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Abstract. The charge state of atmospheric new particles is controlled by both their initial charge state upon for-
mation and subsequent interaction with atmospheric ions. By measuring the charge state of growing particles, the
fraction of ion-induced nucleation (FIIN) within total new particle formation (NPF) can be inferred, which is crit-
ical for understanding NPF mechanisms. However, existing theoretical approaches for predicting particle charge
states suffer from inaccuracies due to simplifying assumptions; hence their ability to infer FIIN is sometimes
limited. Here we develop a numerical model to explicitly simulate the charging dynamics of new particles. Our
simulations demonstrate that both particle growth rate and ion concentration substantially influence the particle
charge state, while ion–ion recombination becomes important when the charged particle concentrations are high.
Leveraging a large set of simulations, we constructed two regression models using residual neural networks. The
first model (ResFWD) predicts the charge state of growing particles with known FIIN values, while the second
model (ResBWD) operates in reverse to estimate FIIN based on the charge fraction of particles at prescribed
sizes. Good agreement between the regression models and benchmark simulations demonstrates the potential of
our approach for analyzing ion-induced nucleation events. Sensitivity analysis further reveals that ResFWD and
the benchmark simulations exhibit similar sensitivity to noises in the input parameters, but the robustness of the
ResBWD simulations depends on retention of initial particle charge state at the prescribed sizes. Our study pro-
vides insights into charging dynamics of atmospheric new particles and introduces a new method for assessing
ion-induced nucleation rates.
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1 Introduction

In the low atmosphere, ions are continuously produced by
galactic cosmic rays and radioisotope decay at the earth sur-
face (Stozhkov, 2003; Eisenbud and Gesell, 1997). Due to
the high abundance of N2 and O2 in the atmosphere, the
initially formed ions (primary ions) typically include N+2 ,
O+2 , NO+, O−, and O−2 . These primary ions subsequently go
through ion–molecule reactions to form a large set of organic
and inorganic secondary ions, e.g., NH+4 , NO−3 , HSO−4 , and
C3H3O−4 (Yin et al., 2023). Once formed, ions can be lost by
condensing on the aerosol particles, deposition to surfaces,
and ion–ion recombination, leading to an typical ion concen-
tration of 100–5000 cm−3 globally (Hirsikko et al., 2011).
The ions contribute to atmospheric electricity and play an im-
portant role in the formation of aerosol particle (Golubenko
et al., 2020; Kerminen et al., 2018; Yu et al., 2012).

New particle formation (NPF) is the conversion of gas
molecules to nascent nanoparticles and is estimated to con-
tribute about half of the cloud condensation nuclei on a
global scale (Gordon et al., 2017; Zhao et al., 2024). Atmo-
spheric ions can participate in NPF events during both the
nucleation stage (i.e., the process in which the stable clus-
ters are formed from gas-phase precursors) and the growth
stage (in which the clusters further grow due to vapor con-
densation and coagulation). During nucleation, ions can in-
duce NPF at lower vapor concentrations than neutrals by
stabilizing the embryonic clusters through the presence of
the charge (Kirkby et al., 2016; Yu et al., 2020). Measure-
ments even suggest that ion-induced nucleation (IIN) might
be the main mechanism for NPF in the higher troposphere
and the stratosphere (Yu et al., 2008; Lee et al., 2003; Zhao
et al., 2024). Atmospheric ions also play a role in particle
growth by altering the charge state of the particles and affect
their growth in several ways. Firstly, charged particles tend
to have higher condensational growth rates (GRs) due to en-
hanced ion and neutral vapor condensation, which are caused
by Coulombic, charge–dipole, and charge-induced dipole in-
teractions between the particles and the condensing species
(Svensmark et al., 2017; Nadykto and Yu, 2003). Second,
particle charging promotes coagulation between charged par-
ticles of opposite polarities and oppress coagulation between
particles of the same polarity (Mahfouz and Donahue, 2021).
Third, the coagulation sink (CoagS) for charged particles can
be different from that of the neutral particles, which makes
charged particles less likely to grow larger.

An accurate estimation of IIN rates is a prerequisite to
assess the role of ions in NPF. However, IIN rates are of-
ten challenging to measure directly because the IIN pathway
must be distinguished from particle formation through neu-
tral pathways that proceed simultaneously. Additionally, the
constant interaction with atmospheric ions alters the parti-
cle charge state and makes it difficult to determine whether
a given particle is charged upon formation or during growth.
Therefore, the IIN rates is often deduced by comparing the

charge fraction of nucleated particles to the so-called steady-
state particle charge distribution, using a model that relates
these two quantities given other measurables (e.g., the par-
ticle growth rate, the ion concentration) (Iida et al., 2006).
Towards this end, Kerminen et al. (2007) developed an ana-
lytical equation to calculate the charge fraction of particles at
a given size. By fitting the theoretical values with measured
particle charge fraction at several sizes (Laakso et al., 2007),
the IIN fraction can be obtained. This equation was further
extended to deal with situations with different positive and
negative ions concentrations (Gagné et al., 2012). However,
as shown by comparison with numerical simulations (Leppä
et al., 2011, 2009), the accuracy of the theoretical approach
is sometimes limited by its underlying assumptions; e.g., the
particle population is monodisperse and the charged fraction
of the particles is substantially below unity.

Machine learning (ML) is increasingly being applied in
atmospheric sciences due to its capability to deal with com-
plex and nonlinear processes. In the study of atmospheric
NPF, ML has been applied to identify NPF and non-NPF
days (Su et al., 2022; Joutsensaari et al., 2018), to speed up
configurational sampling of embryonic clusters (Kubečka et
al., 2023), and to train force fields used in molecular dynam-
ics simulations of NPF (Jiang et al., 2022). Conceivably, ML
can also be applied to calculate the charge fraction of atmo-
spheric new particle in lieu of the theoretical equations, with
potentially higher accuracy and less restrictive assumptions.
An even more ambitious goal is to directly calculate the frac-
tion of ion-induced nucleation (FIIN) with measurable par-
ticle charge fractions using a trained ML model, hence cir-
cumventing the data fitting procedure.

In this work, we present an initial exploration of machine
learning (ML) models to infer particle charge fractions and
ion-induced nucleation (IIN) rates during NPF events. To
achieve this goal, we couple dynamic charging simulations
with a sectional model (Li et al., 2023) to simulate NPF un-
der typical atmospheric conditions. The data generated from
these benchmark simulations are then utilized to train and
validate ML models. Both the accuracy and sensitivity of the
ML models to input noises are discussed and compared with
benchmark simulations.

