12 Oct 2009
12 Oct 2009
New particle formation and growth at a remote, sub-tropical coastal location
R. L. Modini et al.
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
PM2.5 surface concentrations in southern West African urban areas based on sun photometer and satellite observations
Observations on aerosol optical properties and scavenging during cloud events
Assessing the vertical structure of Arctic aerosols using balloon-borne measurements
An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin
Measurement report: aerosol hygroscopic properties extended to 600 nm in the urban environment
Spatiotemporal variation and trends in equivalent black carbon in the Helsinki metropolitan area in Finland
Characteristics of sub-10 nm particle emissions from in-use commercial aircraft observed at Narita International Airport
The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign
Measurement report: quantifying source contribution of fossil fuels and biomass-burning black carbon aerosol in the southeastern margin of the Tibetan Plateau
The electrical activity of Saharan dust as perceived from surface electric field observations
Long-term measurement of sub-3 nm particles and their precursor gases in the boreal forest
Variability in the mass absorption cross section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter
Optical and hygroscopic properties of black carbon influenced by particle microphysics at the top of the anthropogenically polluted boundary layer
Measurement report: Properties of aerosol and gases in the vertical profile during the LAPSE-RATE campaign
Aircraft vertical profiles during summertime regional and Saharan dust scenarios over the north-western Mediterranean basin: aerosol optical and physical properties
African dust particles over the western Caribbean – Part I: Impact on air quality over the Yucatán Peninsula
Direct measurements of black carbon fluxes in central Beijing using the eddy covariance method
Measurements to determine the mixing state of black carbon emitted from the 2017–2018 California wildfires and urban Los Angeles
What can we learn about urban air quality with regard to the first outbreak of the COVID-19 pandemic? A case study from central Europe
Measurement report: Source and mixing state of black carbon aerosol in the North China Plain: implications for radiative effect
The potential role of organics in new particle formation and initial growth in the remote tropical upper troposphere
Impacts of long-range transport of aerosols on marine-boundary-layer clouds in the eastern North Atlantic
Influence of vegetation on occurrence and time distributions of regional new aerosol particle formation and growth
Quantifying bioaerosol concentrations in dust clouds through online UV-LIF and mass spectrometry measurements at the Cape Verde Atmospheric Observatory
New particle formation at urban and high-altitude remote sites in the south-eastern Iberian Peninsula
Characterization of submicron organic particles in Beijing during summertime: comparison between SP-AMS and HR-AMS
The characterization of Taklamakan dust properties using a multiwavelength Raman polarization lidar in Kashi, China
From a polar to a marine environment: has the changing Arctic led to a shift in aerosol light scattering properties?
Atmospheric new particle formation characteristics in the Arctic as measured at Mount Zeppelin, Svalbard, from 2016 to 2018
Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US
Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China
Spatial and temporal representativeness of point measurements for nitrogen dioxide pollution levels in cities
Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017
Large contribution of organics to condensational growth and formation of cloud condensation nuclei (CCN) in the remote marine boundary layer
Decennial time trends and diurnal patterns of particle number concentrations in a central European city between 2008 and 2018
Roles of climate variability on the rapid increases of early winter haze pollution in North China after 2010
Drivers of cloud droplet number variability in the summertime in the southeastern United States
Roll vortices induce new particle formation bursts in the planetary boundary layer
Deposition of light-absorbing particles in glacier snow of the Sunderdhunga Valley, the southern forefront of Central Himalaya
Large-scale ion generation for precipitation of atmospheric aerosols
Aerosol light absorption and the role of extremely low volatility organic compounds
Size-resolved particle number emissions in Beijing determined from measured particle size distributions
Effects of marine fuel sulfur restrictions on particle number concentrations and size distributions in ship plumes at the Baltic Sea
Daytime aerosol optical depth above low-level clouds is similar to that in adjacent clear skies at the same heights: airborne observation above the southeast Atlantic
Absorption closure in highly aged biomass burning smoke
Aerosol pollution maps and trends over Germany with hourly data at four rural background stations from 2009 to 2018
Measurement report: Cloud Processes and the Transport of Biological Emissions Regulate Southern Ocean Particle and Cloud Condensation Nuclei Concentrations
Dominant synoptic patterns associated with the decay process of PM2.5 pollution episodes around Beijing
Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79° N
Contrasting impacts of two types of El Niño events on winter haze days in China's Jing-Jin-Ji region
Jean-François Léon, Aristide Barthélémy Akpo, Mouhamadou Bedou, Julien Djossou, Marleine Bodjrenou, Véronique Yoboué, and Cathy Liousse
Atmos. Chem. Phys., 21, 1815–1834, https://doi.org/10.5194/acp-21-1815-2021, https://doi.org/10.5194/acp-21-1815-2021, 2021
Short summary
Short summary
We have investigated the aerosol optical depth (AOD) and its relation to PM2.5 surface concentrations in southern West Africa based on in situ observations (2015–2017 period) and MODIS satellite data (2003–2019). MODIS AODs are validated using a regional network of handheld and automatic sun photometers. Satellite-derived PM2.5 shows an increasing trend during the short dry period that is possibly linked to the increase in anthropogenic emission over this area.
Antti Ruuskanen, Sami Romakkaniemi, Harri Kokkola, Antti Arola, Santtu Mikkonen, Harri Portin, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, and Ari Leskinen
Atmos. Chem. Phys., 21, 1683–1695, https://doi.org/10.5194/acp-21-1683-2021, https://doi.org/10.5194/acp-21-1683-2021, 2021
Short summary
Short summary
The study focuses mainly on cloud-scavenging efficiency of absorbing particulate matter (mainly black carbon) but additionally covers cloud-scavenging efficiency of scattering particles and statistics of cloud condensation nuclei. The main findings give insight into how black carbon is distributed in different particle sizes and the sensitivity to cloud scavenged. The main findings are useful for large-scale modelling for evaluating cloud scavenging.
Jessie M. Creamean, Gijs de Boer, Hagen Telg, Fan Mei, Darielle Dexheimer, Matthew D. Shupe, Amy Solomon, and Allison McComiskey
Atmos. Chem. Phys., 21, 1737–1757, https://doi.org/10.5194/acp-21-1737-2021, https://doi.org/10.5194/acp-21-1737-2021, 2021
Short summary
Short summary
Arctic clouds play a role in modulating sea ice extent. Importantly, aerosols facilitate cloud formation, and thus it is crucial to understand the interactions between aerosols and clouds. Vertical measurements of aerosols and clouds are needed to tackle this issue. We present results from balloon-borne measurements of aerosols and clouds over the course of 2 years in northern Alaska. These data shed light onto the vertical distributions of aerosols relative to clouds spanning multiple seasons.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Chuanyang Shen, Gang Zhao, Weilun Zhao, Ping Tian, and Chunsheng Zhao
Atmos. Chem. Phys., 21, 1375–1388, https://doi.org/10.5194/acp-21-1375-2021, https://doi.org/10.5194/acp-21-1375-2021, 2021
Short summary
Short summary
Submicron particles larger than 300 nm dominate the aerosol light extinction and mass concentration in the urban environment. Aerosol hygroscopic properties extended to 600 nm were investigated at an urban site. Our results find that there exists a large fraction of a less hygroscopic group above 300 nm, and the hygroscopicity in this size range is enhanced significantly with the development of pollution levels. The hygroscopicity variation contributes greatly to the low visibility.
