Articles | Volume 15, issue 12
https://doi.org/10.5194/acp-15-7039-2015
https://doi.org/10.5194/acp-15-7039-2015
Research article
 | 
30 Jun 2015
Research article |  | 30 Jun 2015

Balancing aggregation and smoothing errors in inverse models

A. J. Turner and D. J. Jacob

Related authors

High-resolution greenhouse gas flux inversions using a machine learning surrogate model for atmospheric transport
Nikhil Dadheech, Tai-Long He, and Alexander J. Turner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2918,https://doi.org/10.5194/egusphere-2024-2918, 2024
Short summary
State-wide California 2020 Carbon Dioxide Budget Estimated with OCO-2 and OCO-3 satellite data
Matthew S. Johnson, Sofia D. Hamilton, Seongeun Jeong, Yuyan Cui, Dien Wu, Alex Turner, and Marc Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2152,https://doi.org/10.5194/egusphere-2024-2152, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
FootNet v1.0: Development of a machine learning emulator of atmospheric transport
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
EGUsphere, https://doi.org/10.31223/X5197G,https://doi.org/10.31223/X5197G, 2024
Short summary
A high-resolution satellite-based map of global methane emissions reveals missing wetland, fossil fuel, and monsoon sources
Xueying Yu, Dylan B. Millet, Daven K. Henze, Alexander J. Turner, Alba Lorente Delgado, A. Anthony Bloom, and Jianxiong Sheng
Atmos. Chem. Phys., 23, 3325–3346, https://doi.org/10.5194/acp-23-3325-2023,https://doi.org/10.5194/acp-23-3325-2023, 2023
Short summary
A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet)
Johannes Gensheimer, Alexander J. Turner, Philipp Köhler, Christian Frankenberg, and Jia Chen
Biogeosciences, 19, 1777–1793, https://doi.org/10.5194/bg-19-1777-2022,https://doi.org/10.5194/bg-19-1777-2022, 2022
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Interpreting summertime hourly variation of NO2 columns with implications for geostationary satellite applications
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024,https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
An investigation into atmospheric nitrous acid (HONO) processes in South Korea
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
Atmos. Chem. Phys., 24, 12575–12593, https://doi.org/10.5194/acp-24-12575-2024,https://doi.org/10.5194/acp-24-12575-2024, 2024
Short summary
Performance evaluation of UKESM1 for surface ozone across the pan-tropics
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024,https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Constraining light dependency in modeled emissions through comparison to observed biogenic volatile organic compound (BVOC) concentrations in a southeastern US forest
Namrata Shanmukh Panji, Deborah F. McGlynn, Laura E. R. Barry, Todd M. Scanlon, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Atmos. Chem. Phys., 24, 12495–12507, https://doi.org/10.5194/acp-24-12495-2024,https://doi.org/10.5194/acp-24-12495-2024, 2024
Short summary
A global re-analysis of regionally resolved emissions and atmospheric mole fractions of SF6 for the period 2005–2021
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024,https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary

Cited articles

Bishop, C. M.: Pattern Recognition and Machine Learning, Springer, 1st Edn., New York, 2007.
Bocquet, M.: Towards optimal choices of control space representation for geophysical data assimilation, Mon. Weather Rev., 137, 2331–2348, https://doi.org/10.1175/2009MWR2789.1, 2009.
Bocquet, M. and Wu, L.: Bayesian design of control space for optimal assimilation of observations. II: Asymptotics solution, Q. J. Roy. Meteor. Soc., 137, 1357–1368, https://doi.org/10.1002/qj.841, 2011.
Bocquet, M., Wu, L., and Chevallier, F.: Bayesian design of control space for optimal assimilation of observations. Part I: Consistent multiscale formalism, Q. J. Roy. Meteor. Soc., 137, 1340–1356, https://doi.org/10.1002/qj.837, 2011.
Bousserez, N., Henze, D. K., Perkins, A., Bowman, K. W., Lee, M., Liu, J., Deng, F., and Jones, D. B. A.: Improved analysis-error covariance matrix for high-dimensional variational inversions: application to source estimation using a 3D atmospheric transport model, Q. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.2495, online first, 2015.
Altmetrics
Final-revised paper
Preprint