2 Methods

2.1 The sectional model

We applied a two-dimensional sectional model (Fig. 1) to
simulate the evolution of the particle size distribution (PSD)
and particle charge fraction during the NPF events. We refer
to this model as CDMS-ion (cluster dynamics multicompo-
nent section model with ions) for brevity. CDMS-ion divides
the particles into mass sections, and the particles within a
mass section are further divided into subsections according
to their charge states. All particles in the same mass sec-
tion are assumed to have the same chemical composition
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(internally mixed). The simulated processes include parti-
cle charging, coagulation, growth, or shrinkage due to va-
por condensation–evaporation and losses to pre-existing par-
ticles (i.e., coagulation sink; CoagS). Particle nucleation is
not explicitly simulated; rather, prescribed nucleation rates
at 1 nm are specified in the model as an input. Although par-
ticles may absorb ambient water vapor, we do not include
particle hygroscopic growth in this study. Subject to the influ-
ence of a strong Kelvin effect and a complex chemical com-
position, the hygroscopic growth factor of atmospheric new
particles has high uncertainties. Despite this neglect, water
uptake may lead to increased particle growth rates in simula-
tions compared to dry particles. The effect of higher particle
growth rates on particle charging dynamics is examined thor-
oughly in the following.

The processes under consideration were simulated using
an operator splitting approach, where the differential equa-
tions for distinct processes were solved sequentially within
each time step, hstep. In our previous work, which did not
include particle charging (Li et al., 2023), these equations
were solved simultaneously. However, incorporating an ad-
ditional dimension – the particle charge state – significantly
increases computational costs. Therefore, in this study, we
employed the operator splitting method to enhance simula-
tion efficiency. To determine an optimal hstep, we conducted
a convergence study, gradually reducing hstep and observing
its effect on simulation outcomes. We found that values lower
than 20 s had a negligible impact on our results. For all simu-
lations, we utilized 126 mass sections with a geometric factor
of 1.1, covering a particle size range from 1.17 to 100.50 nm.
A uniform particle density of 1.4 g cm−3 was assumed.

2.2 Simulation of particle charging

The interaction between particles and atmospheric ions was
simulated with a dynamic particle charging module. Neutral
particles collide with ions to generate charged particles, and
charged particles increase/decrease its charge by colliding
with ions of the same/opposite polarity. This dynamic pro-
cess is described by the following equation:

dndp,k

dt
= βdp,k−1,+ ndp,k−1N+−βdp,k,+ ndp,kN+

+βdp,k+1,− ndp,k+1N−−βdp,k,− ndp,kN− , (1)

where ndp,k is the concentration of particles with a diame-
ter of dp and k charges, βdp,k,± is the collision rate constant
between these particles and positive/negative ions, and N±
is the concentrations of positive or negative ions. Since we
are interested in particles formed during NPF events with
sizes smaller than 100 nm, we set the maximum particle
charge to be ±5. The concentrations of particles with more
charges are negligible under atmospherically relevant condi-
tions (Wiedensohler, 1988).

To solve Eq. (1), the collision rate constant βdp,k,±

(cm3 s−1) needs to be calculated accurately. In this study, we

used the rate coefficients developed by López-Yglesias and
Flagan (2013) (see the Supplement of this work), who con-
sidered both three body trapping and image potential in their
calculations. The collision rate constant was calculated with
the following expression:

βdp,k,± = 10
∑Q
q=0 Bq,±(k)(log10(

dp
2 ))q

, (2)

where βdp,k,± is in m3 s−1, dp is in meters, Bq,±(k) denotes
dimensionless fit coefficients, q is the number of charges on
the particle, and Q= 23 is the maximum of q.

2.3 Vapor condensation–evaporation

Particle growth due to the condensation–evaporation of sul-
furic acid and oxygenated organic molecules (OOMs) was
simulated according to the following equation:

dmp

dt
=

∑
i
mi (βini −Ei) , (3)

where mp is the particle mass, mi is the molecular mass of
the species i, βi is the collision constant of species i with the
particle, ni is the gas-phase concentration of species i, and
Ei is the evaporation rate of species i from the particle.

To calculate βi in Eq. (3), we first calculated the colli-
sion rate coefficients with Eqs. (12) and (14) in Gopalakr-
ishnan and Hogan (2011) and subsequently multiply these
coefficients with an enhancement factor to account for
charge–dipole interactions between the particles and vapor
molecules. The expression for the enhancement factor is
given by Nadykto and Yu (2003) :

EF= 1+
lE(dp+ dv)L( lE(dp+dv)

2kbT
)+ 0.5αε0E

2(dp+ dv)

3kbT
, (4)

where l is the dipole moment of the vapor; kb is Boltz-
mann’s constant; T is the ambient temperature; E(r)= ( 1

εg
−

1
εp

) qe0
4πε0r2 is the electrical field of the charged particle; εg and

εp are the relative permittivity of air and the particle, respec-
tively; ε0 is the vacuum permittivity; e0 is the elementary
charge; q is the number of charges of the particle; dp and dv
are the diameters of the particle and the vapor molecule, re-
spectively; L(z)= ez+e−z

ez−e−z
−

1
z

is the Langevin function; and
α is the polarizability of the molecules. In the calculation of
enhancement factors involving sulfuric acid molecules, we
set the dipole moment and polarizability to 2.84 Debye and
6.2 Å3, respectively (Nadykto and Yu, 2003). For collisions
involving OOMs, due to the lack of information on the aver-
age dipole moment and polarizability, we calculated the en-
hancement factor of EFOOMs with an empirical relation de-
veloped by Kirkby et al. (2016):

EFOOMs =
EFSA− 1
fOOMs,SA

+ 1 , (5)

where fOOMs,SA= 4 is a fitting parameter.
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Figure 1. (a) Illustration of the CDMS-ion model. (b) The evolution of the particle size distribution in a simulated NPF event. The structures
of (c) ResFWD and (d) ResBWD.

Within each simulation interval (20 s), we calculated the
mass change of particles due to condensation/evaporation in
each subsection using the approach described in Zaveri et
al. (2008) and Jacobson (2005). At the end of an interval,
the particles are distributed into different mass bins using the
linear discrete method (Simmel and Wurzler, 2006). To im-
plement this method, both the particle number and mass are
tracked in each section. The particle charge state was pre-
served during particle growth.