Krista Luoma, Jarkko V. Niemi, Minna Aurela, Pak Lun Fung, Aku Helin, Tareq Hussein, Leena Kangas, Anu Kousa, Topi Rönkkö, Hilkka Timonen, Aki Virkkula, and Tuukka Petäjä
Atmos. Chem. Phys., 21, 1173–1189, https://doi.org/10.5194/acp-21-1173-2021, https://doi.org/10.5194/acp-21-1173-2021, 2021
Short summary
Short summary
This study combined black carbon measurements from 15 Finnish sites that represented different environments (traffic, detached housing area, urban background, and regional background). The seasonal and diurnal variations in the black carbon concentration were associated with local emissions from traffic and residential wood burning. The study observed decreasing trends in the black carbon concentration and associated them with decreases in traffic emissions.
Nobuyuki Takegawa, Yoshiko Murashima, Akihiro Fushimi, Kentaro Misawa, Yuji Fujitani, Katsumi Saitoh, and Hiromu Sakurai
Atmos. Chem. Phys., 21, 1085–1104, https://doi.org/10.5194/acp-21-1085-2021, https://doi.org/10.5194/acp-21-1085-2021, 2021
Short summary
Short summary
The characterization of particle emissions from aircraft is important for the assessment of the aviation impacts on climate and human health. We conducted field observations of aerosols near a runway at Narita International Airport in February 2018. We investigated particle number emissions from in-use commercial aircraft under real-world operating conditions, and we found the significance of sub-10 nm size ranges in take-off plumes for both total and non-volatile particles.
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
Huikun Liu, Qiyuan Wang, Li Xing, Yong Zhang, Ting Zhang, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 21, 973–987, https://doi.org/10.5194/acp-21-973-2021, https://doi.org/10.5194/acp-21-973-2021, 2021
Short summary
Short summary
We conducted black carbon (BC) source apportionment on the southeastern Tibetan Plateau (TP) by an improved aethalometer model with the site-dependent Ångström exponent and BC mass absorption cross section (MAC). The result shows that the biomass-burning BC on the TP is slightly higher than fossil fuel BC, mainly from cross-border transportation instead of the local region, and the BC radiative effect is lower than that in the southwestern Himalaya but higher than that on the northeastern TP.
Vasiliki Daskalopoulou, Sotirios A. Mallios, Zbigniew Ulanowski, George Hloupis, Anna Gialitaki, Ioanna Tsikoudi, Konstantinos Tassis, and Vassilis Amiridis
Atmos. Chem. Phys., 21, 927–949, https://doi.org/10.5194/acp-21-927-2021, https://doi.org/10.5194/acp-21-927-2021, 2021
Short summary
Short summary
This research highlights the detection of charged Saharan dust in Greece and provides indications of charge separation in the plumes through the first-ever co-located ground electric field measurements and sophisticated lidar observations. We provide a robust methodology for the extraction of a fair-weather proxy field used to assess the effect of lofted dust particles to the electric field and insert a realistic modelling aspect to the charge accumulation areas within electrically active dust.
Juha Sulo, Nina Sarnela, Jenni Kontkanen, Lauri Ahonen, Pauli Paasonen, Tiia Laurila, Tuija Jokinen, Juha Kangasluoma, Heikki Junninen, Mikko Sipilä, Tuukka Petäjä, Markku Kulmala, and Katrianne Lehtipalo
Atmos. Chem. Phys., 21, 695–715, https://doi.org/10.5194/acp-21-695-2021, https://doi.org/10.5194/acp-21-695-2021, 2021
Short summary
Short summary
In this study, we analyzed over 5 years of sub-3 nm particle concentrations and their precursor vapors, identifying atmoshperic vapors important to the formation of these particles in the boreal forest. We also observed seasonal differences in both particle and precursor vapor concentrations and the formation pathways of these particles. Our results confirm the importance of organic vapors in atmospheric aerosol formation and highlight key seasonal differences that require further study.
Jinfeng Yuan, Robin Lewis Modini, Marco Zanatta, Andreas B. Herber, Thomas Müller, Birgit Wehner, Laurent Poulain, Thomas Tuch, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Chem. Phys., 21, 635–655, https://doi.org/10.5194/acp-21-635-2021, https://doi.org/10.5194/acp-21-635-2021, 2021
Short summary
Short summary
Black carbon (BC) aerosols contribute substantially to climate warming due to their unique light absorption capabilities. We performed field measurements at a central European background site in winter and found that variability in the absorption efficiency of BC particles is driven mainly by their internal mixing state. Our results suggest that, at this site, knowing the BC mixing state is sufficient to describe BC light absorption enhancements due to the lensing effect in good approximation.
Shuo Ding, Dantong Liu, Kang Hu, Delong Zhao, Ping Tian, Fei Wang, Ruijie Li, Yichen Chen, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 681–694, https://doi.org/10.5194/acp-21-681-2021, https://doi.org/10.5194/acp-21-681-2021, 2021
Short summary
Short summary
In this study, we for the first time characterized the detailed black carbon (BC) microphysics at a mountain site located at the top of the planetary boundary layer (PBL) influenced by surface emission over the North China Plain. We investigated the optical and hygroscopic properties of BC at this level as influenced by microphysical properties. Such information will constrain the impacts of BC in influencing the PBL dynamics and low-level cloud formation over anthropogenically polluted regions.
David Brus, Jani Gustafsson, Ville Vakkari, Osku Kemppinen, Gijs de Boer, and Anne Hirsikko
Atmos. Chem. Phys., 21, 517–533, https://doi.org/10.5194/acp-21-517-2021, https://doi.org/10.5194/acp-21-517-2021, 2021
Short summary
Short summary
This paper summarizes Finnish Meteorological Institute and Kansas State University unmanned aerial vehicle measurements during the summer 2018 Lower Atmospheric Process Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) campaign in the San Luis Valley, providing an overview of the rotorcraft deployed, payloads, scientific goals and flight strategies and presenting observations of atmospheric thermodynamics and aerosol and gas parameters in the vertical column.
