Research article
30 Jul 2013
Research article | 30 Jul 2013
Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US
S. P. Urbanski
Related authors
Daily black carbon emissions from fires in northern Eurasia for 2002–2015
Wei Min Hao, Alexander Petkov, Bryce L. Nordgren, Rachel E. Corley, Robin P. Silverstein, Shawn P. Urbanski, Nikolaos Evangeliou, Yves Balkanski, and Bradley L. Kinder
Geosci. Model Dev., 9, 4461–4474, https://doi.org/10.5194/gmd-9-4461-2016,https://doi.org/10.5194/gmd-9-4461-2016, 2016
Short summary
Wildfires in northern Eurasia affect the budget of black carbon in the Arctic – a 12-year retrospective synopsis (2002–2013)
N. Evangeliou, Y. Balkanski, W. M. Hao, A. Petkov, R. P. Silverstein, R. Corley, B. L. Nordgren, S. P. Urbanski, S. Eckhardt, A. Stohl, P. Tunved, S. Crepinsek, A. Jefferson, S. Sharma, J. K. Nøjgaard, and H. Skov
Atmos. Chem. Phys., 16, 7587–7604, https://doi.org/10.5194/acp-16-7587-2016,https://doi.org/10.5194/acp-16-7587-2016, 2016
Short summary
Observations and analysis of organic aerosol evolution in some prescribed fire smoke plumes
A. A. May, T. Lee, G. R. McMeeking, S. Akagi, A. P. Sullivan, S. Urbanski, R. J. Yokelson, and S. M. Kreidenweis
Atmos. Chem. Phys., 15, 6323–6335, https://doi.org/10.5194/acp-15-6323-2015,https://doi.org/10.5194/acp-15-6323-2015, 2015
Short summary
Airborne characterization of smoke marker ratios from prescribed burning
A. P. Sullivan, A. A. May, T. Lee, G. R. McMeeking, S. M. Kreidenweis, S. K. Akagi, R. J. Yokelson, S. P. Urbanski, and J. L. Collett Jr.
Atmos. Chem. Phys., 14, 10535–10545, https://doi.org/10.5194/acp-14-10535-2014,https://doi.org/10.5194/acp-14-10535-2014, 2014
Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes
S. K. Akagi, R. J. Yokelson, I. R. Burling, S. Meinardi, I. Simpson, D. R. Blake, G. R. McMeeking, A. Sullivan, T. Lee, S. Kreidenweis, S. Urbanski, J. Reardon, D. W. T. Griffith, T. J. Johnson, and D. R. Weise
Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013,https://doi.org/10.5194/acp-13-1141-2013, 2013
Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires
R. J. Yokelson, I. R. Burling, J. B. Gilman, C. Warneke, C. E. Stockwell, J. de Gouw, S. K. Akagi, S. P. Urbanski, P. Veres, J. M. Roberts, W. C. Kuster, J. Reardon, D. W. T. Griffith, T. J. Johnson, S. Hosseini, J. W. Miller, D. R. Cocker III, H. Jung, and D. R. Weise
Atmos. Chem. Phys., 13, 89–116, https://doi.org/10.5194/acp-13-89-2013,https://doi.org/10.5194/acp-13-89-2013, 2013
Daily black carbon emissions from fires in northern Eurasia for 2002–2015
Wei Min Hao, Alexander Petkov, Bryce L. Nordgren, Rachel E. Corley, Robin P. Silverstein, Shawn P. Urbanski, Nikolaos Evangeliou, Yves Balkanski, and Bradley L. Kinder
Geosci. Model Dev., 9, 4461–4474, https://doi.org/10.5194/gmd-9-4461-2016,https://doi.org/10.5194/gmd-9-4461-2016, 2016
Short summary
Wildfires in northern Eurasia affect the budget of black carbon in the Arctic – a 12-year retrospective synopsis (2002–2013)
N. Evangeliou, Y. Balkanski, W. M. Hao, A. Petkov, R. P. Silverstein, R. Corley, B. L. Nordgren, S. P. Urbanski, S. Eckhardt, A. Stohl, P. Tunved, S. Crepinsek, A. Jefferson, S. Sharma, J. K. Nøjgaard, and H. Skov
Atmos. Chem. Phys., 16, 7587–7604, https://doi.org/10.5194/acp-16-7587-2016,https://doi.org/10.5194/acp-16-7587-2016, 2016
Short summary
Observations and analysis of organic aerosol evolution in some prescribed fire smoke plumes
A. A. May, T. Lee, G. R. McMeeking, S. Akagi, A. P. Sullivan, S. Urbanski, R. J. Yokelson, and S. M. Kreidenweis
Atmos. Chem. Phys., 15, 6323–6335, https://doi.org/10.5194/acp-15-6323-2015,https://doi.org/10.5194/acp-15-6323-2015, 2015
Short summary
Airborne characterization of smoke marker ratios from prescribed burning
A. P. Sullivan, A. A. May, T. Lee, G. R. McMeeking, S. M. Kreidenweis, S. K. Akagi, R. J. Yokelson, S. P. Urbanski, and J. L. Collett Jr.