2.4 Particle coagulation

We considered the effect of Coulombic interactions on parti-
cle coagulation. The coagulation rate coefficients were cal-
culated with the equations developed by Gopalakrishnan
and co-workers (Ouyang et al., 2012; Gopalakrishnan and
Hogan, 2012, 2011; Chahl and Gopalakrishnan, 2019), who
derived the rate coefficients using Langevin dynamics simu-
lations. The expressions for the collision rate coefficients are
given by

β
(
dp1,q1,dp2,q2

)
=
Hfr

(
dp1+ dp2

)3
η2

FM

8mrηC
(6)

H = exp(µ)
4πKn2

D+ 25.836Kn3
D+ (8π )1/2

× 11.211Kn4
D

1+ 3.502KnD+ 7.211Kn2
D+ 11.211Kn3

D
(7)

KnD =
2(kbTmr)1/2ηC

fr
(
dp1+ dp2

)
ηFM

, (8)

where H is the dimensionless collision rate constant, KnD
is the diffusive Knudsen number, T is the ambient tempera-
ture, dp1 and dp2 are the diameters of two colliding particles,
q1 and q2 are the number of elementary charges on the parti-
cles,mr is the reduced mass of the colliding particles (defined
as mr=m1m2/(m1+m2)), fr is the reduced friction factor
(defined as fr= f1f2/(f1+ f2)), ηC is the continuum limit
enhancement factor due to the presence of charge, ηFM is
the free molecular limit enhancement factor (Gopalakrishnan
and Hogan, 2012), and µ is a function of the electrostatic en-
ergy to thermal energy ratio and the diffusive Knudsen num-
ber. Expressions for ηC, ηFM, and µ are found in Eq. (6) of
Gopalakrishnan and Hogan (2012) and Sect. S2 of Chahl and
Gopalakrishnan (2019).

The explicit simulation of particle charge state signifi-
cantly increases the computational cost of coagulation sim-
ulation as the number of coagulation pairs is proportional to
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the number of subsections squared. To speed up the simula-
tion, we used the coagulation algorithm developed by Mat-
sui et al. (2013, 2017), which is a simplified version of Ja-
cobson’s et al. (1994) semi-implicit approach . In this algo-
rithm, after a coagulation time step 1t , the mass concentra-
tionM t+1t

i,k of particles with k charges in the ith mass section
is given by

M t+1t
i,k =

M t
i,k + fcorrP

t
i,k

1+Lti,k
, (9)

where Pi,k and Li,k are the mass production and loss rates
of particles due to coagulation at time t , respectively, and
fcorr is a correction factor to ensure mass conservation. The
expressions for Pi,k , Li,k , and fcorr are given in Sect. S1 in
the Supplement. Overall, this coagulation algorithm is non-
iterative for any time step and conserves total particle mass
but leads to slight inaccuracies in particle number distribu-
tion (Matsui and Mahowald, 2017; Matsui, 2017).

2.5 Coagulation sink

In addition to newly formed particles, the atmospheric ions
also condition the charge distribution of the pre-existing at-
mospheric particles and affect the magnitude of the coagula-
tion sink (CoagS). To account for this influence of charge
on CoagS, we calculated CoagS with the assumption that
the pre-existing particles are at steady-state charge distribu-
tion due to interaction with atmospheric ions. This assump-
tion is supported by field observations conducted by Li et
al. (2022), which show good agreement between the particle
size distributions measured by the SMPS (scanning mobility
particle sizer) with and without a neutralizer. Additionally,
background particles (larger in size) have a shorter charac-
teristic charging time (see Fig. 2 below) and longer residence
time in the atmosphere compared with newly formed parti-
cles, which further justifies the steady-state assumption.

The coagulation sink CoagSdp,k for particles with a diam-
eter of dp and k charges was calculated with the following
equation:

CoagSdp,k
=

∑6
k′=−6

∫
βdp,k,d ′p,k

′f (d ′p,k
′)

dNpre

dd ′p
dd ′p , (10)

where βdp,k,d ′p,k
′ is the collision rate coefficient of particles

with a diameter of dp and k charges with background par-
ticles with a diameter of d ′p and k′ charges, f (d ′p,k

′) is the
steady-state fraction of particles with k′ charges among all
particles with size d ′p, and dNpre

dd ′p
is the is number-based par-

ticle size distribution of pre-existing particles. f (d ′p,k
′) can

vary with time since the properties of atmospheric ions con-
stantly change (Chen and Jiang, 2018). In this work, how-
ever, we assume that f (d ′p,k

′) is independent of time for the
pre-existing particles since the variation of ion properties is
relatively small. To be consistent with the particle charging

simulations (Sect. 2.2), the values of f
(
d ′p,k

′

)
were cal-

culated with the rate coefficients given by López-Yglesias
and Flagan (2013) by solving Eq. (1). Concerning dNpre

dd ′p
, we

assume that the background particles are lognormally dis-
tributed, with a geometric mean diameter of 100 nm and a
geometric standard deviation of 1.4.

2.6 Simulation setup and key metrics

We set up our simulations to mimic typical NPF events.
Specifically, we assume that new particle formation lasts for
3 h with a constant nucleation rate J . The newly formed par-
ticles enter the smallest section (particle size is about 1 nm)
and start to grow due to the condensation of sulfuric acid
(SA) and oxygenated organic molecules (OOMs). The SA
and OOM concentrations are assumed to be constant in the
simulation. SA is assumed to be non-evaporative, and the
OOMs are classified into 6 bins by saturation vapor concen-
tration C∗ (log10C

∗
=−9,−7,−5,−3,−1,0,C∗ in units of

µgm−3). Simultaneous to condensational growth, the parti-
cles coagulate with other particles or lose to pre-existing par-
ticles. All simulations were conducted at 298.15 K and 1 atm.
A typical PSD obtained from such simulations is shown in
Fig. 1b.

Several factors influence the charge state of the new par-
ticles, including the atmospheric ion properties (e.g., mobil-
ity), the ion concentrations (Nion), the particle growth rate
(GR), the coagulation sink (CoagS), the total nucleation rate
(J ), and the fraction of ion-induced nucleation (FIIN; which
is equal to IIN rates

IIN rates+neutral NPF rates and ranges from 0 to 1).
The atmospheric ion properties used in this work are listed in
Table 1. We set positive and negative ions to have the same
mass and mobility. The properties of positive and negative
ions can be different (e.g., in a neutralizer), but in the at-
mosphere the positive and negative ions often exhibit similar
mobilities (Li et al., 2022; Gautam et al., 2017). A few stud-
ies have also shown that both the ion mobility and ion com-
position are influenced by humidity (Oberreit et al., 2015;
Liu et al., 2020; Luts et al., 2011). The clustering of water
with ions may decrease the ion mobility and reduce the ion-
particle collision rates. However, such an effect is difficult to
quantify based on existing research; hence in the simulation
we did not consider ion hydration. The value of the other
factors (Nion, GR, CoagS and J ) spanned ranges of typical
NPF events in the atmospheric boundary layer (also shown
in Table 1) (Chu et al., 2019; Kerminen et al., 2018). The
ion concentration Nion and the nucleation rate J were di-
rectly specified as simulation parameters, while GR and Co-
agS were controlled indirectly in the simulation by scaling
the SA and OOM concentrations while maintaining their rel-
ative concentration. The reported GR values in the following
were obtained by first simulating particle growth (Sect. S2)
and subsequently fitting the particle size as a function of time
with a linear function. Therefore, the GR values reported
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in this study are a measure of particle growth rates due to
neutral vapor condensation. We note that although GR de-
fined in this way neglects the effect of coagulation on par-
ticle growth, it can be retrieved from the evolution of parti-
cle size distribution (Li and McMurry, 2018; Stolzenburg et
al., 2005). To control CoagS, we scaled the concentration of
the pre-existing aerosols while maintaining their distribution
(lognormal distribution with a geometric mean diameter of
100 nm and a geometric standard deviation of 1.4).

