Articles | Volume 24, issue 9
https://doi.org/10.5194/acp-24-5369-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-24-5369-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
Institute of Energy and Climate Research 8 – Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Institute for Atmospheric and Environmental Research, University of Wuppertal, 42119 Wuppertal, Germany
Ulrich Bundke
Institute of Energy and Climate Research 8 – Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Anca Hienola
Finnish Meteorological Institute, Helsinki, 00560, Finland
Paolo Laj
Finnish Meteorological Institute, Helsinki, 00560, Finland
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Cathrine Lund Myhre
The Climate and Environmental Research Institute NILU, Kjeller, 2027, Norway
Alex Vermeulen
ICOS Carbon Portal, Department of Physical Geography and Ecosystem Science, Lund University, Lund, 22100, Sweden
ICOS ERIC Head Office, 00560 Helsinki, Finland
Angeliki Adamaki
ICOS Carbon Portal, Department of Physical Geography and Ecosystem Science, Lund University, Lund, 22100, Sweden
ICOS ERIC Head Office, 00560 Helsinki, Finland
Werner Kutsch
ICOS ERIC Head Office, 00560 Helsinki, Finland
Valerie Thouret
Laboratoire d'Aérologie, CNRS and Université Toulouse III – Paul Sabatier, 31400 Toulouse, France
Damien Boulanger
Laboratoire d'Aérologie, CNRS and Université Toulouse III – Paul Sabatier, 31400 Toulouse, France
Markus Fiebig
The Climate and Environmental Research Institute NILU, Kjeller, 2027, Norway
Markus Stocker
TIB – Leibniz Information Centre for Science and Technology, 30167 Hanover, Germany
Zhiming Zhao
Informatics Institute, University of Amsterdam, LifeWatch ERIC Virtual Laboratory and Innovation Centre, 1098XH Amsterdam, the Netherlands
Ari Asmi
Research Data Alliance Association (Europe) AISBL, 1040 Etterbeek, Belgium
Related authors
Herman G.J. Smit, Torben Galle, Romain Blot, Florian Obersteiner, Philippe Nédélec, Andreas Zahn, Jean-Marc Cousin, Ulrich Bundke, Andreas Petzold, Valerie Thouret, and Hannah Clark
EGUsphere, https://doi.org/10.5194/egusphere-2024-3760, https://doi.org/10.5194/egusphere-2024-3760, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The two ozone instruments of IAGOS (In-service Aircraft for a Global Observation System) have been compared with the Ozone PhotoMeter (OPM) of the World Calibration Center of Ozone Sondes (WCCOS) in an atmospheric simulation chamber under realistic flight conditions of pressure, temperature, and ozone concentrations. The two IAGOS-instruments showed good agreement with the OPM within 5–6 %. The observed differences are small but systematic and reproducible during the intercomparison.
This article is included in the Encyclopedia of Geosciences
Kuo-Ying Wang, Philippe Nedelec, Valerie Thouret, Hannah Clark, Andreas Wahner, and Andreas Petzold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2414, https://doi.org/10.5194/egusphere-2024-2414, 2024
Short summary
Short summary
We use routine in-service commercial passenger airplanes Airbus A340 and A330 to collect air pollutants in the upper troposphere. The beauty in using commercial airplanes is that these commercial airplanes, like taxi on the ground, keep flying all the time. We find that short-lived air pollutants are very sensitive to ground-level emissions. Effective regulation in ground-level emissions can help to reduce air pollution in the upper troposphere.
This article is included in the Encyclopedia of Geosciences
Patrick Konjari, Christian Rolf, Michaela Imelda Hegglin, Susanne Rohs, Yun Li, Andreas Zahn, Harald Bönisch, Martina Krämer, and Andreas Petzold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2360, https://doi.org/10.5194/egusphere-2024-2360, 2024
Short summary
Short summary
This study introduces a new method to deriving adjusted water vapor (H2O) climatologies for the upper tropopshere and lower statosphere (UT/LS) using data from 60,000 flights under the IAGOS program. Biases in the IAGOS water vapor dataset are adjusted, based on the more accurate IAGOS-CARIBIC data. The resulting highly resolved H2O climatologies will contribute to a better understanding of the H2O variability in the UT/LS and its connection to various transport and mixing processes.