Jesús Yus-Díez, Marina Ealo, Marco Pandolfi, Noemí Perez, Gloria Titos, Griša Močnik, Xavier Querol, and Andrés Alastuey
Atmos. Chem. Phys., 21, 431–455, https://doi.org/10.5194/acp-21-431-2021, https://doi.org/10.5194/acp-21-431-2021, 2021
Short summary
Short summary
Here we describe the vertical profiles of extensive (scattering and absorption) and intensive (e.g. albedo and asymmetry parameter) aerosol optical properties from coupling ground-based measurements from two sites in north-eastern Spain and airborne measurements performed with an aircraft. We analyse different aerosol layers along the vertical profile for a regional pollution episode and a Saharan dust intrusion. The results show a change with height depending on the different measured layers.
Carolina Ramírez-Romero, Alejandro Jaramillo, María F. Córdoba, Graciela B. Raga, Javier Miranda, Harry Alvarez-Ospina, Daniel Rosas, Talib Amador, Jong Sung Kim, Jacqueline Yakobi-Hancock, Darrel Baumgardner, and Luis A. Ladino
Atmos. Chem. Phys., 21, 239–253, https://doi.org/10.5194/acp-21-239-2021, https://doi.org/10.5194/acp-21-239-2021, 2021
Short summary
Short summary
Field measurements were conducted to confirm the arrival of African dust on the Yucatàn Peninsula. Aerosol particles were monitored at ground level by different online and off-line sensors. Several particulate matter peaks were observed with a relative increase in their levels of up to 500 % with respect to background conditions. Based on the chemical composition, back trajectories, vertical profiles, reanalysis, and satellite images, it was found that the peaks are linked to African dust.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
Joseph Ko, Trevor Krasowsky, and George Ban-Weiss
Atmos. Chem. Phys., 20, 15635–15664, https://doi.org/10.5194/acp-20-15635-2020, https://doi.org/10.5194/acp-20-15635-2020, 2020
Short summary
Short summary
Black carbon (BC) is the second strongest climate forcing pollutant in the atmosphere, after carbon dioxide. Here, we seek to understand how BC microphysical properties vary with atmospheric contexts, as these properties can influence its radiative forcing. Consistent with previous studies, we found that biomass burning BC had thicker coatings and larger core diameters than fossil fuel BC. We also present evidence to show that atmospheric aging also increases BC coating thickness.
Imre Salma, Máté Vörösmarty, András Zénó Gyöngyösi, Wanda Thén, and Tamás Weidinger
Atmos. Chem. Phys., 20, 15725–15742, https://doi.org/10.5194/acp-20-15725-2020, https://doi.org/10.5194/acp-20-15725-2020, 2020
Short summary
Short summary
Motor vehicle road traffic in Budapest was reduced by approximately 50% of its ordinary level due to COVID-19. In parallel, concentrations of most criteria air pollutants declined by 30–60%. Change rates of NO and NO2 with relative change in traffic intensity were the largest, total particle number concentration showed considerable dependency, while particulate matter mass concentrations did not appear to be related to urban traffic. Concentrations of O3 showed an increasing tendency.
Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 20, 15427–15442, https://doi.org/10.5194/acp-20-15427-2020, https://doi.org/10.5194/acp-20-15427-2020, 2020
Short summary
Short summary
Recently, China has promulgated a series of regulations to reduce air pollutants. The decreased black carbon (BC) and co-emitted pollutants could affect the interactions between BC and other aerosols, which in turn results in changes in BC. Herein, we re-assessed the characteristics of BC of a representative pollution site in northern China in the final year of the Chinese
Action Plan for the Prevention and Control of Air Pollution.
Agnieszka Kupc, Christina J. Williamson, Anna L. Hodshire, Jan Kazil, Eric Ray, T. Paul Bui, Maximilian Dollner, Karl D. Froyd, Kathryn McKain, Andrew Rollins, Gregory P. Schill, Alexander Thames, Bernadett B. Weinzierl, Jeffrey R. Pierce, and Charles A. Brock
Atmos. Chem. Phys., 20, 15037–15060, https://doi.org/10.5194/acp-20-15037-2020, https://doi.org/10.5194/acp-20-15037-2020, 2020
Short summary
Short summary
Tropical upper troposphere over the Atlantic and Pacific oceans is a major source region of new particles. These particles are associated with the outflow from deep convection. We investigate the processes that govern the formation of these particles and their initial growth and show that none of the formation schemes commonly used in global models are consistent with observations. Using newer schemes indicates that organic compounds are likely important as nucleating and initial growth agents.
Yuan Wang, Xiaojian Zheng, Xiquan Dong, Baike Xi, Peng Wu, Timothy Logan, and Yuk L. Yung
Atmos. Chem. Phys., 20, 14741–14755, https://doi.org/10.5194/acp-20-14741-2020, https://doi.org/10.5194/acp-20-14741-2020, 2020
Short summary
Short summary
A recent aircraft field campaign near the Azores in the summer of 2017 provides ample observations of aerosols and clouds with detailed vertical information. This study utilizes those observational data in combination with the aerosol-aware large-eddy simulations and aerosol reanalysis data to examine the significance of the long-range-transported aerosol effect on marine-boundary-layer clouds. It is the first time that the ACE-ENA aircraft campaign data are used for this topic.
Imre Salma, Wanda Thén, Pasi Aalto, Veli-Matti Kerminen, Anikó Kern, Zoltán Barcza, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-862, https://doi.org/10.5194/acp-2020-862, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
The distribution of monthly mean nucleation frequency possessed a characteristic pattern. Its shape was compared to those of environmental variables including vegetation-derived properties. The spring maximum in the occurrence frequency often overlapped with the positive T anomaly. The link between the heat stress and the occurrence minimum in summer could not be proved, while association between the occurrence frequency and vegetation growth dynamics was clearly identified in spring.
Douglas Morrison, Ian Crawford, Nicholas Marsden, Michael Flynn, Katie Read, Luis Neves, Virginia Foot, Paul Kaye, Warren Stanley, Hugh Coe, David Topping, and Martin Gallagher
Atmos. Chem. Phys., 20, 14473–14490, https://doi.org/10.5194/acp-20-14473-2020, https://doi.org/10.5194/acp-20-14473-2020, 2020
Short summary
Short summary
We provide conservative estimates of the concentrations of bacteria within transatlantic dust clouds, originating from the African continent. We observe significant seasonal differences in the overall concentrations of particles but no seasonal variation in the ratio between bacteria and dust. With bacteria contributing to ice formation at warmer temperatures than dust, our observations should improve the accuracy of climate models.
Juan Andrés Casquero-Vera, Hassan Lyamani, Lubna Dada, Simo Hakala, Pauli Paasonen, Roberto Román, Roberto Fraile, Tuukka Petäjä, Francisco José Olmo-Reyes, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 20, 14253–14271, https://doi.org/10.5194/acp-20-14253-2020, https://doi.org/10.5194/acp-20-14253-2020, 2020
Short summary
Short summary
New particle formation was investigated at two stations located close to each other but at different altitudes: urban and high-altitude sites. Results show that sulfuric acid is able to explain a minimal fraction contribution to the observed growth rates and point to the availability of volatile organic compounds as the main factor controlling NPF events at both sites. A closer analysis of the NPF events that were observed at high-altitude sites during a Saharan dust episode was carried out.