To analyze the simulation results, we mainly focus on the
charge ratio rc, which is defined as the ratio of the simulated
fraction of singly charged particles to the steady-state value.
This metric indicates to what extent the particle charge dis-
tribution deviates from the steady state: rc< 1 indicates that
the particles are undercharged, and rc> 1 indicates that the
particles are overcharged. The second and third metrics are
the maximum number of particles during a simulation (Nmax)
and the particle mode diameter (dm). Comparisons of these
two metrics between simulations with and without particle
charging show the effect of charging on particle survival and
growth.

2.7 Analytical equation for particle charge state

Kerminen et al. (2007) derived a theoretical equation to cal-
culate the charge state of a monodisperse nucleation mode:

rc,dp = 1−
1
Kdp
+

1+ (rc,0− 1)Kd0

Kdp
exp

[
−K(dp− d0)

]
, (11)

where rc,dp and rc,0 are the charging state at size dp and d0
(i.e., the initial particle size), respectively. K is expressed as

K =
αNion

GR
, (12)

where α is the association rate between ions and particles of
opposite polarity. In this work, we use a constant value of
1.8× 10−6 cm−3 s−1 for α, which is the collision rate con-
stant between ions and particles 1 nm in diameter (calculated
with Eq. 2). According to Eq. (11), the particle charge state is
governed by both the initial charge state rc,0 and the parame-
terK , which is directly proportional to ion concentration and
inversely proportional to particle growth rate. We note that
rc,0 is a different concept from FIIN: the former is the ratio of
the particle charge fraction to the equilibrium charge fraction
at the initial particle size, while the latter refers to the ratio of
particle concentration fluxes past a threshold size. These two
ratios can be significantly different (Leppä et al., 2013).

2.8 Regression models with neural network

In this study, we used a residual neural network (ResNet)-
based architecture to construct regression models. ResNet
addresses the problem of vanishing gradients through resid-
ual connections and can accelerate network convergence (He

et al., 2016). Initially introduced to enhance image recog-
nition performance, ResNet has demonstrated broad appli-
cability across various fields, including emulation of atmo-
spheric chemistry solvers (Kelp et al., 2018; Liu et al., 2021).

Our first application of ResNet was to determine the
charge state of new particles, assuming that J , GR, Nion,
CoagS, and FIIN are already known (Fig. 1c). The network
consists of six fully connected layers with 64, 128, 256, 128,
64, and 1 node, respectively, with residual connections intro-
duced between each layer. The input layer has 5 nodes corre-
sponding to the log10(J ), GR, log10(Nion), CoagS, and FIIN,
and the output layer has 1 node corresponding to log10(rc)
at a specific size. Log10 values of Nion, J , and rc were used
because their significant variation across approximately 2 or-
ders of magnitude. Each fully connected layer is followed by
a ReLU activation function, with shortcut connections map-
ping the input of each layer directly to its output. The trained
model is referred to as ResFWD (FWD denotes “forward”)
and serves as an alternative of the Eq. (11).

In our second application of ResNet, we aimed to predict
FIIN based on rc values at multiple sizes (2.2, 3, 4, 5, 6,
7, and 8 nm), alongside log10(J ), GR, log10(Nion), and Co-
agS (Fig. 1d). This model’s input layer consists of 11 nodes,
which is more complex compared with ResFWD. Conse-
quently, we expanded the number of fully connected layers
to 8, with node counts of 64, 128, 256, 512, 256, 128, 64, and
1, respectively. Batch normalization layers were incorporated
to accelerate training and enhance the model’s generalization
ability, while other configurations remained consistent with
the first model. The resulting trained model is termed Res-
BWD (BWD denotes “backward”).

The dataset used to train ResFWD consists of ∼ 4 million
CDMS-ion simulations, but this dataset was reduced in the
training of ResBWD by removing sets of simulations (each
set corresponds to a specific combination of J , GR, Nion and
CoagS) in which the information of FIIN is almost lost be-
fore the particles reach 2.2 nm due to interaction with atmo-
spheric ions (discussed in Sect. 3.3). In training all ResNet
models, 80 % of the data were used for the model training
and 20 % were used for model validation. The max–min nor-
malization method was used for data pre-processing of all
input and output features. The models were trained with Py-
Torch, with mean squared error (MSE) as the loss function.
The optimizer was Adam, with a learning rate set to 0.001.
The batch size was set to 2048, and the training was con-
ducted over at least 50 epochs.

3 Results and discussion

3.1 Evolution of particle charge state

In this section, we discuss some general characteristics of
particle interaction with atmospheric ions, including the
timescale for particles to reach steady-state charge distribu-
tion (Sect. 3.1.1), how particle charge state evolves after for-
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Table 1. Simulation parameters∗.

Symbol Meaning Value or range

µ± Ion mobility 1.8× 10−4 m2 V−1 s−1

M± Ion mass 150 Da
GR Growth rate 1–15 nm h−1

J The nucleation rate at 1 nm 0.1–1000 # cm−3

CoagS Coagulation sink (defined with respect to sulfuric acid molecules) 0.001–0.02 s−1

Nion Ion concentration 50–5000 cm−3

∗ All parameters except GR are explicitly held constant in a simulation. GR is determined from vapor condensation rates (vapor
concentrations are held constant) and barely changes with particle size; hence GR can also be regarded as a constant.

mation (Sect. 3.1.2 and 3.1.3), and the influence of charging
on particle number concentration and growth, which is in-
cluded in Sect. S5.

3.1.1 Characteristic time to reach steady-state charge
distribution

To estimate the timescale for particles to achieve steady-
state charge distribution under different ion concentrations,
we numerically solved Eq. (1) to simulate the charge state
evolution of monodisperse particles in the size range of 1–
120 nm. The ion properties are listed in Table 1, and the sim-
ulation was conducted at a temperature of 298.15 K at atmo-
spheric pressure. Below we discuss two extreme cases: ini-
tially neutral and initially fully charged particles (50 % pos-
itively charged, 50 % negatively charged). These cases cor-
respond to the maximum timescale to reach the steady state
from two different directions, while other scenarios in be-
tween would have shorter timescales. We define a charac-
teristic time τss for particle charging (or discharging) as the
time it takes for the singly charged fraction of initially neu-
tral particles to reach (1− 1/e) of the steady-state value or
for the singly charged fraction of initially charged particles
to reach (1+ 1/e) of the steady-state value. We neglect mul-
tiply charged particles in this calculation, as their fraction is
low for ultrafine particles (Wiedensohler, 1988). An analyti-
cal analysis of τss is presented in Sect. S3.

