

Supplement of

Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

F. Paulot et al.

Correspondence to: F. Paulot (fabien.paulot@noaa.gov)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Table S1: Heterogeneous reactions and uptake coefficients used in AM3 and AM3N

	Table 51: neter	ogeneous re	actions and uptake coefficients us	seu in Amb and Ambin
	Aerosol	γ (AM3)	$\gamma ~({ m AM3N})$	Reference (AM3N)
γ_{HO_2}	all aerosol	1	1	Mao et al. (2013)
$\gamma_{\rm NO_2}$	fine $aerosol^a$	10^{-4}	10^{-5}	Wong et al. (2011)
$\gamma_{\rm NO_3}$	fine $aerosol^a$	0.1	10^{-3}	Jacob (2000)
$\gamma_{\rm N_2O_5}$	fine $aerosol^a$	0.1	10^{-2}	Macintyre and Evans (2010)
$\gamma_{\rm NO_2}$	dust^b	-	0.012	Crowley et al. (2010)
$\gamma_{N_2O_5}$	dust^b	-	0.013	Crowley et al. (2010)
$\gamma_{\rm SO_2}$	dust	-	10^{-4}	Ullerstam et al. $(2002, 2003)$
$\gamma_{\rm HNO_3}$	dust^b	-	$\frac{8 RH}{30(1-RH)(1+7RH)}$ for RH<73%	Vlasenko et al. (2006)
			0.118 for RH>73%	

0.118 for RH \geq 73% ^a excludes seasalt and dust (including nitrate and sulfate on dust) ^b if alkalinity is available

	AM3	AM3N	AM3N_fdep_diu	AM3N_diu	AM3N_fdep	AM3N_ns	AM3N_nhet	AM3N_ndust
$SO_4^{\ a}$								
Production (TgS/yr)	37.3	33.1	33.9	33.3	33.8	33.3	34.0	32.5
OH	10.4	7.7	7.7	7.7	7.7	7.7	8.0	9.1
H_2O_2	26.7	16.2	15.9	16.0	16.1	16.3	15.9	16.5
O_3	0.1	4.5	5.6	4.8	5.2	4.5	5.5	3.9
dust	0.0	1.9	1.9	1.9	1.9	1.9	1.9	0.0
Loss (TgS/yr)	37.4	33.3	34.0	33.4	33.9	33.4	34.1	32.6
Dry deposition	4.7	4.6	4.7	4.6	4.7	4.6	4.7	4.0
SO_4	4.7	3.8	3.9	3.8	3.9	3.8	3.9	4.0
SO_4 on dust	0.0	0.8	0.8	0.8	0.8	0.8	0.8	0.0
Wet deposition	32.7	28.7	29.3	28.8	29.2	28.8	29.4	28.6
SO_4	32.7	27.5	28.2	27.6	28.1	27.6	28.3	28.6
SO_4 on dust	0.0	1.1	1.1	1.1	1.1	1.1	1.1	0.0
Lifetime (days)	4.9	3.8	3.8	3.8	3.8	3.8	3.8	4.3
NH _x								
NH ₃ emission (TgN/yr)	54.5	54.5	54.5	54.5	54.5	53.7	54.5	54.5
Loss (TgN/yr)	54.8	55.0	54.8	54.8	55.0	54.2	55.0	55.0
Dry deposition	14.4	23.5	21.3	21.0	23.8	23.2	23.7	23.3
Wet deposition	40.4	30.7	32.6	32.9	30.4	30.3	30.5	31.0
Gas oxidation	0.0	0.8	0.9	0.9	0.8	0.7	0.8	0.7
Lifetime (days)	5.5	2.5	2.7	2.8	2.5	2.5	2.5	2.6
NO _v								
NO emission (TgN/yr)	51.4	51.8	51.8	51.7	51.7	51.8	51.8	51.8
Loss (TgN/yr)	51.3	51.0	51.2	51.0	51.1	51.0	51.1	51.5
Dry deposition	25.4	23.1	25.4	23.1	25.3	23.1	23.4	23.1
HNO ₃	18.3	10.7	9.4	10.7	9.5	10.7	10.0	13.9
NO ₃ on dust	0.0	3.4	3.3	3.4	3.3	3.4	3.4	0.0
NH ₄ NO ₃	0.7	0.8	4.4	0.8	4.2	0.8	0.5	0.9
Organic nitrogen	3.9	4.0	4.0	4.0	4.0	4.0	4.3	4.0
Wet deposition	25.6	27.6	25.5	27.6	25.5	27.6	27.4	28.1
HNO ₃	23.4	17.8	16.4	17.4	16.7	17.7	18.2	21.6
NO ₃ on dust	0.0	3.7	3.7	3.7	3.7	3.7	3.7	0.0
NH ₄ NO ₃	0.5	3.5	2.9	3.9	2.5	3.6	2.6	3.9
Organic nitrogen	1.7	2.6	2.6	2.6	2.6	2.6	2.9	2.6
Lifetime (days)	22.7	13.4	13.3	13.4	13.3	13.4	13.6	12.9
a SO ₂ emissions are 74.0	$TgS a^{-1}$	¹ includin	g 16.0 TgS a^{-1}				from	DMS oxidation