Atmos. Chem. Phys., 14, 10535–10545, https://doi.org/10.5194/acp-14-10535-2014,https://doi.org/10.5194/acp-14-10535-2014, 2014
Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes
S. K. Akagi, R. J. Yokelson, I. R. Burling, S. Meinardi, I. Simpson, D. R. Blake, G. R. McMeeking, A. Sullivan, T. Lee, S. Kreidenweis, S. Urbanski, J. Reardon, D. W. T. Griffith, T. J. Johnson, and D. R. Weise
Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013,https://doi.org/10.5194/acp-13-1141-2013, 2013
Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires
R. J. Yokelson, I. R. Burling, J. B. Gilman, C. Warneke, C. E. Stockwell, J. de Gouw, S. K. Akagi, S. P. Urbanski, P. Veres, J. M. Roberts, W. C. Kuster, J. Reardon, D. W. T. Griffith, T. J. Johnson, S. Hosseini, J. W. Miller, D. R. Cocker III, H. Jung, and D. R. Weise
Atmos. Chem. Phys., 13, 89–116, https://doi.org/10.5194/acp-13-89-2013,https://doi.org/10.5194/acp-13-89-2013, 2013
Related subject area
Source characterization of volatile organic compounds measured by proton-transfer-reaction time-of-flight mass spectrometers in Delhi, India
Liwei Wang, Jay G. Slowik, Nidhi Tripathi, Deepika Bhattu, Pragati Rai, Varun Kumar, Pawan Vats, Rangu Satish, Urs Baltensperger, Dilip Ganguly, Neeraj Rastogi, Lokesh K. Sahu, Sachchida N. Tripathi, and André S. H. Prévôt
Atmos. Chem. Phys., 20, 9753–9770, https://doi.org/10.5194/acp-20-9753-2020,https://doi.org/10.5194/acp-20-9753-2020, 2020
Non-target and suspect characterisation of organic contaminants in Arctic air – Part 2: Application of a new tool for identification and prioritisation of chemicals of emerging Arctic concern in air
Laura Röhler, Martin Schlabach, Peter Haglund, Knut Breivik, Roland Kallenborn, and Pernilla Bohlin-Nizzetto
Atmos. Chem. Phys., 20, 9031–9049, https://doi.org/10.5194/acp-20-9031-2020,https://doi.org/10.5194/acp-20-9031-2020, 2020
Short summary
Measurements of traffic-dominated pollutant emissions in a Chinese megacity
Freya A. Squires, Eiko Nemitz, Ben Langford, Oliver Wild, Will S. Drysdale, W. Joe F. Acton, Pingqing Fu, C. Sue B. Grimmond, Jacqueline F. Hamilton, C. Nicholas Hewitt, Michael Hollaway, Simone Kotthaus, James Lee, Stefan Metzger, Natchaya Pingintha-Durden, Marvin Shaw, Adam R. Vaughan, Xinming Wang, Ruili Wu, Qiang Zhang, and Yanli Zhang
Atmos. Chem. Phys., 20, 8737–8761, https://doi.org/10.5194/acp-20-8737-2020,https://doi.org/10.5194/acp-20-8737-2020, 2020
Short summary
Reviewing global estimates of surface reactive nitrogen concentration and deposition using satellite retrievals
Lei Liu, Xiuying Zhang, Wen Xu, Xuejun Liu, Xuehe Lu, Jing Wei, Yi Li, Yuyu Yang, Zhen Wang, and Anthony Y. H. Wong
Atmos. Chem. Phys., 20, 8641–8658, https://doi.org/10.5194/acp-20-8641-2020,https://doi.org/10.5194/acp-20-8641-2020, 2020
Short summary
Atmospheric reactivity and oxidation capacity during summer at a suburban site between Beijing and Tianjin
Yuan Yang, Yonghong Wang, Putian Zhou, Dan Yao, Dongsheng Ji, Jie Sun, Yinghong Wang, Shuman Zhao, Wei Huang, Shuanghong Yang, Dean Chen, Wenkang Gao, Zirui Liu, Bo Hu, Renjian Zhang, Limin Zeng, Maofa Ge, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Yuesi Wang
Atmos. Chem. Phys., 20, 8181–8200, https://doi.org/10.5194/acp-20-8181-2020,https://doi.org/10.5194/acp-20-8181-2020, 2020
Atmospheric mercury in the Southern Hemisphere – Part 1: Trend and inter-annual variations in atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on Amsterdam Island in 2012–2017
Franz Slemr, Lynwill Martin, Casper Labuschagne, Thumeka Mkololo, Hélène Angot, Olivier Magand, Aurélien Dommergue, Philippe Garat, Michel Ramonet, and Johannes Bieser
Atmos. Chem. Phys., 20, 7683–7692, https://doi.org/10.5194/acp-20-7683-2020,https://doi.org/10.5194/acp-20-7683-2020, 2020
Short summary
Megacity and local contributions to regional air pollution: an aircraft case study over London
Kirsti Ashworth, Silvia Bucci, Peter J. Gallimore, Junghwa Lee, Beth S. Nelson, Alberto Sanchez-Marroquín, Marina B. Schimpf, Paul D. Smith, Will S. Drysdale, Jim R. Hopkins, James D. Lee, Joe R. Pitt, Piero Di Carlo, Radovan Krejci, and James B. McQuaid
Atmos. Chem. Phys., 20, 7193–7216, https://doi.org/10.5194/acp-20-7193-2020,https://doi.org/10.5194/acp-20-7193-2020, 2020
Short summary
Characteristics, sources, and reactions of nitrous acid during winter at an urban site in the Central Plains Economic Region in China
Qi Hao, Nan Jiang, Ruiqin Zhang, Liuming Yang, and Shengli Li
Atmos. Chem. Phys., 20, 7087–7102, https://doi.org/10.5194/acp-20-7087-2020,https://doi.org/10.5194/acp-20-7087-2020, 2020
Short summary
Volatile organic compounds and ozone air pollution in an oil production region in northern China
Tianshu Chen, Likun Xue, Penggang Zheng, Yingnan Zhang, Yuhong Liu, Jingjing Sun, Guangxuan Han, Hongyong Li, Xin Zhang, Yunfeng Li, Hong Li, Can Dong, Fei Xu, Qingzhu Zhang, and Wenxing Wang
Atmos. Chem. Phys., 20, 7069–7086, https://doi.org/10.5194/acp-20-7069-2020,https://doi.org/10.5194/acp-20-7069-2020, 2020
Short summary
MAX-DOAS measurements of NO2, SO2, HCHO, and BrO at the Mt. Waliguan WMO GAW global baseline station in the Tibetan Plateau
Jianzhong Ma, Steffen Dörner, Sebastian Donner, Junli Jin, Siyang Cheng, Junrang Guo, Zhanfeng Zhang, Jianqiong Wang, Peng Liu, Guoqing Zhang, Janis Pukite, Johannes Lampel, and Thomas Wagner
Atmos. Chem. Phys., 20, 6973–6990, https://doi.org/10.5194/acp-20-6973-2020,https://doi.org/10.5194/acp-20-6973-2020, 2020
Short summary
Sesquiterpenes dominate monoterpenes in northern wetland emissions
Heidi Hellén, Simon Schallhart, Arnaud P. Praplan, Toni Tykkä, Mika Aurela, Annalea Lohila, and Hannele Hakola
Atmos. Chem. Phys., 20, 7021–7034, https://doi.org/10.5194/acp-20-7021-2020,https://doi.org/10.5194/acp-20-7021-2020, 2020
Short summary
Net ozone production and its relationship to nitrogen oxides and volatile organic compounds in the marine boundary layer around the Arabian Peninsula
Ivan Tadic, John N. Crowley, Dirk Dienhart, Philipp Eger, Hartwig Harder, Bettina Hottmann, Monica Martinez, Uwe Parchatka, Jean-Daniel Paris, Andrea Pozzer, Roland Rohloff, Jan Schuladen, Justin Shenolikar, Sebastian Tauer, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 20, 6769–6787, https://doi.org/10.5194/acp-20-6769-2020,https://doi.org/10.5194/acp-20-6769-2020, 2020
Short summary
Significant production of ClNO2 and possible source of Cl2 from N2O5 uptake at a suburban site in eastern China