Figure 2a and b show contour plots of τss at NPF-relevant
particle sizes (1–100 nm) at atmospherically relevant ion
concentrations (50–104 cm−3; note that throughout this work
the ion concentration Nion refers to the sum of positive and
negative ion concentration) for initially neutral and initially
charged particles, respectively. Apparently, τss is dependent
on both the particle size and the ion concentration. Theoreti-
cal analysis (Sect. S3) shows that τss can be expressed as

τss =


2

(2β0+β1)Nion
, if f1(0)= 0

2+2ln
(
β1
2β0

)
(2β0+β1)Nion

, if f1(0)= 1
2

, (13)

where f1(0) is the initial fraction of singly charged particles
(of one polarity). Apparently, for particles of all sizes, τss

decreases as the ion concentration increases because τss is
inversely proportional to the ion concentration. Additionally,
at a fixed ion concentration, τss stays relatively constant or
decreases with increasing particle size. This trend is caused
by the variation of the collision rate constants (2β0+β1)
as the particle size increases, to which τss is also inversely
proportional (Eq. 13). Further comparison between Fig. 2a
and Fig. 2b reveals that τss is smaller for initially neutral
particles than initially fully charged particles. As demon-
strated in the Supplement, the characteristic time depends
on
∣∣f1(0)− f1,ss

∣∣, i.e., the distance between the initial and
steady-state charge fraction. This distance is larger for ini-
tially charged particle and results in an extra term 2ln

(
β1

2β0

)
in Eq. (13).

An uncertainty regarding τss stems from the collision
rate coefficients used in its calculation. Pfeifer et al. (2023)
showed that experimental and theoretical collision rate coef-
ficients between ions and singly charged particles can differ
by 1 to 2 orders of magnitude (Pfeifer et al., 2023; López-
Yglesias and Flagan, 2013; Gopalakrishnan and Hogan,
2012; Gatti and Kortshagen, 2008). The rate coefficients used
in this study (i.e., López-Yglesias and Flagan, 2013) are at
the higher end of these rates. If the rate expressions devel-
oped by Gatti and Kortshagen (2008) or Gopalakrishnan and
Hogan (2012) had been utilized, we would have anticipated
a longer characteristic charging time. Additionally, we ne-
glected the van der Waals potential between colliding enti-
ties, as its interplay with the Coulomb potential in influenc-
ing collision rates remains unclear.

The timescale τss, as illustrated in Fig. 2, ranges from tens
of seconds to several hours, overlapping with the timescale
for new particles to grow to a few or tens of nanometers
in NPF events. Thus, during NPF and subsequent growth
events, the newly formed particles cannot be assumed to be
at the steady-state charge distribution without verification.

3.1.2 Neutral NPF

We next examine how the charge distribution of particles
evolves when newly formed particles are electrically neutral.
To understand the effect of ion concentration (Nion), the co-
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Figure 2. Contour plots of the characteristic time (in seconds) for particles to reach the steady-state distribution as a function of particle
diameter and ion concentration. (a) The particles are initially neutral. (b) The particles are initially singly charged (50 % positive, 50 %
negative).

agulation sink (CoagS), particle growth rate (GR), and nu-
cleation rate (J ) on particle charge distribution during NPF
events, we calculated the ratio (rc) of the simulated fraction
of singly charged particles to the steady-state value under dif-
ferent NPF conditions. Results at representative conditions
are shown in Fig. 3. Some data points are omitted due to the
exclusion of exceedingly low particle number concentrations
(< 1 cm−3), which occur when both J and particle survival
probability (primarily determined by GR/Coag; Kulmala et
al., 2017) are low, resulting in very few particles surviving
to sizes of interest. Additionally, in Fig. 3 we do not dis-
tinguish between positive and negative particles since they
have the same charge fraction (we have assumed that posi-
tive and negative ions have the same concentration and prop-
erties, and hence the simulation is “symmetric” with respect
to particle polarity).

Figure 3a and b illustrate the variation of rc as a func-
tion of Nion for selected particle sizes at two conditions
typical of polluted (J = 100 cm−3 s−1, CoagS= 0.01 s−1,
GR= 4 nm h−1) and clean environments (J = 1 cm−3 s−1,
CoagS= 0.001 s−1, GR= 4 nm h−1). Both figures demon-
strate that during NPF events, rc depends on both the particle
size and the ion concentration. At a fixed particle size, rc in-
creases with Nion, which is expected as higher Nion reduces
the characteristic charging time (Fig. 2) and promotes the
particle charge distribution to reach the steady state. More-
over, larger particles have rc closer to 1, indicating that as
particle grow, their charge fraction gradually approaches the
steady-state value.

Figure 3c and d show how GR affects rc at low
(Nion= 200 cm−3) and high (Nion= 1000 cm−3) ion concen-
trations, respectively. As GR increases, rc for a given particle
size decreases, which is due to the decreased charge condi-
tioning time by atmospheric ions (the time for particles to
reach size dp is approximately dp

GR ). Similar to Fig. 3a and b,
smaller particles have lower rc due to their shorter interac-

tion time with ions and longer characteristic charging time
(Fig. 2a). Furthermore, rc is larger at higher ion concentra-
tions, corroborating the trend shown in Fig. 3a and b.

The effect of CoagS on rc is shown in Fig. 3e and f for
two particle growth rates. At a higher growth rate (10 nm h−1,
Fig. 3e), rc remains largely unchanged as CoagS varies from
0.001 to 0.02 s−1. At a lower growth rate (4 nm h−1, Fig. 3f),
CoagS has a more pronounced effect on rc, although changes
at a given particle size are still smaller than 0.1. Compared
with the impact ofNion and GR on rc, the influence of CoagS
on rc is minor or even negligible.

Finally, Fig. 3g and h show the influence of nucleation
rate J on rc at two particle growth rates. Similar to Co-
agS, J has an almost negligible effect on the rc at both
fast (GR= 10 nm h−1, Fig. 3g) and slow (GR= 4 nm h−1,
Fig. 3h) particle growth conditions. However, as J increases,
there is a slightly decreasing trend of rc in Fig. 3h. This small
but noticeable trend is caused by the increased coagulation
between new particles, which elevates the particle growth
rate and decreases the time for the particles to reach a cer-
tain size.

