Articles | Volume 25, issue 13
https://doi.org/10.5194/acp-25-7431-2025
https://doi.org/10.5194/acp-25-7431-2025
Research article
 | 
15 Jul 2025
Research article |  | 15 Jul 2025

Machine-learning-assisted inference of the particle charge fraction and the ion-induced nucleation rates during new particle formation events

Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li

Related authors

Measurement report: Three-year characteristics of sulfuric acid in urban Beijing and derivation of daytime sulfuric acid proxies applicable to various sites
Yishuo Guo, Chao Yan, Chang Li, Chenjuan Deng, Ying Zhang, Ying Zhou, Haotian Zheng, Yueqi Jiang, Xin Chen, Wei Ma, Nina Sarnela, Zhuohui Lin, Chenjie Hua, Xiaolong Fan, Feixue Zheng, Zemin Feng, Zongcheng Wang, Yusheng Zhang, Jingkun Jiang, Bin Zhao, Markku Kulmala, and Yongchun Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4309,https://doi.org/10.5194/egusphere-2025-4309, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Investigating small ion number size distributions: insight into cluster formation and growth
Santeri Tuovinen, Janne Lampilahti, Nina Sarnela, Chengfeng Liu, Yongchun Liu, Markku Kulmala, and Veli-Matti Kerminen
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-28,https://doi.org/10.5194/ar-2025-28, 2025
Preprint under review for AR
Short summary
Insights into new particle formation in a Siberian boreal forest from nanoparticle ranking analysis
Anastasia Lampilahti, Olga Garmash, Diego Aliaga, Mikhail Arshinov, Denis Davydov, Boris Belan, Janne Lampilahti, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Ekaterina Ezhova
Aerosol Research, 3, 441–459, https://doi.org/10.5194/ar-3-441-2025,https://doi.org/10.5194/ar-3-441-2025, 2025
Short summary
Differential characterization of air ions in boreal forest of Finland and a megacity of eastern China
Tinghan Zhang, Ximeng Qi, Janne Lampilahti, Liangduo Chen, Xuguang Chi, Wei Nie, Xin Huang, Zehao Zou, Wei Du, Tom Kokkonen, Tuukka Petäjä, Katrianne Lehtipalo, Veli-Matti Kerminen, Aijun Ding, and Markku Kulmala
Atmos. Chem. Phys., 25, 10027–10048, https://doi.org/10.5194/acp-25-10027-2025,https://doi.org/10.5194/acp-25-10027-2025, 2025
Short summary
Ventilation and low pollution enhancing new particle formation in Milan, Italy
Myriam Agrò, Manuel Bettineschi, Silvia Melina, Diego Aliaga, Andrea Bergomi, Beatrice Biffi, Alessandro Bigi, Giancarlo Ciarelli, Cristina Colombi, Paola Fermo, Ivan Grigioni, Veli-Matti Kerminen, Markku Kulmala, Janne Lampilahti, Angela Marinoni, Celestine Oliewo, Juha Sulo, Gianluigi Valli, Roberta Vecchi, Tuukka Petäjä, Katrianne Lehtipalo, and Federico Bianchi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2387,https://doi.org/10.5194/egusphere-2025-2387, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary

Cited articles

Chahl, H. S. and Gopalakrishnan, R.: High potential, near free molecular regime Coulombic collisions in aerosols and dusty plasmas, Aerosol Sci. Technol., 53, 933–957, https://doi.org/10.1080/02786826.2019.1614522, 2019. 
Chen, X. and Jiang, J.: Retrieving the ion mobility ratio and aerosol charge fractions for a neutralizer in real-world applications, Aerosol Sci. Technol., 52, 1145–1155, https://doi.org/10.1080/02786826.2018.1498587, 2018. 
Chu, B., Kerminen, V.-M., Bianchi, F., Yan, C., Petäjä, T., and Kulmala, M.: Atmospheric new particle formation in China, Atmos. Chem. Phys., 19, 115–138, https://doi.org/10.5194/acp-19-115-2019, 2019. 
Eisenbud, M. and Gesell, T. F.: Environmental radioactivity from natural, industrial and military sources: from natural, industrial and military sources, Elsevier, ISBN 9780122351549, 1997. 
Gagné, S., Leppä, J., Petäjä, T., McGrath, M. J., Vana, M., Kerminen, V.-M., Laakso, L., and Kulmala, M.: Aerosol charging state at an urban site: new analytical approach and implications for ion-induced nucleation, Atmos. Chem. Phys., 12, 4647–4666, https://doi.org/10.5194/acp-12-4647-2012, 2012. 
Download
Short summary
We developed a numerical model to investigate the evolution of the charge state of newly formed atmospheric particles. Based on the simulation results, we successfully employed neural networks to predict particle charge states and estimate ion-induced nucleation rates. This study provides new insights into the dynamics of particle charging and introduces advanced methods for evaluating ion-induced nucleation in atmospheric research.
Share
Altmetrics
Final-revised paper
Preprint