are actually effective values of Di . As we mention

briefly in the introduction, numerous alternative theories to

Fickian diffusion exist. Although an analysis of such frame-

works is beyond the scope of this study, a similar critical

analysis may be useful in the future when data from more

complex multicomponent systems exist.
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Figure A1. The water mole fraction as a function of time and dis-

tance through a single particle using the ETH model and the same

inputs as for Fig. 3 of Zobrist et al. (2011).

Appendix A

To validate our version of the ETH model Fig. 3d of Zo-

brist et al. (2011) was reproduced using our version of the

model and the relative humidity measurements presented in

their Fig. 3a. Note that in reproducing this figure the depen-

dence of diffusion coefficient on water activity given in Zo-

brist et al. (2011) was used. Furthermore, water activity and

density estimated as a function of sucrose weight fraction, as

described in Zobrist et al. (2011), was used. Our reproduction

is given in Fig. A1.

Figure A2 shows the convergence of e-folding times with

increasing shell number for the ETH model. Results are

for self-diffusion coefficients of the semi-volatile and non-

volatile components of 2.0× 10−9 and 1.0× 10−25 m2 s−1,

respectively, with a logarithmic dependence of Di on com-

position and change to the vapour-phase saturation ratio of

the semi-volatile of 1–90 (Fig. A2a) and 90–1 % (Fig. A2b).

These cases were chosen because they are expected to have

the strongest concentration and diffusion coefficient gradi-

ents through the particle (compared to other cases in this

study) and should therefore require greatest spatial resolu-

tion. The exponential fits in Fig. A2 were obtained using Igor

Pro software.

The absolute tolerances that were required to attain stabil-

ity in the KM-GAP model are given in Table A1. The tol-

erance was dependent on the self-diffusion coefficient of the

non-volatile and the initial particle diameter. The relative tol-

erance was kept fixed at 1.0× 10−12. These tolerances were

used for changes to the semi-volatile saturation ratio of 1–90

and 90–1 %. Since these represent the largest changes in sat-

uration ratio used in this study, the tolerances in Table A1 are

conservative values for all other cases presented in the study.

The number of shells used for each model is given in Ta-

ble A2. The optimum number of shells required for accept-

able numerical convergence was found to be dependent on

0.22

0.20

0.18

0.16

0.14

e-
fo

ld
in

g 
tim

e 
(s

)

30025020015010050
No. of shells

(a) 

(b) 
500

400

300

200

100

e-
fo

ld
in

g 
tim

e 
(s

)

500400300200100
No. of shells

Figure A2. The e-folding time convergence with increasing shell

number for the ETH model: change in the semi-volatile component

saturation ratio in (a) was 1–90 % and in (b) was 90–1 %. The self-

diffusion coefficient of the semi-volatile was 2.0× 10−9 m2 s−1

and that of the non-volatile was 1.0× 10−25 m2 s−1. Orange curves

are the exponential best fits.
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Figure A3. e-folding times (isolines) for the three models given in

the legend. Where D0
con is the constant diffusion coefficient used

throughout the simulation.Dp,t=0 is the initial particle diameter. In

(a) the saturation ratio of the semi-volatile is increased from 1 to

90 % instantaneously, whilst in (b) it is decreased from 90 to 1 %

instantaneously.

the change in semi-volatile saturation ratio and the difference

in the self-diffusion coefficients of the components.

Results for model estimates of e-folding times when the

diffusion coefficient was kept constant are given in Fig. A3.

Good agreement can be seen between all three models across
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Figure A4. e-folding time contour plots for different instantaneous changes in the saturation ratio of the semi-volatile component (1es) and

different diffusion coefficient dependencies: (a) 1es = 60–80 % and logarithmic dependence, (b) 1es = 80–60 % and logarithmic depen-

dence, (c) 1es = 60–80 % and sigmoidal dependence, and (d) 1es = 80–60 % and sigmoidal dependence. Models are given in the legend.

Table A1. Absolute tolerances used in KM-GAP whilst the self-diffusion coefficient of the semi-volatile component was held constant at

2.0× 10−9 m2 s−1 and the saturation ratio of the semi-volatile component was increased and decreased from 1–90 and 90–1 %. The absolute

tolerance required for stability depended on the self-diffusion coefficient of the non-volatile component (D0
nv) and the initial particle diameter

(Dp,t=0).

Dp,t=0 (m)

D0
nv (m2 s−1) 1.0× 10−5 1.0× 10−6 1.0× 10−7 1.0× 10−8

1.0× 10−8–10−14 1.0× 10−12 1.0× 10−13 1.0× 10−14 1.0× 10−15

1.0× 10−16 1.0× 10−13 1.0× 10−14 1.0× 10−15 1.0× 10−16

1.0× 10−18 1.0× 10−14 1.0× 10−15 1.0× 10−16 1.0× 10−17

1.0× 10−20 1.0× 10−15 1.0× 10−16 1.0× 10−17 1.0× 10−18

1.0× 10−22 1.0× 10−16 1.0× 10−17 1.0× 10−18 1.0× 10−19

1.0× 10−24 1.0× 10−17 1.0× 10−18 1.0× 10−19 1.0× 10−20

1.0× 10−26 1.0× 10−18 1.0× 10−19 1.0× 10−20 1.0× 10−21

the values of constant diffusion coefficient and initial parti-

cle diameter. In Fig. A4 are the e-folding times for changes

of 60–80 and 80–60 % in the saturation ratio of the semi-

volatile component using the logarithmic and sigmoidal de-

pendencies of diffusion coefficient on semi-volatile compo-

nent mole fraction.
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Table A2. Number of shells used in each model for each change in the vapour-phase saturation ratio of the semi-volatile component (1es)

and for different values of non-volatile component self-diffusion coefficient (D0
nv).

1es

D0
nv (m2 s−1) 1–90 % 90–1 % 60–80 % 80–60 % 10–20 % 20–10 %

ETH model # shells

1.0× 10−8–10−14 40 40 40 40 40 40

1.0× 10−16–10−26 300 300 40 40 40 40

KM-GAP # shells

1.0× 10−8–10−12 40 40 40 40 40 40

1.0× 10−14 60 60 40 40 40 40

1.0× 10−16 100 100 40 40 40 40

1.0× 10−18 200 200 40 40 40 40

1.0× 10−20 250 250 100 100 40 40

1.0× 10−22 270 270 100 100 40 40

1.0× 10−24 300 300 100 100 40 40

1.0× 10−26 330 330 100 100 40 40

Fi-PaD # shells

1.0× 10−8–10−14 40 40 40 40 40 40

1.0× 10−16–10−26 300 300 80 80 40 40
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