Overall, Fig. 3 indicates that the charge distribution of new
particles deviates from the steady-state distribution during
new particle formation (NPF) events. Among the four factors
considered – ion concentration, particle growth rate, coagu-
lation sink, and nucleation rate – the first two exert a strong
influence on rc, while the latter two have a minor impact.

The interaction between aerosol particles and atmospheric
ions can be leveraged to measure the particle size distribution
(PSD). In this approach, atmospheric ions serve as aerosol
neutralizers in the SMPS (Li et al., 2022; Chen and Jiang,
2018), reducing both the cost and safety risks associated with
the instrument. However, a prerequisite for this method is
that aerosol particles must reach a steady-state charge dis-
tribution at the time of measurement. Our analysis demon-
strates that during NPF events, freshly formed neutral parti-
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Figure 3. Ratio of simulated singly charged fraction to the steady-state value (rc) as a function of dp at different simulation conditions.
Different color corresponds to different size ranges. (a) J = 100 cm−3 s−1, CoagS= 0.01 s−1, GR= 4 nm h−1. (b) J = 1 cm−3 s−1, Co-
agS= 0.001 s−1, GR= 4 nm h−1. (c) J = 100 cm−3 s−1, CoagS= 0.005 s−1,Nion= 200 cm−3. (d) J = 100 cm−3 s−1, CoagS= 0.005 s−1,
Nion= 1000 cm−3. (e) J = 100 cm−3 s−1, GR= 10 nm h−1, Nion= 250 cm−3. (f) J = 100 cm−3 s−1, GR= 4 nm h−1, Nion= 250 cm−3.
(g) CoagS= 0.005 s−1, GR= 10 nm h−1, Nion= 250 cm−3. (h) CoagS= 0.005 s−1, GR= 4 nm h−1, Nion= 250 cm−3. The red, black,
blue, and yellow curves represent four different particle size ranges (shown in the figure legend), with steady-state singly charged fractions
of 0.0168, 0.0483, 0.0931, and 0.1975, respectively. These values are evaluated at the median of each size range, i.e., 3.5, 7, 11, and 20 nm.
The absolute charge fraction of the particles can be obtained by multiplying rc by the corresponding steady-state charge fraction.

cles require tens of minutes to hours to achieve this steady-
state distribution through interaction with atmospheric ions.
To establish a characteristic size db above which the PSD can
be measured without a neutralizer, we formulated a regres-
sion equation for db as a function of GR,Nion, J , and CoagS,
defining db as the size at which the singly charged fraction
of new particles reaches 63 % (i.e., (1− 1/e)) of the steady-
state value. The functional form of this regression, along with
comparisons to simulations, is detailed in Sect. S4.

3.1.3 Initially charged particles

To understand the evolution of initially charged particles,
we examine a limiting case where all particles are formed
via ion-induced nucleation (i.e., FIIN= 1). We simplify our
discussion by assuming equal IIN rates for both polarities.
Figure 4 illustrates the behavior of the charge fraction ra-
tio rc as a function of particle size under selected new parti-
cle formation (NPF) conditions. The evolution of rc can be
categorized into three stages, as depicted by the red curve
in Fig. 4a. In stage 1, rc rapidly decreases until it reaches
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unity. In stage 2, rc drops further to a minimum value rc,min.
In stage 3, rc rebounds towards 1. This behavior can be at-
tributed to two main effects: the collisions between parti-
cles and atmospheric ions (termed the “ion effect”), which
drives the charge distribution towards rc= 1, and the coagu-
lation of oppositely charged particles, also known as ion–ion
recombination (termed the “coagulation effect”), which re-
duces the rc value. During stage 1, newly formed particles
experience both the ion and coagulation effects, leading to
a rapid decrease in charge fraction towards the steady-state
value of rc= 1. In stage 2, as particles grow, the coagulation
effect becomes dominant due to the increased concentration
of charged particles from nucleation, resulting in a further re-
duction of rc to below 1. In comparison, rc remains above 1
if coagulation between particles are turned off in the simula-
tion (Fig. S3). In stage 3, the coagulation effect diminishes
for two reasons: (1) the IIN terminates and the generation of
charged particles stops, and (2) the charged particles already
formed are overall more neutralized as they grow. Because
of the diminished coagulation effect, the ion effect drives rc
towards 1.

Variation of different simulation parameters alters the rc
curves to different extents. Figure 4a indicates that higher
Nion increases rc,min and restores rc to the steady-state val-
ues faster than lower Nion. This phenomenon occurs because
as Nion increases, the ion effect becomes greater, and the
coagulation between oppositely charged particles becomes
comparatively less important. Figure 4b shows that the in-
crease in GR causes rc,min to move to the right but does not
significantly change the value of rc,min. This relationship be-
tween GR and rc,min means that GR does not strongly impact
the coagulation effect. Figure 4c shows that CoagS increases
rc,min to a smaller extent. Higher CoagS corresponds to larger
consumption of the particles and lower particle concentra-
tion, hence depressing the coagulation effect. Lastly, Fig. 4d
indicates that the larger the J values, the smaller rc,min be-
comes. As J increases, the coagulation effect becomes ap-
preciably stronger because it is proportional to the particle
number concentration squared. The minimum rc,min values
also appear at smaller sizes as the higher particle concentra-
tion causes the coagulation between the charged particles to
proceed at a faster rate.

In addition to charge state, the interactions between parti-
cles and atmospheric ions can also influence particle number
concentration and size during NPF events. To quantify such
effects, we compared the particle number concentration and
mode diameters in simulations with and without consider-
ing particle charging (Sect. S5). This comparison suggests
that particle charging has almost a negligible influence on
the mode diameter. However, although the particle number
concentrations also remain largely unaffected during neutral
NPF, it can experience a considerable decrease during IIN
due to the strong coagulation between oppositely charged
particles.

3.2 Prediction of particle charge fraction with ResNet

Using simulated results as training data, we developed sev-
eral ResNet-based regression models, collectively referred
to as ResFWD. Each of these models can predict rc value
for a specific particle size. Figure 5a–d compare the rc val-
ues calculated with ResFWD, the analytical expression (i.e.,
Eq. 11), and CDMS-ion for FIIN< 0.2 and J < 10 cm−3 s−1.
FIIN and J are limited to small values because Eq. (11)
was developed to cope with the situation with a low frac-
tion of charged particles (Kerminen et al., 2007). The rc val-
ues calculated with ResFWD (rc,ML) align closely with those
simulated by CDMS-ion (rc,sim), demonstrating the neural
network’s ability to capture the nonlinear relationship be-
tween rc and the key parameters including FIIN, GR,Nion, J ,
and CoagS. In contrast, the values calculated with Eq. (11)
(rc,Anal) deviate significantly from rc,sim, and this discrep-
ancy grows larger with particle size. This suggests that as
the particles grow, the simulation conditions deviate farther
away from the underlying assumption of Eq. (11). As shown
in Fig. S7, rc,Anal tends to be larger than rc,sim in the entire
range of FIIN and J . Such overestimation of rc by the an-
alytical equation may arise from its inability to account for
the strong coagulation between charged particles, especially
when a large fraction of the particle population are charged.
Another cause for the overestimation could be that Eq. (11)
was developed based on the charge state of the smallest par-
ticles rather than FIIN (the former is the ratio of charged par-
ticle concentration to the total particle concentration in the
smallest size bin, while the latter is a ratio of fluxes). A com-
parison of these two values is shown in Fig. S9.

