Articles | Volume 25, issue 13
https://doi.org/10.5194/acp-25-7431-2025
https://doi.org/10.5194/acp-25-7431-2025
Research article
 | 
15 Jul 2025
Research article |  | 15 Jul 2025

Machine-learning-assisted inference of the particle charge fraction and the ion-induced nucleation rates during new particle formation events

Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li

Related authors

Global fields of daily accumulation-mode particle number concentrations using in situ observations, reanalysis data, and machine learning
Aino Ovaska, Elio Rauth, Daniel Holmberg, Paulo Artaxo, John Backman, Benjamin Bergmans, Don Collins, Marco Aurélio Franco, Shahzad Gani, Roy M. Harrison, Rakesh K. Hooda, Tareq Hussein, Antti-Pekka Hyvärinen, Kerneels Jaars, Adam Kristensson, Markku Kulmala, Lauri Laakso, Ari Laaksonen, Nikolaos Mihalopoulos, Colin O'Dowd, Jakub Ondracek, Tuukka Petäjä, Kristina Plauškaitė, Mira Pöhlker, Ximeng Qi, Peter Tunved, Ville Vakkari, Alfred Wiedensohler, Kai Puolamäki, Tuomo Nieminen, Veli-Matti Kerminen, Victoria A. Sinclair, and Pauli Paasonen
Aerosol Research, 3, 589–618, https://doi.org/10.5194/ar-3-589-2025,https://doi.org/10.5194/ar-3-589-2025, 2025
Short summary
Atmospheric new particle formation in the eastern region of China: an investigation on mechanism and influencing factors at multiple sites
Jiaqi Jin, Runlong Cai, Yiliang Liu, Gan Yang, Yueyang Li, Chuang Li, Lei Yao, Jingkun Jiang, Xiuhui Zhang, and Lin Wang
Atmos. Chem. Phys., 25, 17125–17138, https://doi.org/10.5194/acp-25-17125-2025,https://doi.org/10.5194/acp-25-17125-2025, 2025
Short summary
Measurement report: Optical properties of supermicron aerosol particles in a boreal environment
Sujai Banerji, Krista Luoma, Ilona Ylivinkka, Lauri Ahonen, Veli-Matti Kerminen, and Tuukka Petäjä
Atmos. Chem. Phys., 25, 16895–16914, https://doi.org/10.5194/acp-25-16895-2025,https://doi.org/10.5194/acp-25-16895-2025, 2025
Short summary
Driving factors for the activity coefficient of atmospheric ammonium nitrate: discrepancies among thermodynamic models and impact on nitrate pollutions
Ruilin Wan, Guangjie Zheng, Yuyang Li, Xiaolin Duan, Jingkun Jiang, and Kebin He
EGUsphere, https://doi.org/10.5194/egusphere-2025-5754,https://doi.org/10.5194/egusphere-2025-5754, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Technical note: A Flexible Framework for Precision Truncation and Lossless Compression in WRF Simulations with Application over the United States
Shang Wu, David C. Wong, Jiandong Wang, Yuzhi Jin, Junjun Li, and Chunsong Lu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4811,https://doi.org/10.5194/egusphere-2025-4811, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary

Cited articles

Chahl, H. S. and Gopalakrishnan, R.: High potential, near free molecular regime Coulombic collisions in aerosols and dusty plasmas, Aerosol Sci. Technol., 53, 933–957, https://doi.org/10.1080/02786826.2019.1614522, 2019. 
Chen, X. and Jiang, J.: Retrieving the ion mobility ratio and aerosol charge fractions for a neutralizer in real-world applications, Aerosol Sci. Technol., 52, 1145–1155, https://doi.org/10.1080/02786826.2018.1498587, 2018. 
Chu, B., Kerminen, V.-M., Bianchi, F., Yan, C., Petäjä, T., and Kulmala, M.: Atmospheric new particle formation in China, Atmos. Chem. Phys., 19, 115–138, https://doi.org/10.5194/acp-19-115-2019, 2019. 
Eisenbud, M. and Gesell, T. F.: Environmental radioactivity from natural, industrial and military sources: from natural, industrial and military sources, Elsevier, ISBN 9780122351549, 1997. 
Gagné, S., Leppä, J., Petäjä, T., McGrath, M. J., Vana, M., Kerminen, V.-M., Laakso, L., and Kulmala, M.: Aerosol charging state at an urban site: new analytical approach and implications for ion-induced nucleation, Atmos. Chem. Phys., 12, 4647–4666, https://doi.org/10.5194/acp-12-4647-2012, 2012. 
Download
Short summary
We developed a numerical model to investigate the evolution of the charge state of newly formed atmospheric particles. Based on the simulation results, we successfully employed neural networks to predict particle charge states and estimate ion-induced nucleation rates. This study provides new insights into the dynamics of particle charging and introduces advanced methods for evaluating ion-induced nucleation in atmospheric research.
Share
Altmetrics
Final-revised paper
Preprint