Articles | Volume 16, issue 3
Atmos. Chem. Phys., 16, 1459–1477, 2016
https://doi.org/10.5194/acp-16-1459-2016
Atmos. Chem. Phys., 16, 1459–1477, 2016
https://doi.org/10.5194/acp-16-1459-2016

Research article 09 Feb 2016

Research article | 09 Feb 2016

Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

F. Paulot et al.

Related authors

Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models
Gillian Thornhill, William Collins, Dirk Olivié, Ragnhild B. Skeie, Alex Archibald, Susanne Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry Horowitz, Jean-Francois Lamarque, Martine Michou, Jane Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M. O'Connor, Fabien Paulot, Michael Schulz, Catherine E. Scott, Roland Séférian, Chris Smith, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, and James Weber
Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021,https://doi.org/10.5194/acp-21-1105-2021, 2021
Short summary
Attribution of Chemistry-Climate Model Initiative (CCMI) ozone radiative flux bias from satellites
Le Kuai, Kevin W. Bowman, Kazuyuki Miyazaki, Makoto Deushi, Laura Revell, Eugene Rozanov, Fabien Paulot, Sarah Strode, Andrew Conley, Jean-François Lamarque, Patrick Jöckel, David A. Plummer, Luke D. Oman, Helen Worden, Susan Kulawik, David Paynter, Andrea Stenke, and Markus Kunze
Atmos. Chem. Phys., 20, 281–301, https://doi.org/10.5194/acp-20-281-2020,https://doi.org/10.5194/acp-20-281-2020, 2020
Short summary
Representing sub-grid scale variations in nitrogen deposition associated with land use in a global Earth system model: implications for present and future nitrogen deposition fluxes over North America
Fabien Paulot, Sergey Malyshev, Tran Nguyen, John D. Crounse, Elena Shevliakova, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 17963–17978, https://doi.org/10.5194/acp-18-17963-2018,https://doi.org/10.5194/acp-18-17963-2018, 2018
Changes in the aerosol direct radiative forcing from 2001 to 2015: observational constraints and regional mechanisms
Fabien Paulot, David Paynter, Paul Ginoux, Vaishali Naik, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 13265–13281, https://doi.org/10.5194/acp-18-13265-2018,https://doi.org/10.5194/acp-18-13265-2018, 2018
Short summary
Exploring the relationship between surface PM2.5 and meteorology in Northern India
Jordan L. Schnell, Vaishali Naik, Larry W. Horowitz, Fabien Paulot, Jingqiu Mao, Paul Ginoux, Ming Zhao, and Kirpa Ram
Atmos. Chem. Phys., 18, 10157–10175, https://doi.org/10.5194/acp-18-10157-2018,https://doi.org/10.5194/acp-18-10157-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Insights into seasonal variation of wet deposition over southeast Asia via precipitation adjustment from the findings of MICS-Asia III
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Zhe Wang, Junichi Kurokawa, Jiani Tan, Kan Huang, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 21, 8709–8734, https://doi.org/10.5194/acp-21-8709-2021,https://doi.org/10.5194/acp-21-8709-2021, 2021
Short summary
Modeling the impact of COVID-19 on air quality in southern California: implications for future control policies
Zhe Jiang, Hongrong Shi, Bin Zhao, Yu Gu, Yifang Zhu, Kazuyuki Miyazaki, Xin Lu, Yuqiang Zhang, Kevin W. Bowman, Takashi Sekiya, and Kuo-Nan Liou
Atmos. Chem. Phys., 21, 8693–8708, https://doi.org/10.5194/acp-21-8693-2021,https://doi.org/10.5194/acp-21-8693-2021, 2021
Short summary
Responses of Arctic black carbon and surface temperature to multi-region emission reductions: a Hemispheric Transport of Air Pollution Phase 2 (HTAP2) ensemble modeling study
Na Zhao, Xinyi Dong, Kan Huang, Joshua S. Fu, Marianne Tronstad Lund, Kengo Sudo, Daven Henze, Tom Kucsera, Yun Fat Lam, Mian Chin, and Simone Tilmes
Atmos. Chem. Phys., 21, 8637–8654, https://doi.org/10.5194/acp-21-8637-2021,https://doi.org/10.5194/acp-21-8637-2021, 2021
Short summary
Analysis of secondary organic aerosol simulation bias in the Community Earth System Model (CESM2.1)
Yaman Liu, Xinyi Dong, Minghuai Wang, Louisa K. Emmons, Yawen Liu, Yuan Liang, Xiao Li, and Manish Shrivastava
Atmos. Chem. Phys., 21, 8003–8021, https://doi.org/10.5194/acp-21-8003-2021,https://doi.org/10.5194/acp-21-8003-2021, 2021
Short summary
Future evolution of aerosols and implications for climate change in the Euro-Mediterranean region using the CNRM-ALADIN63 regional climate model
Thomas Drugé, Pierre Nabat, Marc Mallet, and Samuel Somot
Atmos. Chem. Phys., 21, 7639–7669, https://doi.org/10.5194/acp-21-7639-2021,https://doi.org/10.5194/acp-21-7639-2021, 2021
Short summary

Cited articles

Adams, P. J., Seinfeld, J. H., Koch, D., Mickley, L., and Jacob, D.: General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system, J. Geophys. Res.-Atmos., 106, 1097–1111, https://doi.org/10.1029/2000JD900512, 2001.
Aneja, V. P., Schlesinger, W. H., Erisman, J. W., Behera, S. N., Sharma, M., and Battye, W.: Reactive nitrogen emissions from crop and livestock farming in India, Atmos. Environ., 47, 92–103, 2012.
Ansari, A. S. and Pandis, S. N.: Response of Inorganic PM to Precursor Concentrations, Environ. Sci. Technol., 32, 2706–2714, 1998.
Barbaro, E., Krol, M. C., and Vilà-Guerau de Arellano, J.: Numerical simulation of the interaction between ammonium nitrate aerosol and convective boundary-layer dynamics, Atmos. Environ., 105, 202–211, https://doi.org/10.1016/j.atmosenv.2015.01.048, 2015.
Bauer, S. E., Koch, D., Unger, N., Metzger, S. M., Shindell, D. T., and Streets, D. G.: Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone, Atmos. Chem. Phys., 7, 5043–5059, https://doi.org/10.5194/acp-7-5043-2007, 2007.
Download
Short summary
We characterize the sensitivity of NO3 optical depth (OD) to both the sources of its precursors (NH3 and HNO3) and to its surface sinks. Uncertainties in the heterogeneous chemistry of HNO3 and the near-surface volatilization of NH4NO3 can cause up to 25 % difference in the global NO3 OD. Simulated NO3 OD increases little (< 30 %) in response to changes in emissions (2010 to 2050). Better constraints on the tropical flux of NH3 into the free troposphere are needed to improve estimates of NO3 OD.
Altmetrics
Final-revised paper
Preprint