Junfeng Wang, Jianhuai Ye, Dantong Liu, Yangzhou Wu, Jian Zhao, Weiqi Xu, Conghui Xie, Fuzhen Shen, Jie Zhang, Paul E. Ohno, Yiming Qin, Xiuyong Zhao, Scot T. Martin, Alex K. Y. Lee, Pingqing Fu, Daniel J. Jacob, Qi Zhang, Yele Sun, Mindong Chen, and Xinlei Ge
Atmos. Chem. Phys., 20, 14091–14102, https://doi.org/10.5194/acp-20-14091-2020, https://doi.org/10.5194/acp-20-14091-2020, 2020
Short summary
Short summary
We compared the organics in total submicron matter and those coated on BC cores during summertime in Beijing and found large differences between them. Traffic-related OA was associated significantly with BC, while cooking-related OA did not coat BC. In addition, a factor likely originated from primary biomass burning OA was only identified in BC-containing particles. Such a unique BBOA requires further field and laboratory studies to verify its presence and elucidate its properties and impacts.
Qiaoyun Hu, Haofei Wang, Philippe Goloub, Zhengqiang Li, Igor Veselovskii, Thierry Podvin, Kaitao Li, and Mikhail Korenskiy
Atmos. Chem. Phys., 20, 13817–13834, https://doi.org/10.5194/acp-20-13817-2020, https://doi.org/10.5194/acp-20-13817-2020, 2020
Short summary
Short summary
This study presents the characteristics of Taklamakan dust particles derived from lidar measurements collected in the dust aerosol observation field campaign. It provides comprehensive parameters for Taklamakan dust properties and vertical distributions of Taklamakan dust. This paper also points out the importance of polluted dust which was frequently observed in the field campaign. The results contribute to improving knowledge about dust and reducing uncertainties in the climatic model.
Dominic Heslin-Rees, Maria Burgos, Hans-Christen Hansson, Radovan Krejci, Johan Ström, Peter Tunved, and Paul Zieger
Atmos. Chem. Phys., 20, 13671–13686, https://doi.org/10.5194/acp-20-13671-2020, https://doi.org/10.5194/acp-20-13671-2020, 2020
Short summary
Short summary
Aerosol particles are one important key player in the Arctic climate. Using long-term measurements of particle light scattering from an observatory on Svalbard, this study investigates the reasons behind an observed shift towards larger particles seen in the last 2 decades. We find that increases in sea spray are the most likely cause. Air masses from the south-west have increased significantly, suggestive of a potential mechanism, whilst the retreat in sea ice has a marginal influence.
Haebum Lee, Kwangyul Lee, Chris Rene Lunder, Radovan Krejci, Wenche Aas, Jiyeon Park, Ki-Tae Park, Bang Yong Lee, Young Jun Yoon, and Kihong Park
Atmos. Chem. Phys., 20, 13425–13441, https://doi.org/10.5194/acp-20-13425-2020, https://doi.org/10.5194/acp-20-13425-2020, 2020
Short summary
Short summary
New particle formation (NPF) contributes to enhance the number of particles in the ambient atmosphere, affecting local air quality and cloud condensation nuclei (CCN) concentration. This study investigated NPF characteristics in the Arctic and showed that although formation and growth rates of nanoparticles were much lower than those in continental areas, NPF occurrence frequency was comparable and marine biogenic sources played important roles in production of condensing vapors for NPF.
Lawrence I. Kleinman, Arthur J. Sedlacek III, Kouji Adachi, Peter R. Buseck, Sonya Collier, Manvendra K. Dubey, Anna L. Hodshire, Ernie Lewis, Timothy B. Onasch, Jeffery R. Pierce, John Shilling, Stephen R. Springston, Jian Wang, Qi Zhang, Shan Zhou, and Robert J. Yokelson
Atmos. Chem. Phys., 20, 13319–13341, https://doi.org/10.5194/acp-20-13319-2020, https://doi.org/10.5194/acp-20-13319-2020, 2020
Short summary
Short summary
Aerosols from wildfires affect the Earth's temperature by absorbing light or reflecting it back into space. This study investigates time-dependent chemical, microphysical, and optical properties of aerosols generated by wildfires in the Pacific Northwest, USA. Wildfire smoke plumes were traversed by an instrumented aircraft at locations near the fire and up to 3.5 h travel time downwind. Although there was no net aerosol production, aerosol particles grew and became more efficient scatters.
Pengguo Zhao, Zhanqing Li, Hui Xiao, Fang Wu, Youtong Zheng, Maureen C. Cribb, Xiaoai Jin, and Yunjun Zhou
Atmos. Chem. Phys., 20, 13379–13397, https://doi.org/10.5194/acp-20-13379-2020, https://doi.org/10.5194/acp-20-13379-2020, 2020
Short summary
Short summary
We discussed the different aerosol effects on lightning in plateau and basin regions of Sichuan, southwestern China. In the plateau area, the aerosol concentration is low, and aerosols (via microphysical effects) inhibit the process of warm rain and stimulate convection and lightning activity. In the basin region, however, aerosols tend to show a significant radiative effect (reducing the solar radiation reaching the surface by absorbing and scattering) and inhibit the lightning.
Ying Zhu, Jia Chen, Xiao Bi, Gerrit Kuhlmann, Ka Lok Chan, Florian Dietrich, Dominik Brunner, Sheng Ye, and Mark Wenig
Atmos. Chem. Phys., 20, 13241–13251, https://doi.org/10.5194/acp-20-13241-2020, https://doi.org/10.5194/acp-20-13241-2020, 2020
Short summary
Short summary
Average NO2 concentration of on-street mobile measurements (MMs) near the monitoring stations (MSs) was found to be considerably higher than the MSs data. The common measurement height (H) and distance (D) of the MSs result in 27 % lower average concentrations in total than the concentration of our MMs. Another 21 % difference remained after correcting the influence of the measuring H and D. This result makes our city-wide measurements for capturing the full range of concentrations necessary.
Huihui Wu, Jonathan W. Taylor, Kate Szpek, Justin M. Langridge, Paul I. Williams, Michael Flynn, James D. Allan, Steven J. Abel, Joseph Pitt, Michael I. Cotterell, Cathryn Fox, Nicholas W. Davies, Jim Haywood, and Hugh Coe
Atmos. Chem. Phys., 20, 12697–12719, https://doi.org/10.5194/acp-20-12697-2020, https://doi.org/10.5194/acp-20-12697-2020, 2020
Short summary
Short summary
Airborne measurements of highly aged biomass burning aerosols (BBAs) over the remote southeast Atlantic provide unique aerosol parameters for climate models. Our observations demonstrate the persistence of strongly absorbing BBAs across wide regions of the South Atlantic. We also found significant vertical variation in the single-scattering albedo of these BBAs, as a function of relative chemical composition and size. Aerosol properties in the marine BL are suggested to be separated from the FT.