Table S2: Present-day budget of SO_4 , NH_x , and NO_y in AM3 and AM3N

 SO_2 emissions are 74.0 TgS a^{-1} including 16.0 TgS a

	Table S3: Summary of model evaluation ^a							
	AM3	AM3N	AM3N_fdep_diu	AM3N_diu	AM3N_fdep	AM3N_ns	AM3N_nhet	AM3N_n dust
SO_4								
Aerosol								
US	0.07(0.81)	-0.11(0.89)	-0.06 (0.89)	-0.11(0.89)	-0.05(0.89)	-0.05(0.89)	-0.06 (0.89)	-0.11(0.89)
Europe	-0.43(0.24)	-0.22(0.62)	-0.13(0.64)	-0.22(0.62)	-0.13(0.64)	-0.20(0.67)	-0.13 (0.64)	-0.24 (0.62)
Wet deposition								
US	0.00(0.42)	-0.07 (0.59)	-0.08(0.57)	-0.07 (0.58)	-0.07 (0.58)	-0.08(0.58)	-0.08 (0.58)	-0.07(0.58)
Europe	-0.18(0.53)	-0.32(0.57)	-0.32(0.53)	-0.32(0.57)	-0.31(0.57)	-0.32(0.58)	-0.31 (0.57)	-0.32(0.55)
NO ₃								
Åerosol								
US	-0.61 (0.64)	1.03(0.64)	0.17 (0.65)	0.99(0.64)	0.16(0.64)	1.38(0.61)	0.42 (0.62)	1.06(0.64)
Europe	-0.78(0.62)	0.32(0.62)	-0.30(0.58)	0.29(0.62)	-0.30(0.58)	0.31(0.61)	-0.13(0.50)	0.17(0.62)
Gas + Aerosol								
Europe	-0.18 (0.61)	0.17(0.75)	-0.29(0.57)	0.16(0.75)	-0.29(0.57)	0.17(0.74)	-0.13 (0.62)	0.08(0.76)
Wet deposition								
US	$0.14 \ (0.33)$	0.23 (0.52)	$0.11 \ (0.54)$	0.23(0.52)	$0.11 \ (0.54)$	$0.21 \ (0.52)$	0.17 (0.54)	0.27(0.54)
Europe	-0.32(0.57)	-0.29(0.54)	-0.39(0.54)	-0.29(0.54)	-0.39(0.55)	-0.28(0.58)	-0.32(0.52)	-0.27(0.56)
NH,								
Gas								
US	-0.75 (0.50)	-0.10(0.54)	-0.22 (0.53)	-0.29(0.54)	-0.04(0.53)	-0.12(0.50)	-0.06(0.53)	-0.11 (0.53)
Europe	-0.65(0.48)	0.23(0.54)	0.17(0.50)	0.04 (0.53)	0.36(0.52)	0.25(0.46)	0.31 (0.53)	0.21 (0.54)
Gas+aerosol								
Europe	0.69(0.66)	0.18(0.64)	0.02(0.64)	0.07 (0.63)	0.12(0.64)	0.19(0.60)	0.14 (0.64)	0.19(0.64)
Wet deposition								
US	-0.20(0.50)	-0.20(0.69)	-0.15(0.69)	-0.14(0.69)	-0.20(0.68)	-0.18(0.55)	-0.20 (0.69)	-0.20(0.69)
Europe	-0.23(0.52)	-0.36 (0.58)	-0.32 (0.58)	-0.31(0.58)	-0.36(0.58)	-0.36 (0.49)	-0.36 (0.58)	-0.35(0.58)
AOD								
MODIS								
World	0.09(0.57)	-0.08 (0.68)	-0.08(0.68)	-0.07 (0.68)	-0.08(0.68)	-0.07 (0.67)	-0.08 (0.68)	-0.06 (0.69)
high NO ₂	-0.15(0.83)	0.11(0.87)	0.09(0.87)	0.14(0.86)	0.06(0.87)	0.13(0.86)	0.06(0.87)	0.12(0.87)
high SO ₄	0.57(0.83)	0.06(0.87)	0.06(0.87)	0.08(0.87)	0.04(0.88)	0.06(0.87)	0.04(0.88)	0.09(0.88)
MISR								
World	-0.03(0.53)	-0.16(0.59)	-0.16(0.59)	-0.15(0.58)	-0.17 (0.59)	-0.16(0.58)	-0.17 (0.59)	-0.14(0.59)
high NO ₂	-0.12(0.84)	0.21(0.87)	0.18(0.87)	0.24(0.86)	0.16(0.87)	0.23(0.86)	0.16(0.88)	0.24(0.87)
high SO_4	0.54(0.86)	0.12(0.88)	0.12(0.88)	0.14(0.87)	0.10(0.88)	0.12(0.87)	0.10(0.88)	0.15(0.88)
AERONET	. ,	. ,		. ,	. ,	. ,	. ,	. ,
World	-0.03(0.72)	-0.10(0.82)	-0.11 (0.82)	-0.08(0.82)	-0.13(0.82)	-0.09(0.82)	-0.12(0.83)	-0.07(0.82)
high NO ₂	-0.50 (0.87)	-0.01 (0.76)	-0.07 (0.70)	0.02(0.72)	-0.08 (0.73)	0.03(0.79)	-0.09 (0.74)	0.03(0.75)
high SO	0.33(0.47)	-0.10 (0.74)	-0.10 (0.71)	-0.07 (0.72)	-0.12(0.73)	-0.10 (0.75)	-0.13(0.72)	-0.05 (0.74)