This article is included in the Encyclopedia of Geosciences
Yann Cohen, Didier Hauglustaine, Nicolas Bellouin, Marianne Tronstad Lund, Sigrun Matthes, Agnieszka Skowron, Robin Thor, Ulrich Bundke, Andreas Petzold, Susanne Rohs, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
EGUsphere, https://doi.org/10.5194/egusphere-2024-2208, https://doi.org/10.5194/egusphere-2024-2208, 2024
Short summary
Short summary
The chemical composition of the atmosphere near the tropopause is a key parameter for evaluating the climate impact of subsonic aviation pollutants. This study uses in-situ data on board passenger aircraft to assess the ability of 5 chemistry-climate models to reproduce (bi-)decadal climatologies in ozone, carbon monoxide, water vapour, and reactive nitrogen in this region. The models reproduce well the very distinct ozone seasonality in the upper troposphere and in the lower stratosphere.
This article is included in the Encyclopedia of Geosciences
Ziming Wang, Luca Bugliaro, Klaus Gierens, Michaela I. Hegglin, Susanne Rohs, Andreas Petzold, Stefan Kaufmann, and Christiane Voigt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2012, https://doi.org/10.5194/egusphere-2024-2012, 2024
Short summary
Short summary
Upper tropospheric relative humidity bias in the ERA5 weather model is corrected by 9 % by an artificial neural network using aircraft in-service humidity data and thermodynamic and dynamical variables. The improved skills of the weather model will advance cirrus research, weather forecast and measures for contrail reduction.
This article is included in the Encyclopedia of Geosciences
Yann Cohen, Didier Hauglustaine, Bastien Sauvage, Susanne Rohs, Patrick Konjari, Ulrich Bundke, Andreas Petzold, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 23, 14973–15009, https://doi.org/10.5194/acp-23-14973-2023, https://doi.org/10.5194/acp-23-14973-2023, 2023
Short summary
Short summary
The upper troposphere–lower stratosphere (UTLS) is a key region regarding the lower atmospheric composition. This study consists of a comprehensive evaluation of an up-to-date chemistry–climate model in this layer, using regular in situ measurements based on passenger aircraft. For this purpose, a specific software (Interpol-IAGOS) has been updated and made publicly available. The model reproduces the carbon monoxide peaks due to biomass burning over the continental tropics particularly well.
This article is included in the Encyclopedia of Geosciences
Patrick Weber, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Susanne Hering, Steven Spielman, Gregory Lewis, Andreas Petzold, and Ulrich Bundke
Atmos. Meas. Tech., 16, 3505–3514, https://doi.org/10.5194/amt-16-3505-2023, https://doi.org/10.5194/amt-16-3505-2023, 2023
Short summary
Short summary
This study tests the new water condensation particle counter (MAGIC 210-LP) for deployment on passenger aircraft coordinated by the European research infrastructure IAGOS. We conducted a series of laboratory experiments for flight altitude conditions. We demonstrate that this water condensation particle counter model shows excellent agreement with a butanol-based instrument used in parallel and a Faraday cup electrometer as reference instrument at all tested pressure conditions.
This article is included in the Encyclopedia of Geosciences
Patrick Weber, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Jannik Schmitt, Gerhard Steiner, Lothar Keck, Andreas Petzold, and Ulrich Bundke
Aerosol Research, 1, 1–12, https://doi.org/10.5194/ar-1-1-2023, https://doi.org/10.5194/ar-1-1-2023, 2023
Short summary
Short summary
The aerosol number concentration is essential information for aerosol science. A condensation particle counter (CPC) can robustly provide this information. Butanol is often used as a working fluid in a CPC. We could show that dimethyl sulfoxide (DMSO) behaves equivalently to butanol in terms of the instrument`s counting efficiency, cut-off diameter and concentration linearity. We tested this on different aerosols, including sodium chloride, ammonium sulfate and fresh combustion soot.