Figure 5e–i present sensitivity analysis of rc,2.2 in response
to variations of different model inputs. This analysis is cru-
cial for (1) assessing whether ResFWD overfits the train-
ing data and (2) evaluating its susceptibility to input noise
– an inevitable factor in field data – compared to the bench-
mark model CDMS-ion. In these figures, colored dots rep-
resent the fractional change in rc,ML,2.2 (denoted as SML

2.2 )
when ResFWD inputs are randomly varied between −10 %
and +10 %, while grey dots reflect the fractional change
in rc,sim,2.2 (denoted as SSim

2.2 ) resulting from variations in
CDMS-ion inputs at two extreme values, i.e., +10 % and
−10 %. Figure 5e–i demonstrate that SSim

2.2 envelops SML
2.2 (the

grey dots put a limit on the colored dots), indicating that Res-
FWD exhibits a response to input noise, similar to that of
CDMS-ion. Moreover, both SSim

2.2 and SML
2.2 display compara-

ble variations as functions of rc,2.2.
Figure 5e shows that S2.2 initially increases with rc,2.2 and

subsequently stabilizes. This behavior suggests that when
initial particle charge information is obscured by interactions
with atmospheric ions during growth (leading to low rc,2.2
values), FIIN has a minimal effect on rc,2.2. However, when
charge information is preserved during growth (higher rc,2.2
values), rc,2.2 scales near linearly with FIIN and also varies
between −10 % and 10 %. Conversely, when varying Nion,
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Figure 4. rc as a function of particle diameter at different IIN conditions: (a) GR= 4 nm h−1, CoagS= 0.005 s−1, J = 100 cm−3 s−1,
(b) Nion= 250 cm−3, CoagS= 0.005 s−1, J = 100 cm−3 s−1, (c) Nion= 250 cm−3, GR= 4 nm h−1, J = 100 cm−3 s−1,
(d) Nion= 250 cm−3, CoagS= 0.005 s−1, GR= 4 nm h−1. The nucleation rate J is the sum of the formation rates of the positive
and negative particles. The units for Nion, GR, CoagS, and J in the figure legends are cm−3, nm h−1, s−1, and cm−3 s−1, respectively.
For reference, the steady-state singly charged fractions of particles are also plotted as a function of size (dot-dash lines, right y axis). The
absolute singly charged fraction of the particles can be obtained by multiplying rc by the steady-state charge fraction.

Figure 5. (a–d) Comparison between the simulated rc (rc,sim), the ResFWD-predicted rc (rc,ML), and the rc calculated with Eq. (11)
(rc,Anal) at particle diameters of 2.2, 3, 5, and 8 nm. The numbers in the subscript of rc denote the particle size. The R2 and MSE obtained
from testing the ResFWD model against rc,sim are shown in the panels. (e–i) Sensitivity of rc,,2.2 to −10 % to 10 % variations of model

input. The color bar indicates the degree of variation quantified by S2.2=
rnoise
c,2.2−rc,2.2
rc,2.2

. The colored dots are calculated with ResFWD, while
grey dots are obtained by changing the CDMS-ion input by either 10 % or −10 %.
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GR, CoagS, and J , S2.2 initially increases with rc,2.2 and then
decreases (Fig. 5f–i). This indicates that rc,2.2 is relatively in-
sensitive to variations of these parameters when particle in-
teractions with atmospheric ions are either highly effective
(resulting in low rc,2.2 values) or ineffective (leading to high
rc,2.2 values). Comparisons between Fig. 5 panels (e)–(i) fur-
ther reveal that rc,2.2 is sensitive to variations in GR, Nion,
and J , but not to CoagS: a 10 % variation in CoagS results
in less than an 8 % change in rc,2.2. This finding aligns with
Fig. 4, which indicates that simulations with differing GR,
Nion, and J values yield well-separated curves, while vary-
ing CoagS values only change the curves slightly.

Despite good agreement with the benchmark model, the
applicability of the ResFWD is limited by the data used for
its training. For instance, we have assumed constant ion con-
centration during NPF, which in reality changes due to vary-
ing ion production and loss rates in the atmosphere. Obser-
vations suggest that NPF often concurs with a decrease in
the concentration of small ions, and the extent of decrease
varies between different field campaigns. (Note that for con-
tinental stations, the ion concentration usually has the highest
value in the morning and lowest value in the afternoon, pos-
sibly due to the variation of radon concentration (Hõrrak et
al., 2003). This general trend of ion concentration decrease
proceeds simultaneously with many NPF events.) Data from
the Tahkuse Observatory in the warm season of 1994 show
that the concentration of small cluster ions (mobility between
1.3 and 3.14 cm2 V−1 s−1) decreased by approximately 20 %
from 08:00 to 12:00 local time (LT) (Hõrrak et al., 2003).
Huang et al. (2022) show that the concentration of ions (mo-
bility between 0.5 and 3.14 cm2 V−1 s−1) decreases less than
25 % within during NPF events. Recently, Zhang et al. (2025)
reported that the median of ion concentration (mobility be-
tween 0.5 and 3.14 cm2 V−1 s−1) decreased by less than 10 %
from 09:00 and 15:00 LT during event days at the SMEAR II
station, and less than 25 % at the SORPES station.

According to the field observations, it is reasonable to as-
sume that in a typical NPF event, the ion concentration varies
by ±10 % around its mean value. Based on our sensitivity
analysis (Fig. 5f), a ±10 % variation of Nion leads to an un-
certainty of FIIN mostly by less than ±20 %. However, to
develop a rigorous quantitative relation between input varia-
tion and the particle charge fraction, further simulations with
time-varying inputs are needed. Additionally, we did not con-
sider scenarios where the mobilities and concentrations of
atmospheric positive and negative ions differ, restricting the
direct application of ResFWD in these cases. The applica-
bility of ResFWD can be further expanded by training the
neural network with a larger dataset that includes the above
considerations.