Table S3: Summary of model evaluation^a

Figure S1: Mass extinction of $(NH_4)_2SO_4$ (dotted line) and NH_4NO_3 (solid line) at 550nm. The dash line shows the relative error between $(NH_4)_2SO_4$ and NH_4NO_3 mass extinctions. Refractive index and hygroscopic growth for NH_4NO_3 are take from Gosse et al. (1997) and Tang (1996) respectively.

Figure S2: Contribution of SO_4 , NO_3 , OC, and dust to the simulated dry extinction at Bondville in AM3N_fdep_diu.

Figure S3: Observed (black dots) and simulated temperature over Bondville. The dots show the average for the each altitude and the bars show the 25^{th} and 75^{th} percentiles. The model is sampled within one hour of the twice daily observations.

Figure S4: Observed (black dots) and simulated relative humidity over Bondville. The dots show the average for the each altitude and the bars show the 25^{th} and 75^{th} percentiles. The model is sampled within one hour of the twice daily observations.

Figure S5: Observed (black dots) and simulated (solid line from AM3N) occurrence of RH exceeding 90% over Bondville from 2008 to 2010. The model is sampled within one hour of the bidaily observations.

Figure S6: Comparison between observed and simulated SO_4^{2-} for AM3 and AM3N_fdep_diu. The ratio between model and observation is shown for each site and each season for AM3 (left panel) and AM3N_fdep_diu (middle panel). Observations are averaged on a monthly basis over the 2006–2012 period. Scatterplot of seasonal means is shown on the right for AM3 (black) and AM3N_fdep_diu (purple). Note the log scale for the x and y axis.

