Articles | Volume 16, issue 17
https://doi.org/10.5194/acp-16-11301-2016
https://doi.org/10.5194/acp-16-11301-2016
Research article
 | 
13 Sep 2016
Research article |  | 13 Sep 2016

A long-term study of aerosol–cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements

Elisa T. Sena, Allison McComiskey, and Graham Feingold

Related authors

A novel methodology for large-scale daily assessment of the direct radiative forcing of smoke aerosols
E. T. Sena and P. Artaxo
Atmos. Chem. Phys., 15, 5471–5483, https://doi.org/10.5194/acp-15-5471-2015,https://doi.org/10.5194/acp-15-5471-2015, 2015
Short summary
Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia
E. T. Sena, P. Artaxo, and A. L. Correia
Atmos. Chem. Phys., 13, 1261–1275, https://doi.org/10.5194/acp-13-1261-2013,https://doi.org/10.5194/acp-13-1261-2013, 2013

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Observing convective activities in complex convective organizations and their contributions to precipitation and anvil cloud amounts
Zhenquan Wang and Jian Yuan
Atmos. Chem. Phys., 24, 13811–13831, https://doi.org/10.5194/acp-24-13811-2024,https://doi.org/10.5194/acp-24-13811-2024, 2024
Short summary
Weak liquid water path response in ship tracks
Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, and Tristan W. P. Smith
Atmos. Chem. Phys., 24, 13269–13283, https://doi.org/10.5194/acp-24-13269-2024,https://doi.org/10.5194/acp-24-13269-2024, 2024
Short summary
Air mass history linked to the development of Arctic mixed-phase clouds
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024,https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Post-Return Stroke VHF Electromagnetic Activity in North-Western Mediterranean Cloud-to-Ground Lightning Flashes
Andrea Kolínská, Ivana Kolmašová, Eric Defer, Ondřej Santolík, and Stéphane Pédeboy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2489,https://doi.org/10.5194/egusphere-2024-2489, 2024
Short summary
Distinct structure, radiative effects, and precipitation characteristics of deep convection systems in the Tibetan Plateau compared to the tropical Indian Ocean
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024,https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary

Cited articles

Ackerman, A. S., Toon, O. B., Taylor, J. P., Johnson, D. W., Hobbs, P. V., and Ferek, R. J.: Effects of aerosols on cloud albedo: Evaluation of Twomey's parameterization of cloud susceptibility using measurements of ship tracks, J. Atmos. Sci., 57, 2684–2695, 2000.
Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, https://doi.org/10.1038/nature03174, 2004.
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.
Barnard, J. C. and Long, C. N.: A simple empirical equation to calculate cloud optical thickness using shortwave broadband measurements, J. Appl. Meteorol., 43, 1057–1066, 2004.
Barnard, J. C., Long, C. N., Kassianov, E. I., McFarlane, S. A., Comstock, J. M., Freer, M., and McFarquhar, G. M.: Development and evaluation of a simple algorithm to find cloud optical depth with emphasis on thin ice clouds, Open Atmos. Sci. J., 2, 46–55, 2008.
Download
Short summary
A new method for assessing aerosol effects on clouds is proposed. For the first time, 14 years of collocated, coincident ground-based observations have been used to study cloud–aerosol–meteorology–radiation interactions in the USA. For this site, the results indicate that the influence of the aerosol on cloud radiative effect and cloud albedo is weak, and that macroscopic cloud properties play a much larger role in determining the cloud radiative effect compared to aerosol effects.
Altmetrics
Final-revised paper
Preprint