Articles | Volume 16, issue 23
https://doi.org/10.5194/acp-16-15033-2016
https://doi.org/10.5194/acp-16-15033-2016
Research article
 | 
06 Dec 2016
Research article |  | 06 Dec 2016

Long-term dynamics of OH * temperatures over central Europe: trends and solar correlations

Christoph Kalicinsky, Peter Knieling, Ralf Koppmann, Dirk Offermann, Wolfgang Steinbrecht, and Johannes Wintel

Related authors

Ground-based observations of periodic temperature fluctuations in the mesopause region with periods larger than 2 days
Christoph Kalicinsky, Robert Reisch, and Peter Knieling
EGUsphere, https://doi.org/10.5194/egusphere-2025-3102,https://doi.org/10.5194/egusphere-2025-3102, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Very-long-period oscillations in the atmosphere (0–110 km) – Part 2: Latitude– longitude comparisons and trends
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 23, 3267–3278, https://doi.org/10.5194/acp-23-3267-2023,https://doi.org/10.5194/acp-23-3267-2023, 2023
Short summary
A new method to detect and classify polar stratospheric nitric acid trihydrate clouds derived from radiative transfer simulations and its first application to airborne infrared limb emission observations
Christoph Kalicinsky, Sabine Griessbach, and Reinhold Spang
Atmos. Meas. Tech., 14, 1893–1915, https://doi.org/10.5194/amt-14-1893-2021,https://doi.org/10.5194/amt-14-1893-2021, 2021
Short summary
Very long-period oscillations in the atmosphere (0–110 km)
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 21, 1593–1611, https://doi.org/10.5194/acp-21-1593-2021,https://doi.org/10.5194/acp-21-1593-2021, 2021
Short summary
Determination of time-varying periodicities in unequally spaced time series of OH* temperatures using a moving Lomb–Scargle periodogram and a fast calculation of the false alarm probabilities
Christoph Kalicinsky, Robert Reisch, Peter Knieling, and Ralf Koppmann
Atmos. Meas. Tech., 13, 467–477, https://doi.org/10.5194/amt-13-467-2020,https://doi.org/10.5194/amt-13-467-2020, 2020
Short summary

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Extreme Concentric Gravity Waves Observed in the Mesosphere and Thermosphere Regions over Southern Brazil Associated with Fast-Moving Severe Thunderstorms
Qinzeng Li, Jiyao Xu, Yajun Zhu, Cristiano M. Wrasse, José V. Bageston, Wei Yuan, Xiao Liu, Weijun Liu, Ying Wen, Hui Li, and Zhengkuan Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1417,https://doi.org/10.5194/egusphere-2025-1417, 2025
Short summary
Momentum flux characteristics of vertically propagating gravity waves
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Erdal Yiğit, Vera Y. Tsali-Brown, Ricardo A. Buriti, Cosme A. O. B. Figueiredo, Gabriel A. Giongo, Fábio Egito, Oluwasegun M. Adebayo, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 25, 4053–4082, https://doi.org/10.5194/acp-25-4053-2025,https://doi.org/10.5194/acp-25-4053-2025, 2025
Short summary
Did the 2022 Hunga eruption impact the noctilucent cloud season in 2023/24 and 2024?
Sandra Wallis, Matthew DeLand, and Christian von Savigny
Atmos. Chem. Phys., 25, 3635–3645, https://doi.org/10.5194/acp-25-3635-2025,https://doi.org/10.5194/acp-25-3635-2025, 2025
Short summary
Lidar measurements of noctilucent clouds at Río Grande, Tierra del Fuego, Argentina
Natalie Kaifler, Bernd Kaifler, Markus Rapp, Guiping Liu, Diego Janches, Gerd Baumgarten, and Jose-Luis Hormaechea
Atmos. Chem. Phys., 24, 14029–14044, https://doi.org/10.5194/acp-24-14029-2024,https://doi.org/10.5194/acp-24-14029-2024, 2024
Short summary
Upper-atmosphere responses to the 2022 Hunga Tonga–Hunga Ha′apai volcanic eruption via acoustic gravity waves and air–sea interaction
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024,https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary

Cited articles

Baker, D. J., and Stair Jr., A. T.: Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scr., 37, 611, https://doi.org/10.1088/0031-8949/37/4/021, 1998.
Beig, G.: Long term trends in the temperature of the mesosphere/lower thermosphere region: 2. Solar response, J. Geophys. Res., 116, A00H12, https://doi.org/10.1029/2011JA016766, 2011a.
Beig, G.: Long term trends in the temperature of the mesosphere/lower thermosphere region: 1. Anthropogenic influences, J. Geophys. Res., 116, A00H11, https://doi.org/10.1029/2011JA016646, 2011b.
Bittner, M., Offermann, D., and Graef, H. H.: Mesopause temperature variability above a midlatitude station in Europe, J. Geophys. Res., 105, 2045–2058, https://doi.org/10.1029/1999JD900307, 2000.
Bittner, M., Offermann, D., Graef, H. H., Donner, M., and Hamilton, K.: An 18-year time series of OH* rotational temperatures and middle atmosphere decadal variations, J. Atmos. Sol. Terr. Phy., 64, 1147–1166, https://doi.org/10.1016/S1364-6826(02)00065-2, 2002.
Download
Short summary
The analysis of temperatures in the mesopause region between 1988 to 2015 shows, besides the known correlation with the 11-year solar activity cycle, a trend reversal in 2008 that can be described by a long-term oscillation. Understanding such long periodic oscillations in the atmosphere is of prime importance for climate modelling and predictions of future trends.
Share
Altmetrics
Final-revised paper
Preprint