Figure S7: Same as Fig. S6 but for $\mathrm{NO_3}^-$ aerosol

Figure S8: Same as Fig. S6 but for $\rm NH_3$

Figure S9: Same as Fig. S6 but for $\mathrm{SO_4}^{2-}$ concentrations in rain from NADP

Figure S10: Same as Fig. S6 but for $\mathrm{NO_3}^-$ concentration in rain from NADP

Figure S11: Same as Fig. S6 but for NH_4^+ concentration in rain from NADP

Figure S12: Same as Fig. S6 but for $\mathrm{SO_4}^{2-}$ surface observations from EMEP.

Figure S13: Same as Fig. S6 but for surface $\mathrm{NO_3}^-$ from EMEP.

Figure S14: Same as Fig. S6 but for NOy from EMEP.

Figure S15: Same as Fig. S6 but for NH_x from EMEP.

Figure S16: Same as Fig. S6 but for SO_4^{2-} concentration in precipitated water from EMEP

Figure S17: Same as Fig. S6 but for $\mathrm{NH_4}^+$ concentration in precipitated water from EMEP

Figure S18: Same as Fig. S6 but for NO_3^- concentration in precipitated water from EMEP

Figure S19: Same as Fig. S6 but for AOD from AERONET

Figure S20: Average diurnal profile of NO_3^- at the YRK SEARCH site (33.93N, 274.95E, 395m asl) in 2008. Simulated nitrate diurnal profiles from AM3N, AM3N_diu, and AM3N_fdep_diu are shown in blue, red, and green respectively. Observations are shown in black

References

- Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates, Atmos. Chem. Phys., 10, 9059–9223, doi:10.5194/acp-10-9059-2010, 2010.
- Gosse, S. F., Wang, M., Labrie, D., and Chylek, P.: Imaginary part of the refractive index of sulfates and nitrates in the 07–26-µm spectral region, Appl. Opt., 36, 3622, doi:10.1364/AO.36.003622, 1997.
- Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 2131–2159, doi:10.1016/S1352-2310(99)00462-8, 2000.
- Macintyre, H. L. and Evans, M. J.: Sensitivity of a global model to the uptake of N₂O₅ by tropospheric aerosol, Atmos. Chem. Phys., 10, 7409–7414, doi:10.5194/acp-10-7409-2010, 2010.
- Mao, J., Fan, S., Jacob, D. J., and Travis, K. R.: Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols, Atmos. Chem. Phys., 13, 509–519, doi:10.5194/acp-13-509-2013, 2013.
- Tang, I. N.: Chemical and size effects of hygroscopic aerosols on light scattering coefficients, J. Geophys. Res. Atmos., 101, 19245–19250, doi:10.1029/96JD03003, 1996.
- Ullerstam, M., Vogt, R., Langer, S., and Ljungström, E.: The kinetics and mechanism of SO₂ oxidation by O₃ on mineral dust, Phys. Chem. Chem. Phys., 4, 4694–4699, doi:10.1039/B203529B, 2002.
- Ullerstam, M., Johnson, M. S., Vogt, R., and Ljungström, E.: DRIFTS and Knudsen cell study of the heterogeneous reactivity of SO₂ and NO₂ on mineral dust, Atmos. Chem. Phys., 3, 2043–2051, doi:10.5194/acp-3-2043-2003, 2003.
- Vlasenko, A., Sjogren, S., Weingartner, E., Stemmler, K., Gäggeler, H. W., and Ammann, M.: Effect of humidity on nitric acid uptake to mineral dust aerosol particles, Atmos. Chem. Phys., 6, 2147–2160, doi:10.5194/acp-6-2147-2006, 2006.
- Wong, K. W., Oh, H.-J., Lefer, B. L., Rappenglück, B., and Stutz, J.: Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX, Atmos. Chem. Phys., 11, 3595–3609, doi:10.5194/acp-11-3595-2011, 2011.