Articles | Volume 16, issue 22
https://doi.org/10.5194/acp-16-14317-2016
https://doi.org/10.5194/acp-16-14317-2016
Research article
 | 
17 Nov 2016
Research article |  | 17 Nov 2016

Application of a new scheme of cloud base droplet nucleation in a spectral (bin) microphysics cloud model: sensitivity to aerosol size distribution

Eyal Ilotoviz and Alexander Khain

Related authors

Revisiting adiabatic fraction estimations in cumulus clouds: high-resolution simulations with a passive tracer
Eshkol Eytan, Ilan Koren, Orit Altaratz, Mark Pinsky, and Alexander Khain
Atmos. Chem. Phys., 21, 16203–16217, https://doi.org/10.5194/acp-21-16203-2021,https://doi.org/10.5194/acp-21-16203-2021, 2021
Short summary
Theoretical analysis of mixing in liquid clouds – Part IV: DSD evolution and mixing diagrams
Mark Pinsky and Alexander Khain
Atmos. Chem. Phys., 18, 3659–3676, https://doi.org/10.5194/acp-18-3659-2018,https://doi.org/10.5194/acp-18-3659-2018, 2018
Short summary
Theoretical study of mixing in liquid clouds – Part 1: Classical concepts
Alexei Korolev, Alex Khain, Mark Pinsky, and Jeffrey French
Atmos. Chem. Phys., 16, 9235–9254, https://doi.org/10.5194/acp-16-9235-2016,https://doi.org/10.5194/acp-16-9235-2016, 2016
Short summary
Theoretical investigation of mixing in warm clouds – Part 2: Homogeneous mixing
Mark Pinsky, Alexander Khain, Alexei Korolev, and Leehi Magaritz-Ronen
Atmos. Chem. Phys., 16, 9255–9272, https://doi.org/10.5194/acp-16-9255-2016,https://doi.org/10.5194/acp-16-9255-2016, 2016
Short summary
Theoretical analysis of mixing in liquid clouds – Part 3: Inhomogeneous mixing
Mark Pinsky, Alexander Khain, and Alexei Korolev
Atmos. Chem. Phys., 16, 9273–9297, https://doi.org/10.5194/acp-16-9273-2016,https://doi.org/10.5194/acp-16-9273-2016, 2016
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Cloud water adjustments to aerosol perturbations are buffered by solar heating in non-precipitating marine stratocumuli
Jianhao Zhang, Yao-Sheng Chen, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 24, 10425–10440, https://doi.org/10.5194/acp-24-10425-2024,https://doi.org/10.5194/acp-24-10425-2024, 2024
Short summary
Glaciation of mixed-phase clouds: insights from bulk model and bin-microphysics large-eddy simulation informed by laboratory experiment
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024,https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds
Theresa Kiszler, Davide Ori, and Vera Schemann
Atmos. Chem. Phys., 24, 10039–10053, https://doi.org/10.5194/acp-24-10039-2024,https://doi.org/10.5194/acp-24-10039-2024, 2024
Short summary
Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024,https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
On the sensitivity of aerosol–cloud interactions to changes in sea surface temperature in radiative–convective equilibrium
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024,https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res., 105, 6837, https://doi.org/10.1029/1999JD901161, 2000.
Abdul-Razzak, H., Ghan, S. J., and Rivera-Carpio, C.: A parameterization of aerosol activation: 1. Single aerosol type, J. Geophys. Res., 103, 6123, https://doi.org/10.1029/97JD03735, 1998.
Bedos, C., Suhre, K., and Rosset, R.: Adaptation of a cloud activation scheme to a spectral-chemical aerosol model, Atmos. Res., 41, 267–279, https://doi.org/10.1016/0169-8095(96)00014-2, 1996.
Benmoshe, N., Pinsky, M., Pokrovsky, A., and Khain, A.: Turbulent effects on the microphysics and initiation of warm rain in deep convective clouds: 2-D simulations by a spectral mixed-phase microphysics cloud model, J. Geophys. Res., 117, D06220, https://doi.org/10.1029/2011JD016603, 2012.
Bigg, E. K.: The formation of atmospheric ice crystals by the freezing of droplets, Q. J. Roy. Meteor. Soc., 79, 510–519, https://doi.org/10.1002/qj.49707934207, 1953.
Download
Short summary
In this paper the evolution of deep convective clouds is simulated under different aerosol loading. The simulations are performed using a spectral-bin microphysics model in which droplet concentration at cloud base is calculated using a new analytical method. The effect of this accurate calculation of droplet concentration is analyzed by comparison with a standard method. The role of the smallest CCN in the aerosol spectra is investigated.
Altmetrics
Final-revised paper
Preprint