Men Xia, Xiang Peng, Weihao Wang, Chuan Yu, Peng Sun, Yuanyuan Li, Yuliang Liu, Zhengning Xu, Zhe Wang, Zheng Xu, Wei Nie, Aijun Ding, and Tao Wang
Atmos. Chem. Phys., 20, 6147–6158, https://doi.org/10.5194/acp-20-6147-2020,https://doi.org/10.5194/acp-20-6147-2020, 2020
Short summary
A new marine biogenic emission: methane sulfonamide (MSAM), dimethyl sulfide (DMS), and dimethyl sulfone (DMSO2) measured in air over the Arabian Sea
Achim Edtbauer, Christof Stönner, Eva Y. Pfannerstill, Matias Berasategui, David Walter, John N. Crowley, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 20, 6081–6094, https://doi.org/10.5194/acp-20-6081-2020,https://doi.org/10.5194/acp-20-6081-2020, 2020
Short summary
Insights into atmospheric oxidation processes by performing factor analyses on subranges of mass spectra
Yanjun Zhang, Otso Peräkylä, Chao Yan, Liine Heikkinen, Mikko Äijälä, Kaspar R. Daellenbach, Qiaozhi Zha, Matthieu Riva, Olga Garmash, Heikki Junninen, Pentti Paatero, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 20, 5945–5961, https://doi.org/10.5194/acp-20-5945-2020,https://doi.org/10.5194/acp-20-5945-2020, 2020
Short summary
O2 : CO2 exchange ratio for net turbulent flux observed in an urban area of Tokyo, Japan, and its application to an evaluation of anthropogenic CO2 emissions
Shigeyuki Ishidoya, Hirofumi Sugawara, Yukio Terao, Naoki Kaneyasu, Nobuyuki Aoki, Kazuhiro Tsuboi, and Hiroaki Kondo
Atmos. Chem. Phys., 20, 5293–5308, https://doi.org/10.5194/acp-20-5293-2020,https://doi.org/10.5194/acp-20-5293-2020, 2020
Short summary
Dynamic projection of anthropogenic emissions in China: methodology and 2015–2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios
Dan Tong, Jing Cheng, Yang Liu, Sha Yu, Liu Yan, Chaopeng Hong, Yu Qin, Hongyan Zhao, Yixuan Zheng, Guannan Geng, Meng Li, Fei Liu, Yuxuan Zhang, Bo Zheng, Leon Clarke, and Qiang Zhang
Atmos. Chem. Phys., 20, 5729–5757, https://doi.org/10.5194/acp-20-5729-2020,https://doi.org/10.5194/acp-20-5729-2020, 2020
Short summary
Assessing contributions of natural surface and anthropogenic emissions to atmospheric mercury in a fast developing region of Eastern China from 2015 to 2018
Xiaofei Qin, Leiming Zhang, Guochen Wang, Xiaohao Wang, Qingyan Fu, Jian Xu, Hao Li, Jia Chen, Qianbiao Zhao, Yanfen Lin, Juntao Huo, Fengwen Wang, Kan Huang, and Congrui Deng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-322,https://doi.org/10.5194/acp-2020-322, 2020
Revised manuscript accepted for ACP
Short summary
Contribution of nitrous acid to the atmospheric oxidation capacity in an industrial zone in the Yangtze River Delta region of China
Jun Zheng, Xiaowen Shi, Yan Ma, Xinrong Ren, Halim Jabbour, Yiwei Diao, Weiwei Wang, Yifeng Ge, Yuchan Zhang, and Wenhui Zhu
Atmos. Chem. Phys., 20, 5457–5475, https://doi.org/10.5194/acp-20-5457-2020,https://doi.org/10.5194/acp-20-5457-2020, 2020
Short summary
Origin and transformation of ambient volatile organic compounds during a dust-to-haze episode in northwest China
Yonggang Xue, Yu Huang, Steven Sai Hang Ho, Long Chen, Liqin Wang, Shuncheng Lee, and Junji Cao
Atmos. Chem. Phys., 20, 5425–5436, https://doi.org/10.5194/acp-20-5425-2020,https://doi.org/10.5194/acp-20-5425-2020, 2020
Short summary
Exploring the inconsistent variations in atmospheric primary and secondary pollutants during the 2016 G20 summit in Hangzhou, China: implications from observations and models
Gen Zhang, Honghui Xu, Hongli Wang, Likun Xue, Jianjun He, Wanyun Xu, Bing Qi, Rongguang Du, Chang Liu, Zeyuan Li, Ke Gui, Wanting Jiang, Linlin Liang, Yan Yan, and Xiaoyan Meng
Atmos. Chem. Phys., 20, 5391–5403, https://doi.org/10.5194/acp-20-5391-2020,https://doi.org/10.5194/acp-20-5391-2020, 2020
Nitrous acid (HONO) emissions under real-world driving conditions from vehicles in a UK road tunnel
Louisa J. Kramer, Leigh R. Crilley, Thomas J. Adams, Stephen M. Ball, Francis D. Pope, and William J. Bloss
Atmos. Chem. Phys., 20, 5231–5248, https://doi.org/10.5194/acp-20-5231-2020,https://doi.org/10.5194/acp-20-5231-2020, 2020
Short summary
High-resolution vertical distribution and sources of HONO and NO2 in the nocturnal boundary layer in urban Beijing, China
Fanhao Meng, Min Qin, Ke Tang, Jun Duan, Wu Fang, Shuaixi Liang, Kaidi Ye, Pinhua Xie, Yele Sun, Conghui Xie, Chunxiang Ye, Pingqing Fu, Jianguo Liu, and Wenqing Liu
Atmos. Chem. Phys., 20, 5071–5092, https://doi.org/10.5194/acp-20-5071-2020,https://doi.org/10.5194/acp-20-5071-2020, 2020
Short summary
Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere
Elise S. Droste, Karina E. Adcock, Matthew J. Ashfold, Charles Chou, Zoë Fleming, Paul J. Fraser, Lauren J. Gooch, Andrew J. Hind, Ray L. Langenfelds, Emma Leedham Elvidge, Norfazrin Mohd Hanif, Simon O'Doherty, David E. Oram, Chang-Feng Ou-Yang, Marios Panagi, Claire E. Reeves, William T. Sturges, and Johannes C. Laube
Atmos. Chem. Phys., 20, 4787–4807, https://doi.org/10.5194/acp-20-4787-2020,https://doi.org/10.5194/acp-20-4787-2020, 2020
Short summary
Heterogeneous N2O5 reactions on atmospheric aerosols at four Chinese sites: improving model representation of uptake parameters
Chuan Yu, Zhe Wang, Men Xia, Xiao Fu, Weihao Wang, Yee Jun Tham, Tianshu Chen, Penggang Zheng, Hongyong Li, Ye Shan, Xinfeng Wang, Likun Xue, Yan Zhou, Dingli Yue, Yubo Ou, Jian Gao, Keding Lu, Steven S. Brown, Yuanhang Zhang, and Tao Wang
Atmos. Chem. Phys., 20, 4367–4378, https://doi.org/10.5194/acp-20-4367-2020,https://doi.org/10.5194/acp-20-4367-2020, 2020
Short summary
Global-scale distribution of ozone in the remote troposphere from ATom and HIPPO airborne field missions
Ilann Bourgeois, Jeffrey Peischl, Chelsea R. Thompson, Kenneth C. Aikin, Teresa Campos, Hannah Clark, Róisín Commane, Bruce Daube, Glenn W. Diskin, James W. Elkins, Ru-Shan Gao, Audrey Gaudel, Eric J. Hintsa, Bryan J. Johnson, Rigel Kivi, Kathryn McKain, Fred L. Moore, David D. Parrish, Richard Querel, Eric Ray, Ricardo Sánchez, Colm Sweeney, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Jacquelyn C. Witte, Steve C. Wofsy, and Thomas B. Ryerson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-315,https://doi.org/10.5194/acp-2020-315, 2020
Revised manuscript accepted for ACP
Missing OH reactivity in the global marine boundary layer
