Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 16, issue 5
Atmos. Chem. Phys., 16, 3279–3288, 2016
https://doi.org/10.5194/acp-16-3279-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 3279–3288, 2016
https://doi.org/10.5194/acp-16-3279-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Mar 2016

Research article | 14 Mar 2016

Semi-annual oscillation (SAO) of the nighttime ionospheric D region as detected through ground-based VLF receivers

Israel Silber1, Colin Price1, and Craig J. Rodger2 Israel Silber et al.
  • 1Department of Geosciences, Tel Aviv University, Tel Aviv, Israel
  • 2Department of Physics, University of Otago, Dunedin, New Zealand

Abstract. Earth's middle and upper atmosphere exhibits several dominant large-scale oscillations in many measured parameters. One of these oscillations is the semi-annual oscillation (SAO). The SAO can be detected in the ionospheric total electron content (TEC), the ionospheric transition height, the wind regime in the mesosphere–lower thermosphere (MLT), and in the MLT temperatures. In addition, as we report for the first time in this study, the SAO is among the most dominant oscillations in nighttime very low frequency (VLF) narrowband (NB) subionospheric measurements. As VLF signals are reflected off the ionospheric D region (at altitudes of  ∼  65 and  ∼  85 km, during the day and night, respectively), this implies that the upper part of the D region is experiencing this oscillation as well, through changes in the dominating electron or ion densities, or by changes in the electron collision frequency, recombination rates, and attachment rates, all of which could be driven by oscillatory MLT temperature changes. We conclude that the main source of the SAO in the nighttime D region is NOx molecule transport from the lower levels of the thermosphere, resulting in enhanced ionization and the creation of free electrons in the nighttime D region, thus modulating the SAO signature in VLF NB measurements. While the cause for the observed SAO is still a subject of debate, this oscillation should be taken into account when modeling the D region in general and VLF wave propagation in particular.

Publications Copernicus
Download
Short summary
We report for the first time that the semi-annual oscillation (SAO) is one of the dominant oscillations in the nighttime lower ionosphere, using ground-based measurements of VLF signals reflected off the lower part of the ionosphere. We conclude that the origins of this oscillation are oscillatory changes of the D region's electrical characteristics, driven by NOx transport from the lower thermosphere. This oscillation should be considered in lower ionospheric and VLF wave propagation models.
We report for the first time that the semi-annual oscillation (SAO) is one of the dominant...
Citation
Final-revised paper
Preprint