3.3 ResNet-assisted inference of FIIN

During field measurements of atmospheric NPF, the charge
fraction and its ratio to the steady-state charge fraction (rc)

can be measured across different particle sizes (Leppä et
al., 2013; Iida et al., 2006). To infer FIIN from these mea-
surements, the traditional approach involves identifying the
optimal FIIN value that best fits Eq. (11) to the measured rc.
In this study, we utilize simulated rc values at 2.2, 3, 4, 5, 6,
7, and 8 nm as inputs to directly infer FIIN using ResBWD.
Alongside particle charge fractions, additional inputs to the
ResNet model include GR, Nion, J , and CoagS (Fig. 1d).

As particles grow, the information of their initial charge
fraction can be obscured by interaction with atmospheric
ions. This is demonstrated by the rc–dp curves in Fig. S8a,
which shows that despite the different FIIN (from 0 % to
20 %), the particle charge fraction already converges to the
steady-state value (i.e., rc= 1) at dp= 2.2 nm at a high ion
concentration (Nion= 5000 cm−3). In this case, it becomes
impossible to infer FIIN from the observed particle charge
state since they are non-distinguishable. In contrast, at a
lower ion concentration (Nion= 450 cm−3), the rc–dp values
are still well separated at 2.2 nm; hence one can deduce FIIN
from the rc in this case. In general, for closely spaced rc–dp
curves at 2.2 nm, the neural network would find it difficult
to utilize their difference to infer FIIN. With these consid-
erations, we define a parameter χ as the change of particle
charge fraction at 2.2 nm when FIIN changes by 1 %, which
essentially characterizes the amount of information (regard-
ing FIIN) that is still retained as the particle size reaches
2.2 nm. The larger χ is, the further apart the rc–dp curves are,
and the more accurately the neural network can infer FIIN.

Figure 6a and b compare ResBWD-predicted FIIN and
the true FIIN for χ = 0.11 % and χ = 0.55 %, respectively,
demonstrating good agreement regardless of the χ employed.
This indicates that ResBWD effectively captures the nonlin-
ear relationship between the charge state of grown particles
and FIIN, even when the initial charge information is largely
lost (Fig. 6a, χ = 0.11 %). However, further sensitivity tests
(Fig. 6c–h) reveal that noise in input parameters to Res-
BWD (i.e., random noises of rc,2.2, rc,5, rc,8 within −10 %
to +10 %) results in FIIN variations primarily ranging from
−10 % to+10 % for χ = 0.55 % (lower panels), whereas this
variation increases to −20 % to +20 % for χ = 0.11 % (up-
per panels). This suggests that as initial particle charge infor-
mation is more obscured due to stronger particle interactions
with atmospheric ions, the deduction of FIIN from measured
charge fractions becomes increasingly uncertain. In other
words, when the rc–dp curves (see Fig. S8 for such curves)
are closely spaced, a small variation of rc may correspond to
a large variation of FIIN. At very low FIIN values (∼ 0.01),
high sensitivity for both χ = 0.11 % and χ = 0.55 % is ob-
served in Fig. 6c–h. This is as expected since the screening
criterion ensures the training data have an FIIN resolution on
the order of 1 %; hence at low FIIN values (close to 1 %)
ResBWD is more sensitive to noises. Further comparisons
of panels (d), (f), and (h) (or panels c, e, and g) indicate that
rc,2.2 is a more critical parameter for FIIN inference than rc,5
and rc,8, as it retains the most information about FIIN.

Atmos. Chem. Phys., 25, 7431–7446, 2025 https://doi.org/10.5194/acp-25-7431-2025



P. Wang et al.: Inference of particle charge state during NPF events 7443

Figure 6. (a–b) Comparison between the predicted FIIN by ResBWD and the true FIIN used in CDMS-ion simulation. The upper and lower
panels correspond to χ values of 0.11 % and 0.55 %, respectively. (c–h) Sensitivity of FIIN to noises of inputs including rc,2.2, rc,5, and rc,8.

The sensitivity is defined as Sx =
F noise

IIN −FIIN
FIIN

, with the subscript x denoting the size at which rc is varied. The green reference lines indicate
Sx values of ±0.2.

Overall, predicting FIIN from known rc values necessitates
more stringent conditions than the reverse process. This chal-
lenge stems from the loss of initial charge information as par-
ticles increase in size. To find parameter sets of GR, Nion, J ,
and CoagS which meet the screening criteria, the ResFWD
model can be employed to calculate χ .

4 Conclusions

In this study, we developed a two-dimensional sectional
model, CDMS-ion, to simulate particle growth as influenced
by atmospheric ions. Using this model, we first explored the
general characteristics of particle charge state evolution. Our
findings reveal that particle growth rate and ion concentra-
tion have the most significant effects on particle charge. No-
tably, when the number concentration of charged particles is
high, the ratio of the particle charge fraction to the steady-
state value can drop substantially below 1 due to coagula-
tion between oppositely charged particles. Furthermore, at-
mospheric new particles cannot be treated as if they are at
steady-state charge distribution until they grow to a certain
size (Eq. S13 in the Supplement).

Using the extensive dataset generated by CDMS-ion, we
trained two types of neural network models. The first model,
ResFWD, predicts the particle charge state as the particles
grow, under the assumption that the fraction of ion-induced

nucleation is known. This model effectively captures the non-
linearity of the particle charging process and shows good
agreement with model simulations. Compared to existing an-
alytical equations, ResFWD demonstrates improved accu-
racy, particularly at high FIIN and J conditions. Therefore,
this approach can serve as a reliable alternative to the analyt-
ical equation when the assumptions inherent in the training
data are met.

The second model, ResBWD, predicts the fraction of ion-
induced nucleation using particle charge fractions measured
at several sizes. This prediction is more challenging com-
pared to ResFWD because the initial charge information of
new particles may be lost as they grow. However, by restrict-
ing the application of the model to cases where initial charge
information is relatively well preserved (this screening can
be completed with ResFWD), we can achieve accurate pre-
dictions of FIIN with reasonable sensitivity to noises in the
input parameters .

This work represents an initial effort to describe the dy-
namic charging process of atmospheric new particles with
machine learning tools. With these tools, one can calculate
the charge state of the new particles as they grow or use ob-
served particle charge state to deduce the rates of ion-induced
nucleation, which is a major particle formation mechanism
on the global scale. Note that our simplifications of the NPF
processes include constant nucleation rates, constant atmo-

https://doi.org/10.5194/acp-25-7431-2025 Atmos. Chem. Phys., 25, 7431–7446, 2025



7444 P. Wang et al.: Inference of particle charge state during NPF events

spheric ion concentrations, and equal ion concentrations and
mobilities. Future endeavors to develop more comprehensive
ML models should take these complexities into account.
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