Alexander B. Thames, William H. Brune, David O. Miller, Hannah M. Allen, Eric C. Apel, Donald R. Blake, T. Paul Bui, Roisin Commane, John D. Crounse, Bruce C. Daube, Glenn S. Diskin, Joshua P. DiGangi, James W. Elkins, Samuel R. Hall, Thomas F. Hanisco, Reem A. Hannun, Eric Hintsa, Rebecca S. Hornbrook, Michelle J. Kim, Kathryn McKain, Fred L. Moore, Julie M. Nicely, Jeffrey Peischl, Thomas B. Ryerson, Jason M. St. Clair, Colm Sweeney, Alex Teng, Chelsea R. Thompson, Kirk Ullmann, Paul O. Wennberg, and Glenn M. Wolfe
Atmos. Chem. Phys., 20, 4013–4029, https://doi.org/10.5194/acp-20-4013-2020,https://doi.org/10.5194/acp-20-4013-2020, 2020
Short summary
Sources of volatile organic compounds and policy implications for regional ozone pollution control in an urban location of Nanjing, East China
Qiuyue Zhao, Jun Bi, Qian Liu, Zhenghao Ling, Guofeng Shen, Feng Chen, Yuezhen Qiao, Chunyan Li, and Zongwei Ma
Atmos. Chem. Phys., 20, 3905–3919, https://doi.org/10.5194/acp-20-3905-2020,https://doi.org/10.5194/acp-20-3905-2020, 2020
Short summary
Pyruvic acid in the boreal forest: gas-phase mixing ratios and impact on radical chemistry
Philipp G. Eger, Jan Schuladen, Nicolas Sobanski, Horst Fischer, Einar Karu, Jonathan Williams, Matthieu Riva, Qiaozhi Zha, Mikael Ehn, Lauriane L. J. Quéléver, Simon Schallhart, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 3697–3711, https://doi.org/10.5194/acp-20-3697-2020,https://doi.org/10.5194/acp-20-3697-2020, 2020
Short summary
Measurements of carbonyl compounds around the Arabian Peninsula indicate large missing sources of acetaldehyde
Nijing Wang, Achim Edtbauer, Christof Stönner, Andrea Pozzer, Efstratios Bourtsoukidis, Lisa Ernle, Dirk Dienhart, Bettina Hottmann, Horst Fischer, Jan Schuladen, John N. Crowley, Jean-Daniel Paris, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-135,https://doi.org/10.5194/acp-2020-135, 2020
Revised manuscript accepted for ACP
Short summary
Terpenes and their oxidation products in the French Landes forest: insights from Vocus PTR-TOF measurements
Haiyan Li, Matthieu Riva, Pekka Rantala, Liine Heikkinen, Kaspar Daellenbach, Jordan E. Krechmer, Pierre-Marie Flaud, Douglas Worsnop, Markku Kulmala, Eric Villenave, Emilie Perraudin, Mikael Ehn, and Federico Bianchi
Atmos. Chem. Phys., 20, 1941–1959, https://doi.org/10.5194/acp-20-1941-2020,https://doi.org/10.5194/acp-20-1941-2020, 2020
Short summary
Dramatic increase in reactive volatile organic compound (VOC) emissions from ships at berth after implementing the fuel switch policy in the Pearl River Delta Emission Control Area
Zhenfeng Wu, Yanli Zhang, Junjie He, Hongzhan Chen, Xueliang Huang, Yujun Wang, Xu Yu, Weiqiang Yang, Runqi Zhang, Ming Zhu, Sheng Li, Hua Fang, Zhou Zhang, and Xinming Wang
Atmos. Chem. Phys., 20, 1887–1900, https://doi.org/10.5194/acp-20-1887-2020,https://doi.org/10.5194/acp-20-1887-2020, 2020
Short summary
Impact of the South Asian monsoon outflow on atmospheric hydroperoxides in the upper troposphere
Bettina Hottmann, Sascha Hafermann, Laura Tomsche, Daniel Marno, Monica Martinez, Hartwig Harder, Andrea Pozzer, Marco Neumaier, Andreas Zahn, Birger Bohn, Helmut Ziereis, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-93,https://doi.org/10.5194/acp-2020-93, 2020
Revised manuscript accepted for ACP
Short summary
Variability of hydroxyl radical (OH) reactivity in the Landes maritime pine forest: results from the LANDEX campaign 2017
Sandy Bsaibes, Mohamad Al Ajami, Kenneth Mermet, François Truong, Sébastien Batut, Christophe Hecquet, Sébastien Dusanter, Thierry Léornadis, Stéphane Sauvage, Julien Kammer, Pierre-Marie Flaud, Emilie Perraudin, Eric Villenave, Nadine Locoge, Valérie Gros, and Coralie Schoemaecker
Atmos. Chem. Phys., 20, 1277–1300, https://doi.org/10.5194/acp-20-1277-2020,https://doi.org/10.5194/acp-20-1277-2020, 2020
Estimation of Reactive Inorganic Iodine Fluxes in the Indian and Southern Ocean Marine Boundary Layer
Swaleha Inamdar, Liselotte Tinel, Rosie Chance, Lucy J. Carpenter, Prabhakaran Sabu, Racheal Chacko, Sarat C. Tripathy, Anvita U. Kerkar, Alok K. Sinha, Parli Venkateswaran Bhaskar, Amit Sarkar, Rajdeep Roy, Tomas Sherwen, Carlos Cuevas, Alfonso Saiz-Lopez, Kirpa Ram, and Anoop S. Mahajan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1052,https://doi.org/10.5194/acp-2019-1052, 2020
Revised manuscript accepted for ACP
Short summary
Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China
Jian Zhu, Shanshan Wang, Hongli Wang, Shengao Jing, Shengrong Lou, Alfonso Saiz-Lopez, and Bin Zhou
Atmos. Chem. Phys., 20, 1217–1232, https://doi.org/10.5194/acp-20-1217-2020,https://doi.org/10.5194/acp-20-1217-2020, 2020
Short summary
Wintertime spatial distribution of ammonia and its emission sources in the Great Salt Lake region
Alexander Moravek, Jennifer G. Murphy, Amy Hrdina, John C. Lin, Christopher Pennell, Alessandro Franchin, Ann M. Middlebrook, Dorothy L. Fibiger, Caroline C. Womack, Erin E. McDuffie, Randal Martin, Kori Moore, Munkhbayar Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 19, 15691–15709, https://doi.org/10.5194/acp-19-15691-2019,https://doi.org/10.5194/acp-19-15691-2019, 2019
Short summary
Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements
Heiko Bozem, Peter Hoor, Daniel Kunkel, Franziska Köllner, Johannes Schneider, Andreas Herber, Hannes Schulz, W. Richard Leaitch, Amir A. Aliabadi, Megan D. Willis, Julia Burkart, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 19, 15049–15071, https://doi.org/10.5194/acp-19-15049-2019,https://doi.org/10.5194/acp-19-15049-2019, 2019
Short summary
Composition and variability of gaseous organic pollution in the port megacity of Istanbul: source attribution, emission ratios, and inventory evaluation
Baye T. P. Thera, Pamela Dominutti, Fatma Öztürk, Thérèse Salameh, Stéphane Sauvage, Charbel Afif, Banu Çetin, Cécile Gaimoz, Melek Keleş, Stéphanie Evan, and Agnès Borbon
Atmos. Chem. Phys., 19, 15131–15156, https://doi.org/10.5194/acp-19-15131-2019,https://doi.org/10.5194/acp-19-15131-2019, 2019
Short summary
Long-term total OH reactivity measurements in a boreal forest
Arnaud P. Praplan, Toni Tykkä, Dean Chen, Michael Boy, Ditte Taipale, Ville Vakkari, Putian Zhou, Tuukka Petäjä, and Heidi Hellén
Atmos. Chem. Phys., 19, 14431–14453, https://doi.org/10.5194/acp-19-14431-2019,https://doi.org/10.5194/acp-19-14431-2019, 2019
Short summary
Cited articles
Achtemeier, G. L., Goodrick, S. A., Liu, Y., Garcia-Menendez, F., Hu, Y., and Odman, M. T.: Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke, Atmosphere, 2, 358–388, https://doi.org/10.3390/atmos2030358, 2011.