This article is included in the Encyclopedia of Geosciences
Yun Li, Christoph Mahnke, Susanne Rohs, Ulrich Bundke, Nicole Spelten, Georgios Dekoutsidis, Silke Groß, Christiane Voigt, Ulrich Schumann, Andreas Petzold, and Martina Krämer
Atmos. Chem. Phys., 23, 2251–2271, https://doi.org/10.5194/acp-23-2251-2023, https://doi.org/10.5194/acp-23-2251-2023, 2023
Short summary
Short summary
The radiative effect of aviation-induced cirrus is closely related to ambient conditions and its microphysical properties. Our study investigated the occurrence of contrail and natural cirrus measured above central Europe in spring 2014. It finds that contrail cirrus appears frequently in the pressure range 200 to 245 hPa and occurs more often in slightly ice-subsaturated environments than expected. Avoiding slightly ice-subsaturated regions by aviation might help mitigate contrail cirrus.
This article is included in the Encyclopedia of Geosciences
Patrick Weber, Andreas Petzold, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Andrew Freedman, Timothy B. Onasch, and Ulrich Bundke
Atmos. Meas. Tech., 15, 3279–3296, https://doi.org/10.5194/amt-15-3279-2022, https://doi.org/10.5194/amt-15-3279-2022, 2022
Short summary
Short summary
In our laboratory closure study, we measured the full set of aerosol optical properties for different light-absorbing aerosols using a set of instruments.
Our key finding is that the extensive and intensive aerosol optical properties obtained agree with data from reference instruments, except the absorption Ångström exponent of externally mixed aerosols. The reported uncertainty in the single-scattering albedo fulfils the defined goals for Global Climate Observing System applications of 10 %.
This article is included in the Encyclopedia of Geosciences
Martin J. Osborne, Johannes de Leeuw, Claire Witham, Anja Schmidt, Frances Beckett, Nina Kristiansen, Joelle Buxmann, Cameron Saint, Ellsworth J. Welton, Javier Fochesatto, Ana R. Gomes, Ulrich Bundke, Andreas Petzold, Franco Marenco, and Jim Haywood
Atmos. Chem. Phys., 22, 2975–2997, https://doi.org/10.5194/acp-22-2975-2022, https://doi.org/10.5194/acp-22-2975-2022, 2022
Short summary
Short summary
Using the Met Office NAME dispersion model, supported by satellite- and ground-based remote-sensing observations, we describe the dispersion of aerosols from the 2019 Raikoke eruption and the concurrent wildfires in Alberta Canada. We show how the synergy of dispersion modelling and multiple observation sources allowed observers in the London VAAC to arrive at a more complete picture of the aerosol loading at altitudes commonly used by aviation.
This article is included in the Encyclopedia of Geosciences
Hannah Clark, Yasmine Bennouna, Maria Tsivlidou, Pawel Wolff, Bastien Sauvage, Brice Barret, Eric Le Flochmoën, Romain Blot, Damien Boulanger, Jean-Marc Cousin, Philippe Nédélec, Andreas Petzold, and Valérie Thouret
Atmos. Chem. Phys., 21, 16237–16256, https://doi.org/10.5194/acp-21-16237-2021, https://doi.org/10.5194/acp-21-16237-2021, 2021
Short summary
Short summary
We examined 27 years of IAGOS (In-service Aircraft for a Global Observing System) profiles at Frankfurt to see if there were unusual features during the spring of 2020 related to COVID-19 lockdowns in Europe. Increased ozone near the surface was partly linked to the reduction in emissions. Carbon monoxide decreased near the surface, but the impact of the lockdowns was offset by polluted air masses from elsewhere. There were small reductions in ozone and carbon monoxide in the free troposphere.