Guangjie Zheng, Chongai Kuang, Janek Uin, Thomas Watson, and Jian Wang
Atmos. Chem. Phys., 20, 12515–12525, https://doi.org/10.5194/acp-20-12515-2020, https://doi.org/10.5194/acp-20-12515-2020, 2020
Short summary
Short summary
Condensational growth of Aitken-mode particles is a major source of cloud condensation nuclei in the remote marine boundary layer. It has been long thought that over remote oceans, condensation growth is dominated by sulfate that derives from ocean-emitted dimethyl sulfide. In this study, we present the first long-term observational evidence that, contrary to conventional thinking, organics play an even more important role than sulfate in particle growth over remote oceans throughout the year.
Santtu Mikkonen, Zoltán Németh, Veronika Varga, Tamás Weidinger, Ville Leinonen, Taina Yli-Juuti, and Imre Salma
Atmos. Chem. Phys., 20, 12247–12263, https://doi.org/10.5194/acp-20-12247-2020, https://doi.org/10.5194/acp-20-12247-2020, 2020
Short summary
Short summary
We determined decennial statistical time trends and diurnal statistical patterns of atmospheric particle number concentrations in various relevant size fractions in the city centre of Budapest in an interval of 2008–2018. The mean overall decrease rate of particles in different size fractions was approximately −5 % scaled for the 10-year measurement interval. The decline can be interpreted as a consequence of the decreased anthropogenic emissions in the city.
Yijia Zhang, Zhicong Yin, and Huijun Wang
Atmos. Chem. Phys., 20, 12211–12221, https://doi.org/10.5194/acp-20-12211-2020, https://doi.org/10.5194/acp-20-12211-2020, 2020
Short summary
Short summary
Haze events in early winter in North China exhibited rapid growth after 2010, which was completely different from the slow decline observed before 2010. However, global warming and anthropogenic emissions could not explain this trend reversal well, which was puzzling. Our study found that four climate factors, exhibiting completely opposite trends before and after 2010, effectively drove the trend reversal of the haze pollution in North China.
Aikaterini Bougiatioti, Athanasios Nenes, Jack J. Lin, Charles A. Brock, Joost A. de Gouw, Jin Liao, Ann M. Middlebrook, and André Welti
Atmos. Chem. Phys., 20, 12163–12176, https://doi.org/10.5194/acp-20-12163-2020, https://doi.org/10.5194/acp-20-12163-2020, 2020
Short summary
Short summary
The number concentration of droplets in clouds in the summertime in the southeastern United States is influenced by aerosol variations but limited by the strong competition for supersaturated water vapor. Concurrent variations in vertical velocity magnify the response of cloud droplet number to aerosol increases by up to a factor of 5. Omitting the covariance of vertical velocity with aerosol number may therefore bias estimates of the cloud albedo effect from aerosols.
Janne Lampilahti, Hanna Elina Manninen, Katri Leino, Riikka Väänänen, Antti Manninen, Stephany Buenrostro Mazon, Tuomo Nieminen, Matti Leskinen, Joonas Enroth, Marja Bister, Sergej Zilitinkevich, Juha Kangasluoma, Heikki Järvinen, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 20, 11841–11854, https://doi.org/10.5194/acp-20-11841-2020, https://doi.org/10.5194/acp-20-11841-2020, 2020
Short summary
Short summary
In this work, by using co-located airborne and ground-based measurements, we show that counter-rotating horizontal circulations in the planetary boundary layer (roll vortices) frequently enhance regional new particle formation or induce localized bursts of new particle formation. These observations can be explained by the ability of the rolls to efficiently lift low-volatile vapors emitted from the surface to the top of the boundary layer where new particle formation is more favorable.
Jonas Svensson, Johan Ström, Henri Honkonen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1059, https://doi.org/10.5194/acp-2020-1059, 2020
Preprint under review for ACP
Short summary
Short summary
Light-absorbing particles specifically affect snow melt in the Himalaya. Through measurements of the constituents in glacier snow pits from Indian Himalaya our investigations show that different snow layers display striking similarities. These similarities can be characterized by a deposition constant. Our results further indicate that mineral dust can be responsible for the majority of light absorption in the snow in this part of the Himalaya.
Shaoxiang Ma, He Cheng, Jiacheng Li, Maoyuan Xu, Dawei Liu, and Kostya Ostrikov
Atmos. Chem. Phys., 20, 11717–11727, https://doi.org/10.5194/acp-20-11717-2020, https://doi.org/10.5194/acp-20-11717-2020, 2020
Short summary
Short summary
Our work suggests that a large corona discharge system is an efficient and possibly economically sustainable way to increase the ion density in the open air and control the precipitation of atmospheric aerosols. Once the system is installed on a mountaintop, it will generate lots of charged nuclei, which may trigger water precipitation or fog elimination within a certain region in the downwind directions.
Antonios Tasoglou, Evangelos Louvaris, Kalliopi Florou, Aikaterini Liangou, Eleni Karnezi, Christos Kaltsonoudis, Ningxin Wang, and Spyros N. Pandis
Atmos. Chem. Phys., 20, 11625–11637, https://doi.org/10.5194/acp-20-11625-2020, https://doi.org/10.5194/acp-20-11625-2020, 2020
Short summary
Short summary
A month-long set of summertime measurements in a remote area in the Mediterranean is used to quantify aerosol absorption. The measured light absorption was two or more times higher than that of fresh black carbon. The absorption enhancement due to the coating of black carbon cores by other aerosol components could explain only part of this absorption enhancement. The rest was due to brown carbon, mostly in the form of extremely low volatility organic compounds.
Jenni Kontkanen, Chenjuan Deng, Yueyun Fu, Lubna Dada, Ying Zhou, Jing Cai, Kaspar R. Daellenbach, Simo Hakala, Tom V. Kokkonen, Zhuohui Lin, Yongchun Liu, Yonghong Wang, Chao Yan, Tuukka Petäjä, Jingkun Jiang, Markku Kulmala, and Pauli Paasonen
Atmos. Chem. Phys., 20, 11329–11348, https://doi.org/10.5194/acp-20-11329-2020, https://doi.org/10.5194/acp-20-11329-2020, 2020
Short summary
Short summary
To estimate the impacts of atmospheric aerosol particles on air quality, knowledge of size distributions of particles emitted from anthropogenic sources is needed. We introduce a new method for determining size-resolved particle number emissions from measured particle size distributions. We apply our method to data measured in Beijing, China. We find that particle number emissions at our site are dominated by emissions of particles smaller than 30 nm, originating mainly from traffic.
