Articles | Volume 16, issue 3
https://doi.org/10.5194/acp-16-1849-2016
https://doi.org/10.5194/acp-16-1849-2016
Research article
 | 
17 Feb 2016
Research article |  | 17 Feb 2016

Drizzle formation in stratocumulus clouds: effects of turbulent mixing

L. Magaritz-Ronen, M. Pinsky, and A. Khain

Related authors

Theoretical investigation of mixing in warm clouds – Part 2: Homogeneous mixing
Mark Pinsky, Alexander Khain, Alexei Korolev, and Leehi Magaritz-Ronen
Atmos. Chem. Phys., 16, 9255–9272, https://doi.org/10.5194/acp-16-9255-2016,https://doi.org/10.5194/acp-16-9255-2016, 2016
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Cloud water adjustments to aerosol perturbations are buffered by solar heating in non-precipitating marine stratocumuli
Jianhao Zhang, Yao-Sheng Chen, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 24, 10425–10440, https://doi.org/10.5194/acp-24-10425-2024,https://doi.org/10.5194/acp-24-10425-2024, 2024
Short summary
Glaciation of mixed-phase clouds: insights from bulk model and bin-microphysics large-eddy simulation informed by laboratory experiment
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024,https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds
Theresa Kiszler, Davide Ori, and Vera Schemann
Atmos. Chem. Phys., 24, 10039–10053, https://doi.org/10.5194/acp-24-10039-2024,https://doi.org/10.5194/acp-24-10039-2024, 2024
Short summary
Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024,https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
On the sensitivity of aerosol–cloud interactions to changes in sea surface temperature in radiative–convective equilibrium
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024,https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary

Cited articles

Baker, M. B. and Latham, J.: A diffusive model of the turbulent mixing of dry and cloudy air, Q. J. R. Meteorol. Soc., 108, 871–898, https://doi.org/10.1002/qj.49710845809, 1982.
Baker, M. B., Corbin, R. G., and Latham, J.: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing, Q. J. R. Meteorol. Soc., 106, 581–598, https://doi.org/10.1002/qj.49710644914, 1980.
Brenguier, J.-L. L., Pawlowska, H., Schuller, L., Preusker, R., Fischer, J., Fouquart, Y., and Schüller, L.: Radiative Properties of Boundary Layer Clouds: Droplet Effective Radius versus Number Concentration, J. Atmos. Sci., 57, 803–821, https://doi.org/10.1175/1520-0469(2000)057<0803:RPOBLC>2.0.CO;2, 2000.
Cooper, W. A., Lasher-Trapp, S. G., and Blyth, A. M.: The Influence of Entrainment and Mixing on the Initial Formation of Rain in a Warm Cumulus Cloud, J. Atmos. Sci., 70, 1727–1743, https://doi.org/10.1175/JAS-D-12-0128.1, 2013.
Download
Short summary
The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated using a Lagrangian-Eularian model of the cloud-topped boundary layer. It was found that first large drops form in volumes that are closest to adiabatic with extended residence near cloud top, and maximum values of LWC. Turbulent mixing was found able to delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.
Altmetrics
Final-revised paper
Preprint