This article is included in the Encyclopedia of Geosciences
Julia Perim de Faria, Ulrich Bundke, Andrew Freedman, Timothy B. Onasch, and Andreas Petzold
Atmos. Meas. Tech., 14, 1635–1653, https://doi.org/10.5194/amt-14-1635-2021, https://doi.org/10.5194/amt-14-1635-2021, 2021
Short summary
Short summary
An evaluation of the performance and accuracy of a Cavity Attenuated Phase-Shift Single Scattering Albedo Monitor (CAPS PMSSA; Aerodyne Research, Inc.) was conducted in an optical-closure study with proven technologies for aerosol particle optical-property measurements. This study demonstrates that the CAPS PMSSA is a robust and reliable instrument for the direct measurement of the particle scattering and extinction coefficients and thus single-scattering albedo.
This article is included in the Encyclopedia of Geosciences
Andreas Petzold, Patrick Neis, Mihal Rütimann, Susanne Rohs, Florian Berkes, Herman G. J. Smit, Martina Krämer, Nicole Spelten, Peter Spichtinger, Philippe Nédélec, and Andreas Wahner
Atmos. Chem. Phys., 20, 8157–8179, https://doi.org/10.5194/acp-20-8157-2020, https://doi.org/10.5194/acp-20-8157-2020, 2020
Short summary
Short summary
The first analysis of 15 years of global-scale water vapour and relative humidity observations by passenger aircraft in the MOZAIC and IAGOS programmes resolves detailed features of water vapour and ice-supersaturated air in the mid-latitude tropopause. Key results provide in-depth insight into seasonal and regional variability and chemical signatures of ice-supersaturated air masses, including trend analyses, and show a close link to cirrus clouds and their highly important effects on climate.
This article is included in the Encyclopedia of Geosciences
Florian Berkes, Norbert Houben, Ulrich Bundke, Harald Franke, Hans-Werner Pätz, Franz Rohrer, Andreas Wahner, and Andreas Petzold
Atmos. Meas. Tech., 11, 3737–3757, https://doi.org/10.5194/amt-11-3737-2018, https://doi.org/10.5194/amt-11-3737-2018, 2018
Short summary
Short summary
The need for in situ nitrogen oxide measurements on a global scale is crucial to improve the chemistry in global chemistry models and evaluate satellite retrievals. Here we present the characterization of the new IAGOS NOx instrument installed on passenger aircraft, which will provide statistical robust measurements from the surface up to 13 km.
This article is included in the Encyclopedia of Geosciences
Florian Berkes, Patrick Neis, Martin G. Schultz, Ulrich Bundke, Susanne Rohs, Herman G. J. Smit, Andreas Wahner, Paul Konopka, Damien Boulanger, Philippe Nédélec, Valerie Thouret, and Andreas Petzold
Atmos. Chem. Phys., 17, 12495–12508, https://doi.org/10.5194/acp-17-12495-2017, https://doi.org/10.5194/acp-17-12495-2017, 2017
Short summary
Short summary
This study highlights the importance of independent global measurements with high and long-term accuracy to quantify long-term changes, especially in the UTLS region, and to help identify inconsistencies between different data sets of observations and models. Here we investigated temperature trends over different regions within a climate-sensitive area of the atmosphere and demonstrated the value of the IAGOS temperature observations as an anchor point for the evaluation of reanalyses.
This article is included in the Encyclopedia of Geosciences
Ralf Weigel, Peter Spichtinger, Christoph Mahnke, Marcus Klingebiel, Armin Afchine, Andreas Petzold, Martina Krämer, Anja Costa, Sergej Molleker, Philipp Reutter, Miklós Szakáll, Max Port, Lucas Grulich, Tina Jurkat, Andreas Minikin, and Stephan Borrmann
Atmos. Meas. Tech., 9, 5135–5162, https://doi.org/10.5194/amt-9-5135-2016, https://doi.org/10.5194/amt-9-5135-2016, 2016
Short summary
Short summary
The subject of our study concerns measurements with optical array probes (OAPs) on fast-flying aircraft such as the G550 (HALO or HIAPER). At up to Mach 0.7 the effect of air compression upstream of underwing-mounted instruments and particles' inertia need consideration for determining ambient particle concentrations. Compared to conventional practices the introduced correction procedure eliminates ambiguities and exhibits consistency over flight speeds between 50 and 250 m s−.