Sami Seppälä, Joel Kuula, Antti-Pekka Hyvärinen, Sanna Saarikoski, Topi Rönkkö, Jorma Keskinen, Jukka-Pekka Jalkanen, and Hilkka Timonen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-946, https://doi.org/10.5194/acp-2020-946, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Effects of fuel sulfur content restrictions implemented by the International Maritime Organization at the Baltic Sea, in July 2010 and January 2015, on the particle properties of ship exhaust plumes and ambient aerosol were studied. The restrictions reduced the particle number concentrations and median particle size in plumes and number concentrations in the ambient aerosol. These changes may improve human health in coastal areas and decrease the cooling effect of the exhaust emissions of ships.
Yohei Shinozuka, Meloë S. Kacenelenbogen, Sharon P. Burton, Steven G. Howell, Paquita Zuidema, Richard A. Ferrare, Samuel E. LeBlanc, Kristina Pistone, Stephen Broccardo, Jens Redemann, K. Sebastian Schmidt, Sabrina P. Cochrane, Marta Fenn, Steffen Freitag, Amie Dobracki, Michal Segal-Rosenheimer, and Connor J. Flynn
Atmos. Chem. Phys., 20, 11275–11285, https://doi.org/10.5194/acp-20-11275-2020, https://doi.org/10.5194/acp-20-11275-2020, 2020
Short summary
Short summary
To help satellite retrieval of aerosols and studies of their radiative effects, we demonstrate that daytime aerosol optical depth over low-level clouds is similar to that in neighboring clear skies at the same heights. Based on recent airborne lidar and sun photometer observations above the southeast Atlantic, the mean AOD difference at 532 nm is between 0 and -0.01, when comparing the cloudy and clear sides of cloud edges, with each up to 20 km wide.
Jonathan W. Taylor, Huihui Wu, Kate Szpek, Keith Bower, Ian Crawford, Michael J. Flynn, Paul I. Williams, James Dorsey, Justin M. Langridge, Michael I. Cotterell, Cathryn Fox, Nicholas W. Davies, Jim M. Haywood, and Hugh Coe
Atmos. Chem. Phys., 20, 11201–11221, https://doi.org/10.5194/acp-20-11201-2020, https://doi.org/10.5194/acp-20-11201-2020, 2020
Short summary
Short summary
Every year, huge plumes of smoke hundreds of miles wide travel over the south Atlantic Ocean from fires in central and southern Africa. These plumes absorb the sun’s energy and warm the climate. We used airborne optical instrumentation to determine how absorbing the smoke was as well as the relative importance of black and brown carbon. We also tested different ways of simulating these properties that could be used in a climate model.
Jost Heintzenberg, Wolfram Birmili, Bryan Hellack, Gerald Spindler, Thomas Tuch, and Alfred Wiedensohler
Atmos. Chem. Phys., 20, 10967–10984, https://doi.org/10.5194/acp-20-10967-2020, https://doi.org/10.5194/acp-20-10967-2020, 2020
Short summary
Short summary
A total of 10 years of hourly aerosol and gas data at four rural German stations have been combined with hourly back trajectories to the stations and inventories of the European Emissions Database for Global Atmospheric Research (EDGAR), yielding emission maps and trends over Germany for PM10, particle number concentrations, and equivalent black carbon (eBC). The maps reflect aerosol emissions modified with atmospheric processes during transport between sources and receptor sites.
Kevin J. Sanchez, Gregory C. Roberts, Georges Saliba, Lynn M. Russell, Cynthia Twohy, Michael J. Reeves, Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, and Ian M. McRobert
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-731, https://doi.org/10.5194/acp-2020-731, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Measurements of particles and their properties were made from aircraft over the Southern Ocean. Aerosol transported from the Antarctic coast is shown to greatly enhances the particle concentrations over the Southern Ocean. The occurrence of precipitation was shown to be associated with the lowest particle concentrations over the Southern Ocean. These particles are important due to their ability to enhance cloud droplet concentrations, resulting in more sunlight being reflected by the clouds.
Xiaoyan Wang, Renhe Zhang, Yanke Tan, and Wei Yu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-912, https://doi.org/10.5194/acp-2020-912, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
The physical mechanism of synoptic patterns affecting the decay process of air pollution episodes are investigate in this work. Three dominate circulation pattern are identified, which usually decrease the ambient PM2.5 concentrations by 27 %~ 41 % after they arrived around Beijing. Emission reductions led to a 4.3~5.7 μg/(m3.yr) decrease in PM2.5 concentrations around Beijing during 2014 to 2020.
W. Richard Leaitch, John K. Kodros, Megan D. Willis, Sarah Hanna, Hannes Schulz, Elisabeth Andrews, Heiko Bozem, Julia Burkart, Peter Hoor, Felicia Kolonjari, John A. Ogren, Sangeeta Sharma, Meng Si, Knut von Salzen, Allan K. Bertram, Andreas Herber, Jonathan P. D. Abbatt, and Jeffrey R. Pierce
Atmos. Chem. Phys., 20, 10545–10563, https://doi.org/10.5194/acp-20-10545-2020, https://doi.org/10.5194/acp-20-10545-2020, 2020
Short summary
Short summary
Black carbon is a factor in the warming of the Arctic atmosphere due to its ability to absorb light, but the uncertainty is high and few observations have been made in the high Arctic above 80° N. We combine airborne and ground-based observations in the springtime Arctic, at and above 80° N, with simulations from a global model to show that light absorption by black carbon may be much larger than modelled. However, the uncertainty remains high.
Xiaochao Yu, Zhili Wang, Hua Zhang, Jianjun He, and Ying Li
Atmos. Chem. Phys., 20, 10279–10293, https://doi.org/10.5194/acp-20-10279-2020, https://doi.org/10.5194/acp-20-10279-2020, 2020
Short summary
Short summary
There are statistically significant positive and negative correlations, respectively, between winter haze days (WHDs) in China's Jing-Jin-Ji region and eastern Pacific and central Pacific El Niño events. These opposite changes in WHDs are attributable to the anomalies of both large-scale circulation and local synoptic conditions corresponding to two types of El Niño. Our study highlights the importance of distinguishing the impacts of two types of El Niño on winter haze pollution in this region.
Cited articles
Allan, J. D., Alfarra, M. R., Bower, K. N., Coe, H., Jayne, J. T., Worsnop, D. R., Aalto, P. P., Kulmala, M., Hyötyläinen, T., Cavalli, F., and Laaksonen, A.: Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer, Atmos. Chem. Phys., 6, 315–327, 2006.
Baron, P. A., and Willeke, K.: Aerosol Measurement - Principles, Techniques, and Applications (2nd Edition), John Wiley & Sons, New York, USA, 91–95, 2001.
