Articles | Volume 13, issue 21
https://doi.org/10.5194/acp-13-11089-2013
https://doi.org/10.5194/acp-13-11089-2013
Research article
 | 
14 Nov 2013
Research article |  | 14 Nov 2013

Low-level jet characteristics over the Arctic Ocean in spring and summer

L. Jakobson, T. Vihma, E. Jakobson, T. Palo, A. Männik, and J. Jaagus

Related authors

Atmospheric teleconnections between the Arctic and the Baltic Sea region as simulated by CESM1-LE
Erko Jakobson and Liisi Jakobson
Earth Syst. Dynam., 15, 155–165, https://doi.org/10.5194/esd-15-155-2024,https://doi.org/10.5194/esd-15-155-2024, 2024
Short summary
Atmospheric teleconnections between the Arctic and the eastern Baltic Sea regions
Liisi Jakobson, Erko Jakobson, Piia Post, and Jaak Jaagus
Earth Syst. Dynam., 8, 1019–1030, https://doi.org/10.5194/esd-8-1019-2017,https://doi.org/10.5194/esd-8-1019-2017, 2017
Short summary

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
An overview of the vertical structure of the atmospheric boundary layer in the central Arctic during MOSAiC
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 24, 1429–1450, https://doi.org/10.5194/acp-24-1429-2024,https://doi.org/10.5194/acp-24-1429-2024, 2024
Short summary
Air-sea interactions in stable atmospheric conditions: Lessons from the desert semi-enclosed Gulf of Eilat (Aqaba)
Shai Abir, Hamish A. McGowan, Yonatan Shaked, Hezi Gildor, Efrat Morin, and Nadav G. Lensky
EGUsphere, https://doi.org/10.5194/egusphere-2023-1724,https://doi.org/10.5194/egusphere-2023-1724, 2024
Short summary
Evaluation of methods to determine the surface mixing layer height of the atmospheric boundary layer in the central Arctic during polar night and transition to polar day in cloudless and cloudy conditions
Elisa F. Akansu, Sandro Dahlke, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 23, 15473–15489, https://doi.org/10.5194/acp-23-15473-2023,https://doi.org/10.5194/acp-23-15473-2023, 2023
Short summary
The role of a low-level jet for stirring the stable atmospheric surface layer in the Arctic
Ulrike Egerer, Holger Siebert, Olaf Hellmuth, and Lise Lotte Sørensen
Atmos. Chem. Phys., 23, 15365–15373, https://doi.org/10.5194/acp-23-15365-2023,https://doi.org/10.5194/acp-23-15365-2023, 2023
Short summary
Detection of dilution due to turbulent mixing vs. precipitation scavenging effects on biomass burning aerosol concentrations using stable water isotope ratios during ORACLES
Dean Henze, David Noone, and Darin Toohey
Atmos. Chem. Phys., 23, 15269–15288, https://doi.org/10.5194/acp-23-15269-2023,https://doi.org/10.5194/acp-23-15269-2023, 2023
Short summary

Cited articles

Andreas, E. L., Claffey, K. J., and Makshtas, A. P.: Low-Level Atmospheric Jets and Inversions over the Weddell Sea, Bound.-Lay. Meteorol., 97, 459–486, https://doi.org/10.1023/A:1002793831076, 2000.
Atlaskin, E. and Vihma, T.: Evaluation of NWP results for wintertime nocturnal boundary-layer temperatures over Europe and Finland, Q. J. Roy. Meteor. Soc., 138, 1440–1451, https://doi.org/10.1002/qj.1885, 2012.
Blackadar, A. K.: Boundary layer wind maxima and their significance for the growth of nocturnal inversions, B. Am. Meteorol. Soc., 38, 283–290, 1957.
Bonner, W.: Climatology of the low level jet, Mon. Weather Rev., 96, 833–850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2, 1968.
Browning, K. A. and Harrold, T. W.: Air motion and precipitation growth at a cold front, Q. J. Roy. Meteor. Soc., 96, 369–389, https://doi.org/10.1002/qj.49709640903, 1970.
Download
Altmetrics
Final-revised paper
Preprint