Agee, J. K. and Skinner, C. N.: Basic principles of forest fuel reduction treatments, Forest Ecol. Manag., 211, 83–89, https://doi.org/10.1016/j.foreco.2005.01.034, 2005.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I., Blake, D. R., McMeeking, G. R., Sullivan, A., Lee, T., Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D. W. T., Johnson, T. J., and Weise, D. R.: Measurements of reactive trace gases and variable O
3 formation rates in some South Carolina biomass burning plumes, Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013, 2013.
Albini, F. and Reinhardt, E.: Improved Calibration of a Large Fuel Burnout Model, Int. J. Wildland Fire, 7, 21–28, https://doi.org/10.1071/WF9970021, 1997.
Albini, F., Brown, J., Reinhardt, E., and Ottmar, R.: Calibration of a Large Fuel Burnout Model, Int. J. Wildland Fire, 5, 173–192, https://doi.org/10.1071/WF9950173, 1995.
Alvarado, J. A. and Prinn, R. G.: Formation of ozone and growth of aerosols i young smoke plumes from biomass burning: 1. Lagrangian parcel studies, J. Geophys. Res., 114, D09306, https://doi.org/10.1029/2008JD011144, 2009.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955, https://doi.org/10.1029/2000GB001382, 2001.
Arno, S.: Forest Fire History in the Northern Rockies, J. For., 78, 460–465, 1980.
Arno, S. F., Parsons, D. J., and Keane, R. E.: Mixed-severity fire regimes in the Northern Rocky Mountains: consequences of fire exclusion and options for the future, in Wilderness science in a time of change conference-Volume 5: Wilderness ecosystems, threats, and management; May 1999, 23–27,edited by: Cole, D. N., McCool, S. F., Borrie, W. T., and O'Loughlin, J., 225–232, USDA Forest Service, Rocky Mountain Research Station, Ogden, UT, available at: http://www.fs.fed.us/rm/pubs/rmrs_p015_5.html (last accessed: 08 April 2013), 2000.
Beck, V., Chen, H., Gerbig, C., Bergamaschi, P., Bruhwiler, L., Houweling, S., Röckmann, T., Kolle, O., Steinbach, J., Koch, T., Sapart, C. J., van der Veen, C., Frankenberg, C., Andreae, M. O., Artaxo, P., Longo, K. M., and Wofsy, S. C.: Methane airborne measurements and comparison to global models during BARCA, J. Geophys. Res.-Atmos., 117, D15310, https://doi.org/10.1029/2011JD017345, 2012.
Bertschi, I., Yokelson, R., Ward, D., Babbitt, R., Susott, R., Goode, J., and Hao, W.: Trace gas and particle emissions from fires in large diameter and belowground biomass fuels RID C-9971-2011, J. Geophys. Res.-Atmos., 108, 8472, https://doi.org/10.1029/2002JD002100, 2003.
Bradshaw, L. S., Deeming, J. E., Burgan, R. E., and Cohen, J. D.: The 1978 National Fire-Danger Rating System: technical documentation, General Technical Report, USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT, available at: http://treesearch.fs.fed.us/pubs/29615, 1984.
Brewer, P. and Moore, T.: Source Contributions to Visibility Impairment in the Southeastern and Western United States, J. Air Waste Manage. Assoc., 59, 1070–1081, https://doi.org/10.3155/1047-3289.59.9.1070, 2009.
Brown, J. K., Marsden, M. A., Ryan, K. C., and Reinhardt, E. D.: Predicting duff and woody fuel consumed by prescribed fire in the northern Rocky Mountains, USDA Forest Service research paper INT-United States, Intermountain Forest and Range Experiment Station, 1985.
Burling, I. R., Yokelson, R. J., Griffith, D. W. T., Johnson, T. J., Veres, P., Roberts, J. M., Warneke, C., Urbanski, S. P., Reardon, J., Weise, D. R., Hao, W. M., and de Gouw, J.: Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States, Atmos. Chem. Phys., 10, 11115–11130, https://doi.org/10.5194/acp-10-11115-2010, 2010.
Burling, I. R., Yokelson, R. J., Akagi, S. K., Urbanski, S. P., Wold, C. E., Griffith, D. W. T., Johnson, T. J., Reardon, J., and Weise, D. R.: Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States, Atmos. Chem. Phys., 11, 12197–12216, https://doi.org/10.5194/acp-11-12197-2011, 2011.
Campbell, J., Donato, D. C., Azuma, D., and Law, B.: Pyrogenic carbon emission from a large wildfire in Oregon, United States, J. Geophys. Res.-Biogeosci., 112, G04014, https://doi.org/10.1029/2007JG000451, 2007.
Carbonari, S.: Incident Status Summary (ICS-209), Northern Rockies GACC, Big Salmon Lake Fire, MT-FNF-000026, Final, available at: http://fam.nwcg.gov/fam-web/hist_209/report_list_209 (last accessed: 30 October 2012a), 2011a.
Carbonari, S.: Incident Status Summary (ICS-209), Northern Rockies GACC, Hammer Creek, MT-FNF-008, 17 August 2011, available at: http://fam.nwcg.gov/fam-web/hist_209/report_list_209 (last accessed: 30 October 2012b), 2011b.