Bates, T. S., Kapustin, V. N., Quinn, P. K., Covert, D. S., Coffman, D. J., Mari, C., Durkee, P. A., De Bruyn, W. J., and Saltzman, E. S.: Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the First Aerosol Characterization Experiment (ACE 1), J. Geophys. Res., 103, 16369–16383, 1998.
Bigg, E. K. and Turvey, D. E.: Sources of atmospheric particles over Australia, Atmos. Env., 12, 1643–1655, 1978.
Broadbent, A. D. and Jones, G. B.: DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef, Mar. Freshw. Res., 55, 849–855, 2004.
Buenrostro Mazon, S., Riipinen, I., Schultz, D. M., Valtanen, M., Dal Maso, M., Sogacheva, L., Junninen, H., Nieminen, T., Kerminen, V.-M., and Kulmala, M.: Classifying previously undefined days from eleven years of aerosol-particle-size distribution data from the SMEAR II station, Hyytiälä, Finland, Atmos. Chem. Phys., 9, 667–676, 2009.
Clarke, A. D., Davis, D., Kapustin, V. N., Eisele, F., Chen, G., Paluch, I., Lenschow, D., Bandy, A. R., Thornton, D., Moore, K., Mauldin, L., Tanner, D., Litchy, M., Carroll, M. A., Collins, J., and Albercook, G.: Particle Nucleation in the Tropical Boundary Layer and Its Coupling to Marine Sulfur Sources, Science, 282, 89–92, https://doi.org/10.1126/science.282.5386.89, 1998.
Clarke, A. D. and Kapustin, V. N.: A Pacific Aerosol Survey. Part I: A Decade of Data on Particle Production, Transport, Evolution, and Mixing in the Troposphere, J. Atmos. Sci., 59, 363–382, 2002.
Coe, H., Williams, P. I., McFiggans, G., Gallagher, M. W., Beswick, K. M., Bower, K. N., and Choularton, T. W.: Behavior of ultrafine particles in continental and marine air masses at a rural site in the United Kingdom, J. Geophys. Res., 105, 26891–26905, 2000.
Covert, D. S., Kapustin, V. N., Bates, T. S., and Quinn, P. K.: Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport, J. Geophys. Res., 101, 6919–6930, 1996.
Cox, R. A. and Sandalls, F. J.: The photo-oxidation of hydrogen sulphide and dimethyl sulphide in air, Atmos. Env., 8, 1269–1281, 1974.
Dal Maso, M., Kulmala, M., Lehtinen, K. E. J., Mäkelä, J. M., Aalto, P., and O'Dowd, C. D.: Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers, J. Geophys. Res., 107(D19), 8097, https://doi.org/10.1029/2001JD001053, 2002.
de Reus, M., Krejci, R., Williams, J., Fischer, H., Scheele, R., and Ström, J.: Vertical and horizontal distributions of the aerosol number concentration and size distribution over the northern Indian Ocean, J. Geophys. Res., 106, 28629–28641, 2001.
Draxler, R. R. and Rolph, G. D.: HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html) NOAA Air Resources Laboratory, Silver Spring, MD, USA, 2003.
Ehn, M., Petäjä, T., Aufmhoff, H., Aalto, P., Hämeri, K., Arnold, F., Laaksonen, A., and Kulmala, M.: Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid, Atmos. Chem. Phys., 7, 211–222, 2007.
Fitzgerald, J. W.: Marine aerosols: A review, Atmos. Env., 25, 533–545, 1991.
Fletcher, C. A., Johnson, G. R., Ristovski, Z. D., and Harvey, M.: Hygroscopic and volatile properties of marine aerosol observed at Cape Grim during the P2P campaign, Environmental Chemistry, 4, 162–171, 2007.
Johnson, G. R., Ristovski, Z., and Morawska, L.: Method for measuring the hygroscopic behaviour of lower volatility fractions in an internally mixed aerosol, Journal of Aerosol Science, 35, 443–455, 2004.
Johnson, G. R., Ristovski, Z. D., D'Anna, B., and Morawska, L.: Hygroscopic behaviour of partially volatilised coastal marine aerosols using the volatilisation and humidification tandem differential mobility analyser technique, J. Geophys. Res., 110, D20203, https://doi.org/10.1029/2004JD005657, 2005.
Johnson, G. R., Fletcher, C., Meyer, N., Modini, R., and Ristovski, Z. D.: A robust, portable H-TDMA for field use, J. Aer. Sci., 39, 850–861, 2008.
Kulmala, M., Pirjola, L., and Makela, J. M.: Stable sulphate clusters as a source of new atmospheric particles, Nature, 404, 66–69, 2000.
Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V. M., Birmili, W., and McMurry, P. H.: Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Aer. Sci., 35, 143–176, 2004.
Kulmala, M., Mordas, G., Petäjä, T., Grönholm, T., Aalto, P. P., Vehkamäki, H., Hienola, A. I., Herrmann, E., Sipilä, M., Riipinen, I., Manninen, H. E., Hämeri, K., Stratmann, F., Bilde, M., Winkler, P. M., Birmili, W., and Wagner, P. E.: The condensation particle counter battery (CPCB): A new tool to investigate the activation properties of nanoparticles, J. Aer. Sci., 38, 289–304, 2007a.
Kulmala, M., Riipinen, I., Sipila, M., Manninen, H. E., Petaja, T., Junninen, H., Maso, M. D., Mordas, G., Mirme, A., Vana, M., Hirsikko, A., Laakso, L., Harrison, R. M., Hanson, I., Leung, C., Lehtinen, K. E. J., and Kerminen, V.-M.: Toward Direct Measurement of Atmospheric Nucleation, Science, 318, 89–92, https://doi.org/10.1126/science.1144124, 2007b.
Kulmala, M. and Kerminen, V.-M.: On the formation and growth of atmospheric nanoparticles, Atmos. Res., 90, 132–150, 2008.
Lee, Y.-G., Lee, H.-W., Kim, M.-S., Choi, C. Y., and Kim, J.: Characteristics of particle formation events in the coastal region of Korea in 2005, Atmos. Env., 42, 3729–3739, 2008.
Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A.: Atmospheric Dimethyl Sulphide and the Natural Sulphur Cycle, Nature, 237, 452–453, 1972.
Meyer, N. K., Duplissy, J., Gysel, M., Metzger, A., Dommen, J., Weingartner, E., Alfarra, M. R., Prevot, A. S. H., Fletcher, C., Good, N., McFiggans, G., Jonsson, Å. M., Hallquist, M., Baltensperger, U., and Ristovski, Z. D.: Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and un-seeded SOA particles, Atmos. Chem. Phys., 9, 721–732, 2009.
Mirme, A., Tamm, E., Mordas, G., Vana, M., Uin, J., Mirme, S., Bernotas, T., Laakso, L., Hirsikko, A., and Kulmala, M.: A wide-range multi-channel Air Ion Spectrometer, Boreal Env. Res., 12, 247–264, 2007.
