Articles | Volume 24, issue 11
https://doi.org/10.5194/acp-24-6757-2024
https://doi.org/10.5194/acp-24-6757-2024
Research article
 | 
12 Jun 2024
Research article |  | 12 Jun 2024

Photoenhanced sulfate formation by the heterogeneous uptake of SO2 on non-photoactive mineral dust

Wangjin Yang, Jiawei Ma, Hongxing Yang, Fu Li, and Chong Han

Related authors

Secondary organic aerosols from OH oxidation of cyclic volatile methyl siloxanes as an important Si source in the atmosphere
Chong Han, Hongxing Yang, Kun Li, Patrick Lee, John Liggio, Amy Leithead, and Shao-Meng Li
Atmos. Chem. Phys., 22, 10827–10839, https://doi.org/10.5194/acp-22-10827-2022,https://doi.org/10.5194/acp-22-10827-2022, 2022
Short summary
Secondary organic aerosol formation from α-pinene, alkanes, and oil-sands-related precursors in a new oxidation flow reactor
Kun Li, John Liggio, Patrick Lee, Chong Han, Qifan Liu, and Shao-Meng Li
Atmos. Chem. Phys., 19, 9715–9731, https://doi.org/10.5194/acp-19-9715-2019,https://doi.org/10.5194/acp-19-9715-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Comparison of water-soluble and water-insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024,https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Suppressed atmospheric chemical aging of cooking organic aerosol particles in wintertime conditions
Wenli Liu, Longkun He, Yingjun Liu, Keren Liao, Qi Chen, and Mikinori Kuwata
Atmos. Chem. Phys., 24, 5625–5636, https://doi.org/10.5194/acp-24-5625-2024,https://doi.org/10.5194/acp-24-5625-2024, 2024
Short summary
Formation and loss of light absorbance by phenolic aqueous SOA by OH and an organic triplet excited state
Stephanie Arciva, Lan Ma, Camille Mavis, Chrystal Guzman, and Cort Anastasio
Atmos. Chem. Phys., 24, 4473–4485, https://doi.org/10.5194/acp-24-4473-2024,https://doi.org/10.5194/acp-24-4473-2024, 2024
Short summary
Technical Note: A technique to convert NO2 to NO2 with S(IV) and its application to measuring nitrate photolysis
Aaron Lieberman, Julietta Picco, Murat Onder, and Cort Anastasio
Atmos. Chem. Phys., 24, 4411–4419, https://doi.org/10.5194/acp-24-4411-2024,https://doi.org/10.5194/acp-24-4411-2024, 2024
Short summary
Distribution, chemical, and molecular composition of high and low molecular weight humic-like substances in ambient aerosols
Xingjun Fan, Ao Cheng, Xufang Yu, Tao Cao, Dan Chen, Wenchao Ji, Yongbing Cai, Fande Meng, Jianzhong Song, and Ping'an Peng
Atmos. Chem. Phys., 24, 3769–3783, https://doi.org/10.5194/acp-24-3769-2024,https://doi.org/10.5194/acp-24-3769-2024, 2024
Short summary

Cited articles

Adams, J. W., Rodriguez, D., and Cox, R. A.: The uptake of SO2 on Saharan dust: a flow tube study, Atmos. Chem. Phys., 5, 2679–2689, https://doi.org/10.5194/acp-5-2679-2005, 2005. 
Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget, J. Geophy. Res., 114, 2309–2312, https://doi.org/10.1029/2008jd010486, 2009. 
Ammann, M., Poschl, U., and Rudich, Y.: Effects of reversible adsorption and Langmuir–Hinshelwood surface reactions on gas uptake by atmospheric particles, Phys. Chem. Chem. Phys., 5, 351–356, https://doi.org/10.1039/b208708a, 2003. 
Bounechada, D., Anderson, D., Skoglundh, M., and Carlsson, P.: SO2 adsorption on silica supported iridium, J. Chem. Phys., 146, 084701–084708, https://doi.org/10.1063/1.4976835, 2017. 
Brunauer, B., Deming, L., Deming, W., and Teller, E.: Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309–319, https://doi.org/10.1021/ja01269a023, 1938. 
Download
Short summary
We provide evidence that light enhances the conversion of SO2 to sulfates on non-photoactive mineral dust, where triplet states of SO2 (3SO2) can act as a pivotal trigger to generate sulfates. Photochemical sulfate formation depends on H2O, O2, and basicity of mineral dust. The SO2 photochemistry on non-photoactive mineral dust contributes to sulfates, highlighting previously unknown pathways to better explain the missing sources of atmospheric sulfates.
Altmetrics
Final-revised paper
Preprint