Carbonari, S.: Incident Status Summary (ICS-209), Northern Rockies GACC, Hammer Creek, MT-FNF-008, Final, available at: http://fam.nwcg.gov/fam-web/hist_209/report_list_209 (last accessed: 30 October 2012c), 2011c.
Carr, H.: Incident Status Summary (ICS-209), Northern Rockies GACC, Big Salmon Lake, MT-FNF-000026, 22 August 2011, available at: http://fam.nwcg.gov/fam-web/hist_209/report_list_209 (last accessed: 30 October 2012), 2011.
Central Idaho Dispatch: Incident Status Summary (ICS-209), Eastern Great Basin GACC, Saddle Complex, ID-SCF-011175, Final, available at: http://fam.nwcg.gov/fam-web/hist_209/report_list_209 (last accessed: 30 October 2012), 2011.
Chaney, R.: Change in weather postpones more prescribed fires near Montana-Idaho border, Missoulian, available at: http://missoulian.com/news/state-and-regional/article_86e58e1a-cf93-11e0-a1b8-001cc4c03286.html (last accessed: 25 July 2013), 2011.
Chen, H., Winderlich, J., Gerbig, C., Hoefer, A., Rella, C. W., Crosson, E. R., Van Pelt, A. D., Steinbach, J., Kolle, O., Beck, V., Daube, B. C., Gottlieb, E. W., Chow, V. Y., Santoni, G. W., and Wofsy, S. C.: High-accuracy continuous airborne measurements of greenhouse gases (CO
2 and CH
4) using the cavity ring-down spectroscopy (CRDS) technique, Atmos. Meas. Tech., 3, 375–386, https://doi.org/10.5194/amt-3-375-2010, 2010a.
Chen, L.-W. A., Moosmüller, H., Arnott, W. P., Chow, J. C., Watson, J. G., Susott, R. A., Babbitt, R. E., Wold, C. E., Lincoln, E. N., and Hao, W. M.: Emissions from laboratory combustion of wildland fuels:? emission factors and source profiles, Env. Sci. Tech., 41, 4317–4325, https://doi.org/10.1021/es062364i, 2007.
Chen, L.-W. A., Verburg, P., Shackelford, A., Zhu, D., Susfalk, R., Chow, J. C., and Watson, J. G.: Moisture effects on carbon and nitrogen emission from burning of wildland biomass, Atmos. Chem. Phys., 10, 6617–6625, https://doi.org/10.5194/acp-10-6617-2010, 2010b.
Christian, T., Kleiss, B., Yokelson, R., Holzinger, R., Crutzen, P., Hao, W., Saharjo, B., and Ward, D.: Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels RID C-9971-2011 RID C-9160-2009, J. Geophys. Res.-Atmos., 108, 4719, https://doi.org/10.1029/2003JD003704, 2003.
DeBell, L. J., Talbot, R. W., Dibb, J. E., Munger, J. W., Fischer, E. V. and Frolking, S. E.: A major regional air pollution event in the northeastern United States caused by extensive forest fires in Quebec, Canada, J. Geophys. Res.-Atmos., 109(D19), https://doi.org/10.1029/2004JD004840, 2004.
Farris, C. A., Ellis, M. Q., and Kupfer, J. A.: Spatial Characteristics of Fire Severity in Relation to Fire Growth in a Rocky Mountain Subalpine Forest, PSW-GTR-189, USDA Forest Service, available at: http://www.fs.fed.us/psw/publications/documents/psw_gtr189/psw_gtr189_175-184_farris.pdf, 2008.
Finney, M., McHugh, C., and Grenfell, I.: Stand- and landscape-level effects of prescribed burning on two Arizona wildfires, Can. J. For. Res.-Rev. Can. Rech. For., 35, 1714–1722, https://doi.org/10.1139/X05-090, 2005.
French, N. H. F., de Groot, W. J., Jenkins, L. K., Rogers, B. M., Alvarado, E., Amiro, B., de Jong, B., Goetz, S., Hoy, E., Hyer, Keane, R., Law, B. E., McKenzie, D., McNulty, S. G., Ottmar, R., Pérez-Salicrup, D. R., Randerson, J., Robertson, K. M., and Turetsky, M. : Model comparisons for estimating carbon emissions from North American wildland fire, J. Geophys. Res.-Biogeosciences, 116, G00K05, https://doi.org/10.1029/2010JG001469, 2011.
Gallardo, R.: Incident Status Summary (ICS-209), Northern Rockies GACC, Big Salmon Lake, MT-FNF-000026, 28 August 2011, available at: http://fam.nwcg.gov/fam-web/hist_209/report_list_209 (last accessed: 30 October 2012), 2011.
Gonzalez, T. C.: Personal communication, US Forest Service, Sierra National Forest, High Sierra Ranger District, California, 2009.
Goodrick, S. L., Achtemeier, G. L., Larkin, N. K., Liu, Y., and Strand, T. M.: Modelling smoke transport from wildland fires: a review, Int. J. Wildland Fire, 22, 83–94, https://doi.org/10.1071/WF11116, 2013.
Graham, R. T., Harvey, A.E., Jurgensen, M. F., Jain, T. B., Tonn, J. R., and Page-Dumbrose, D. S.: Managing coarse woody debris in forests of the Rocky Mountains, INT-RP-477, USDA Forest Service, available at: http://www.fs.fed.us/rm/pubs_int/int_rp477.html, 1994.
Hardy, C.: The wildland fire imperative, in Smoke Management Guide for Prescribed and Wildland Fire: 2001 Edition, 11–19, National Wildfire Coordination Group, National Interagency Fire Center, Boise, ID, available at: http://www.nwcg.gov/pms/pubs/SMG/SMG-72.pdf (last accessed: 25 January 2012), 2002.
Hornbrook, R. S., Blake, D. R., Diskin, G. S., Fried, A., Fuelberg, H. E., Meinardi, S., Mikoviny, T., Richter, D., Sachse, G. W., Vay, S. A., Walega, J., Weibring, P., Weinheimer, A. J., Wiedinmyer, C., Wisthaler, A., Hills, A., Riemer, D. D., and Apel, E. C.: Observations of nonmethane organic compounds during ARCTAS – Part 1: Biomass burning emissions and plume enhancements, Atmos. Chem. Phys., 11, 11103–11130, https://doi.org/10.5194/acp-11-11103-2011, 2011.
Harrington, M. G.: Estimating ponderosa pine fuel moisture using national fire-danger rating moisture values, USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Research Paper RM-233, USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Ft. Collins, CO., 1982.
Harrington, M. G.: Personal communication, U.S. Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, Montana, 2012.
Hobbs, P. V., Reid, J. S., Herring, J. A., Nance, J. D., Weiss, R. E., Ross, J. L., Hegg, D. A., Ottmar, R. O., and Liousse, C.: Particle and trace-gas measurements in the smoke from prescribed burns of forest products in the Pacific Northwest, in: Biomass Burning and Global Change, edited by: Levine, J. S., MIT Press, Cambridge, Mass., 697–715, 1996.