O'Dowd, C. D., Aalto, P., Hmeri, K., Kulmala, M., and Hoffmann, T.: Aerosol formation: Atmospheric particles from organic vapours, Nature, 416, 497–498, 2002a.
O'Dowd, C. D., Hämeri, K., Mäkelä, J. M., Pirjola, L., Kulmala, M., Jennings, S. G., Berresheim, H., Hansson, H.-C., de Leeuw, G., Kunz, G. J., Allen, A. G., Hewitt, C. N., Jackson, A., Viisanen, Y., and Hoffmann, T.: A dedicated study of New Particle Formation and Fate in the Coastal Environment (PARFORCE): Overview of objectives and achievements, J. Geophys. Res., 107 (D19), 8108, https://doi.org/10.1029/2001JD000555, 2002b.
O'Dowd, C. D., Hämeri, K., Mäkelä, J. M., Väkeva, M., Aalto, P., de Leeuw, G., Kunz, G. J., Becker, E., Hansson, H.-C., Allen, A. G., Harrison, R. M., Berresheim, H., Kleefeld, C., Geever, M., Jennings, S. G., and Kulmala, M.: Coastal new particle formation: Environmental conditions and aerosol physicochemical characteristics during nucleation bursts, J. Geophys. Res., 107 (D19), 8107, https://doi.org/10.1029/2000JD000206, 2002c.
O'Dowd, C. D. and Hoffmann, T.: Coastal New Particle Formation: A Review of the Current State-Of-The-Art, Environ. Chem., 2, 245–255, 2005.
O'Dowd, C. D. and De Leeuw, G.: Marine aerosol production: A review of the current knowledge, Philosophical Transactions of the Royal Society A: Mathematical, Phys. Eng. Sci., 365, 1753–1774, 2007.
O'Dowd, C. D., Yoon, Y. J., Junkerman, W., Aalto, P., Kulmala, M., Lihavainen, H., and Viisanen, Y.: Airborne measurements of nucleation mode particles I: coastal nucleation and growth rates, Atmos. Chem. Phys., 7, 1491–1501, 2007.
Perry, K. D., and Hobbs, P. V.: Further evidence for particle nucleation in clear air adjacent to marine cumulus clouds, J. Geophys. Res., 99, 22803–22818, 1994.
Pijola, L., O'Dowd, C. D., Brooks, I. M., and Kulmala, M.: Can new particle formation occur in the clean marine boundary layer?, J. Geophys. Res., 105, 26531–26546, 2000.
Ristovski, Z. D., Fletcher, C., D'Anna, B., Johnson, G. R., and Bostrom, J. T.: Characterization of iodine particles with Volatilization-Humidification Tandem Differential Mobility Analyser (VH-TDMA), Raman and SEM techniques, Atmos. Chem. Phys. Discuss., 6, 1481–1508, 2006.
Rolph, G. D.: Real-time Environmental Applications and Display System (READY), Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD, USA, 2003.
Russell, L. M., Mensah, A. A., Fischer, E. V., Sive, B. C., Varner, R. K., Keene, W. C., Stutz, J., and Pszenny, A. A. P.: Nanoparticle growth following photochemical a- and b-pinene oxidation at Appledore Island during International Consortium for Research on Transport and Transformation/Chemistry of Halogens at the Isles of Shoals 2004, J. Geophys. Res., 112, D10S21, https://doi.org/10.1029/2006JD007736, 2007.
Sakurai, H., Fink, M. A., McMurry, P. H., Mauldin, L., Moore, K. F., Smith, J. N., and Eisele, F. L.: Hygroscopicity and volatility of 4–10 nm particles during summertime atmospheric nucleation events in urban Atlanta, J. Geophys. Res., 110, D22S04, https://doi.org/10.1029/2005JD005918, 2005.
Smith, J. N., Moore, K. F., McMurry, P. H., and Eisele, F. L.: Atmospheric Measurements of Sub-20 nm Diameter Particle Chemical Composition by Thermal Desorption Chemical Ionization Mass Spectrometry, Aer. Sci. Tech., 38, 100–110, 2004.
Smith, J. N., Moore, K. F., Eisele, F. L., Voisin, D., Ghimire, A. K., Sakurai, H., and McMurry, P. H.: Chemical composition of atmospheric nanoparticles during nucleation events in Atlanta, J. Geophys. Res., 110, D22S03, https://doi.org/10.1029/2005JD005912, 2005.
Smith, J. N., Dunn, M. J., VanReken, T. M., Iida, K., Stolzenburg, M. R., McMurry, P. H., and Huey, L. G.: Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth, Geophys. Res. Lett., 35, L04808, https://doi.org/10.1029/2007GL032523, 2008.
Ulevicius, V., Mordas, G., and Plauskaite, K.: Evolution of aerosol particle size distribution in the coastal environment: effect of relative humidity, SO2 and NO2, Environ. Chem. Phys., 24, 13–17, 2002.
Vaattovaara, P., Huttunen, P. E., Yoon, Y. J., Joutsensaari, J., Lehtinen, K. E. J., O'Dowd, C. D., and Laaksonen, A.: The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution, Atmos. Chem. Phys., 6, 4601–4616, 2006.
Vana, M., Ehn, M., Petäjä, T., Vuollekoski, H., Aalto, P., De Leeuw, G., Ceburnis, D., O'Dowd, C. D., and Kulmala, M.: Characteristic features of air ions at Mace Head on the west coast of Ireland, Atmos. Res., 90, 278–286, 2008.
Wen, J., Zhao, Y., and Wexler, A. S.: Marine particle nucleation: Observation at Bodega Bay, California, J. Geophys. Res., 111, D08207, https://doi.org/10.1029/2005JD006210, 2006.
Whitehead, J. D., McFiggans, G. B., Gallagher, M. W., and Flynn, M. J.: Direct linkage between tidally driven coastal ozone deposition fluxes, particle emission fluxes, and subsequent CCN formation, Geophys. Res. Lett., 36, L04806, https://doi.org/10.1029/2008GL035969, 2009.
Zaizen, Y., Ikegami, M., Tsutsumi, Y., Makino, Y., Okada, K., Jensen, J., and Gras, J. L.: Number concentration and size distribution of aerosol particles in the middle troposphere over the Western Pacific Ocean, Atmos. Env., 30, 1755–1762, 1996.
Zhang, Q., Stanier, C. O., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., Pandis, S. N., and Jimenez, J. L.: Insights into the Chemistry of New Particle Formation and Growth Events in Pittsburgh Based on Aerosol Mass Spectrometry, Env. Sci. Tech., 38, 4797–4809, https://doi.org/10.1021/es035417u, 2004.
Altmetrics
Final-revised paper
Preprint