Hudec, J. L. and Peterson, D. L.: Fuel variability following wildfire in forests with mixed severity fire regimes, Cascade Range, USA, Forest Ecol. Manag., 277, 11–24, https://doi.org/10.1016/j.foreco.2012.04.008, 2012.
Jaffe, D. A. and Wigder, N. L.: Ozone production from wildfires: A critical review, Atmos. Environ., 51, 1–10, https://doi.org/10.1016/j.atmosenv.2011.11.063, 2012.
Klutsch, J. G., Negrón, J. F., Costello, S. L., Rhoades, C. C., West, D. R., Popp, J., and Caissie, R.: Stand characteristics and downed woody debris accumulations associated with a mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in Colorado, For. Ecol. Manag., 258, 641–649, https://doi.org/10.1016/j.foreco.2009.04.034, 2009.
Lahm, P.: Personal communication, US Forest Service, Fire and Aviation Management, Washington, DC, 2012.
LANDFIRE: The LANDFIRE data distribution site, US Department of Interior, Geological Survey, available at: http://landfire.cr.usgs.gov/viewer/ (last accessed: 1 November 2012), 2012.
Langmann, B., Duncan, B., Textor, C., Trentmann, J., and Van der Werf, G. R.: Vegetation fire emissions and their impact on air pollution and climate, Atmos. Environ., 43(, 107–116, https://doi.org/10.1016/j.atmosenv.2008.09.047, 2009.
Larkin, N. K., O'Neill, S. M., Solomon, R., Raffuse, S., Strand, T., Sullivan, D. C., Krull, C., Rorig, M., Peterson, J. L., and Ferguson, S. A.: The BlueSky smoke modeling framework, Int. J. Wildland Fire, 18, 906–920, https://doi.org/10.1071/WF07086, 2009.
Larson, A.: Personal communication, University of Montana, College of Forestry and Conservation, Missoula, Montana, 2013.
Liu, Y., Goodrick, S., Achtemeier, G., Jackson, W. A., Qu, J. J., and Wang, W.: Smoke incursions into urban areas: simulation of a Georgia prescribed burn, Int. J. Wild. Fire, 18, 336–348, https://doi.org/10.1071/WF08082, 2009.
Lobert, J.: Experimental evaluation of biomass burning emissions: Nitrogen and carbon containing compounds, in Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, MIT Press, Cambridge, 289–304, 1991.
McKee, K.: Incident Status Summary (ICS-209), Northern Rockies GACC, Saddle – Bitterrooot Branch, MT-BRF-000207, 23 August 2011l, available at: http://fam.nwcg.gov/fam-web/hist_209/report_list_209 (last accessed: 30 October 2012), 2011.
McMeeking, G. R., Kreidenweis, S. M., Baker, S., Carrico, C. M., Chow, J. C., Collett Jr., J. L., Hao, W. M., Holden, A. S., Kirchstetter, T. W., Malm, W. C., Moosmüller, H., Sullivan, A. P., and Wold, C. E.: Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory, J. Geophys. Res., 114, D19210, https://doi.org/10.1029/2009JD011836, 2009.
MTBS: Monitoring Trends in Burn Severity (MTBS), National MTBS Burned Area Boundaries Dataset, available at: http://mtbs.gov/compositfire/mosaic/bin-release/burnedarea.html (last accessed: 2 November 2012), 2012.
NIFC: National Interagency Fire Center, NICC Wildland Fire Annual Reports, available at: http://www.predictiveservices.nifc.gov/intelligence/intelligence.htm (last accessed: 2 November 2012), 2012.
Ottmar, R. D. and Vihnanek, R. E.: Study of Emissions of Air Pollutants from Biomass Fires in the United States – A Progress Report on Fuel Characterization, USDA Forest Service, Pacific Northwest Research Station, Seattle, WA, 1995.
Ottmar, R. D. and Vihnanek, R. E.: Study of Emissions of Air Pollutants from Biomass Fires in the United States – A Progress Report on Fuel Characterization – Year 2, USDA Forest Service, Pacific Northwest Research Station, Seattle, WA, 1997.
Ottmar, R. D. and Ward, D. E.: Extending the range of fuel consumption modeling and emission factor development to natural fuel types in the Blue Mountain forested regions of eastern Oregon. Final report EPA/IAG No. DWW 12957138-01-1 (PNW-94-0514), USDA Forest Service, Pacific Northwest Research Station, Seattle, WA, available at: http://www.fs.fed.us/pnw/fera/publications/publications-all.shtml#o, 1996.
Ottmar, R. D., Sandberg, D. V., and Hall, J. N.: Part II-Fuel Consumption, in: Mitigation of prescribed fire atmospheric pollution through increased utilization of hardwoods, piled residues, and long-needled conifers, edited by: Sandberg, D. V., Ward, D. E., and Ottmar, R. D., Final report, IAG DE-AI179-85BP18509, US D.O.E., EPA, 1989.
Ottmar, R. O.: Smoke source characteristics, in Smoke Management Guide for Prescribed and Wildland Fire: 2001 Edition, 89–106, National Wildfire Coordination Group, National Interagency Fire Center, Boise, ID, available at: http://www.nwcg.gov/pms/pubs/SMG/SMG-72.pdf (last accessed: 25 January 2012), 2001.
Ottmar, R. O., Prichard, S. J., Sandberg, D. V., and Bluhn, A.: Modification and Validation of Fuel Consumption Models for Shrub and Forested Lands in Southwest, Pacific northwest, Rockies, Midwest, Southeast and Alaska. Final Report JFSP Project 98-1-9-06, available at: http://www.fs.fed.us/pnw/fera/research/smoke/consume/index.shtml, 2006.
Owen, R.: Incident Status Summary (ICS-209), Northern Rockies GACC, Big Salmon Lake, MT-FNF-000026, 17 August 2011, available at: http://fam.nwcg.gov/fam-web/hist_209/report_list_209 (last accessed: 30 October 2012), 2011.
Radke, L.: Particulate and trace gas emissions from large biomass fires in North America, in Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, MIT Press, Cambridge, 209–224, 1991.
RAVG: US Forest Service, Rapid Assessment of Vegetation Condition after Wildfire (RAVG), available at: http://www.fs.fed.us/postfirevegcondition/index.shtml (last accessed: 22 July 2013), 2013.
Reardon, J.: Personal communication, US Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, Montana, 2012.
Reid, J. S., Koppman, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emissions part II: intensive physical properties of biomass burning particles, Atmos. Phys. Chem., 5, 799–825, https://doi.org/10.5194/acp-5-799-2005, 2005.
Reinhardt, E., Brown, J., Fischer, W., and Graham, R.: Woody fuel and duff consumption by prescribed fire in northern Idaho mixed conifer logging slash, U.S. Department of Agriculture, Forest Service, Intermountain Research Station, available at: http://agris.fao.org/agris-search/search/display.do?f=1991/US/US91216.xml;US9135180, 1991.
RSAC: US Forest Service, Remote Sensing Applications Center, Active Fire Mapping Program, Fire Detection GIS Data, available at: http://activefiremaps.fs.fed.us/gisdata.php (last accessed: 20 October 2012a), 2012a.
RSAC: US Forest Service, Remote Sensing Applications Center, Active Fire Mapping Program, MODIS Burn Scar Data, available at: http://activefiremaps.fs.fed.us/burnscar.php (last accessed: 20 October 2012b), 2012b.
Ruefenacht, B., Finco, M. V., Nelson, M. D., Czaplewski, R., Helmer, E. H., Blackard, J. A., Holden, G. R., Lister, A. J., Salajanu, D., Weyermann, D., and Winterberger, K.: Conterminous US and Alaska Forest Type Mapping Using Forest Inventory and Analysis Data, Photogramm. Eng. Remote Sens., 74, 1379–1388, 2008.
Sandberg, D. V., Ottmar, R. D., and Cushon, G. H.: Characterizing fuels in the 21st Century, Int. J. Wildland Fire, 10, 381–387, https://doi.org/10.1071/WF01036, 2001.
Sapkota, A., Symons, J. M., Kleissl, J., Wang, L., Parlange, M. B., Ondov, J., Breysse, P. N., Diette, G. B., Eggleston, P. A., and Buckley, T. J.: Impact of the 2002 Canadian Forest Fires on Particulate Matter Air Quality in Baltimore City, Environmental Science & Technology, 39, 24–32, https://doi.org/10.1021/es035311z, 2005.
Schwind, B.: Monitoring trnds in burn severity: report on the PNW & PSW fires – 1984 to 2005, MTBS Project Team, US Geological Survey and US Forest Service, Remote Sensing Applications Center, Salt Lake City, Utah, available at: http://mtbs.gov/ (last accessed: 20 October 2012), 2008.
Thompson, J. and Spies, T.: Factors associated with crown damage following recurring mixed-severity wildfires and post-fire management in southwestern Oregon, Landscape Ecology, 25, 775–789, https://doi.org/10.1007/s10980-010-9456-3, 2010.
Urbanski, S. P., Hao, W. M., and Baker, S.: Chemical Composition of Wildland Fire Emissions, in Wildland Fires and Air Pollution, 8, 79–107, Elsevier, available at: http://www.sciencedirect.com/science/article/pii/S1474817708000041 (last accessed: 24 January 2012), 2009.
Urbanski, S. P., Hao, W. M., and Nordgren, B.: The wildland fire emission inventory: western United States emission estimates and an evaluation of uncertainty, Atmos. Chem. Phys., 11, 12973–13000, https://doi.org/10.5194/acp-11-12973-2011, 2011.
USDA: USDA Forest Service, Region 1 – Forest & Grassland Health, [online] available at: http://www.fs.usda.gov/detail/r1/forest-grasslandhealth/ (last accessed: 2 November 2012b), 2012.
USDA: USDA Forest Service, Nez Perce – Clearwater National Forest, Geospatial data, available at: http://www.fs.usda.gov/nezperceclearwater (last accessed: 8 April 2013), 2013.
USEPA: Regional haze regulations; final rule, US Federal Register, 64, 126, 199940 CFR 51, 1999.
USEPA: 2008 National Emissions Inventory Data & Documentation, available at: http://www.epa.gov/ttnchie1/net/2008inventory.html (last accessed: 1 November 2012a), 2012a.
USEPA: Exceptional Events – TTN–Air Quality Analysis – US EPA, Technology Transfer NetworkAirQualityAnalysis, Availablefrom: http://www.epa.gov/ttn/analysis/exevents.htm (last accessed: 2 November 2012b), 2012b.
USEPA: National Ambient Air Quality Standards (NAAQS) – Air and Radiation – US EPA, National Ambient Air Quality Standards (NAAQS), available at: http://www.epa.gov/air/criteria.html (last accessed: 2 November 2012c), 2012c.
Ward, D. E. and Radke, L. F.: Emission measurements from vegetation fires: a comparative evaluation of methods and results, in Fire in the Environment: The Ecological, Atmospheric, and Climatic Importance of Vegetation Fires, John Wiley, New York., 53–76, 1993.
Wigder, N. L., Jaffe, D. A., and Saketa, F. A.: Ozone and particulate matter enhancements from regional wildfires observed at Mount Bachelor during 2004–2011, Atmos. Environ., 75, 24–31, https://doi.org/10.1016/j.atmosenv.2013.04.026, 2013.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and Van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
van Leeuwen, T. T. and van der Werf, G. R.: Spatial and temporal variability in the ratio of trace gases emitted from biomass burning, Atmos. Chem. Phys., 11, 3611–3629, https://doi.org/10.5194/acp-11-3611-2011, 2011.
Varner, J. P., Gordon, D. R., Putz, F. E., and Hiers, J. K.: Restoring fire to long-unburned Pinus palustris ecosystems: novel fire effects and consequences for long-unburned ecosystems, Restor. Ecol., 13, 536–544, https://doi.org/10.1111/j.1526-100X.2005.00067.x, 2005.
WFAS: WFAS archive, USFS – Wildland Fire Assessment System, available at: http://wfas.net/index.php/search-archive-mainmenu-92 (last accessed: 1 November 2012), 2012.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosc. Model Develop., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
Yokelson, R. J., Griffith, D., and Ward, D.: Open-path Fourier transform infrared studies of large-scale laboratory biomass fires RID C-9971-2011, J. Geophys. Res.-Atmos., 101, 21067–21080, https://doi.org/10.1029/96JD01800, 1996.
Yokelson, R. J., Susott, R., Ward, D., Reardon, J., and Griffith, D.: Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy, J. Geophys. Res.-Atmos., 102, 18865–18877, https://doi.org/10.1029/97JD00852, 1997.
Yokelson, R. J., Goode, J., Ward, D., Susott, R., Babbitt, R., Wade, D., Bertschi, I., Griffith, D., and Hao, W.: Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier transform infrared spectroscopy RIDC-9971-2011, J. Geophys. Res.-Atmos., 104, 30109–30125, https://doi.org/10.1029/1999JD900817, 1999.
Yokelson, R. J., Karl, T., Artaxo, P., Blake, D. R., Christian, T. J., Griffith, D. W. T., Guenther, A., and Hao, W. M.: The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements, Atmos. Chem. Phys., 7, 5175–5196, https://doi.org/10.5194/acp-7-5175-2007, 2007a.
Yokelson, R. J., Urbanski, S. P., Atlas, E. L., Toohey, D. W., Alvarado, E. C., Crounse, J. D., Wennberg, P. O., Fisher, M. E., Wold, C. E., Campos, T. L., Adachi, K., Buseck, P. R., and Hao, W. M.: Emissions from forest fires near Mexico City, Atmos. Chem. Phys., 7, 5569–5584, https://doi.org/10.5194/acp-7-5569-2007, 2007b.
Yokelson, R. J., Christian, T. J., Karl, T. G., and Guenther, A.: The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data, Atmos. Chem. Phys., 8, 3509–3527, https://doi.org/10.5194/acp-8-3509-2008, 2008.