This article is included in the Encyclopedia of Geosciences
P. Neis, H. G. J. Smit, M. Krämer, N. Spelten, and A. Petzold
Atmos. Meas. Tech., 8, 1233–1243, https://doi.org/10.5194/amt-8-1233-2015, https://doi.org/10.5194/amt-8-1233-2015, 2015
H. G. J. Smit, S. Rohs, P. Neis, D. Boulanger, M. Krämer, A. Wahner, and A. Petzold
Atmos. Chem. Phys., 14, 13241–13255, https://doi.org/10.5194/acp-14-13241-2014, https://doi.org/10.5194/acp-14-13241-2014, 2014
Short summary
Short summary
Long-term water vapour measurements from the MOZAIC programme are a unique source for upper troposphere humidity data. However, due to an error in the calibration procedure, RH data from MOZAIC were biased towards higher values for the period starting in year 2000. Here we report the procedures followed to reanalyse the calibrations and to reprocess the entire MOZAIC RH data. This study serves as the reference publication for the reanalysed MOZAIC RH data base for the period 1994 to 2009.
This article is included in the Encyclopedia of Geosciences
J. Tian, N. Riemer, M. West, L. Pfaffenberger, H. Schlager, and A. Petzold
Atmos. Chem. Phys., 14, 5327–5347, https://doi.org/10.5194/acp-14-5327-2014, https://doi.org/10.5194/acp-14-5327-2014, 2014
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
J. C. Corbin, B. Sierau, M. Gysel, M. Laborde, A. Keller, J. Kim, A. Petzold, T. B. Onasch, U. Lohmann, and A. A. Mensah
Atmos. Chem. Phys., 14, 2591–2603, https://doi.org/10.5194/acp-14-2591-2014, https://doi.org/10.5194/acp-14-2591-2014, 2014
P. Jeßberger, C. Voigt, U. Schumann, I. Sölch, H. Schlager, S. Kaufmann, A. Petzold, D. Schäuble, and J.-F. Gayet
Atmos. Chem. Phys., 13, 11965–11984, https://doi.org/10.5194/acp-13-11965-2013, https://doi.org/10.5194/acp-13-11965-2013, 2013
A. Petzold, J. A. Ogren, M. Fiebig, P. Laj, S.-M. Li, U. Baltensperger, T. Holzer-Popp, S. Kinne, G. Pappalardo, N. Sugimoto, C. Wehrli, A. Wiedensohler, and X.-Y. Zhang
Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, https://doi.org/10.5194/acp-13-8365-2013, 2013
A. Petzold, T. Onasch, P. Kebabian, and A. Freedman
Atmos. Meas. Tech., 6, 1141–1151, https://doi.org/10.5194/amt-6-1141-2013, https://doi.org/10.5194/amt-6-1141-2013, 2013
S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold
Atmos. Chem. Phys., 13, 2487–2505, https://doi.org/10.5194/acp-13-2487-2013, https://doi.org/10.5194/acp-13-2487-2013, 2013
R. Weller, A. Minikin, A. Petzold, D. Wagenbach, and G. König-Langlo
Atmos. Chem. Phys., 13, 1579–1590, https://doi.org/10.5194/acp-13-1579-2013, https://doi.org/10.5194/acp-13-1579-2013, 2013
M. Gysel, M. Laborde, A. A. Mensah, J. C. Corbin, A. Keller, J. Kim, A. Petzold, and B. Sierau
Atmos. Meas. Tech., 5, 3099–3107, https://doi.org/10.5194/amt-5-3099-2012, https://doi.org/10.5194/amt-5-3099-2012, 2012
T. Hamburger, G. McMeeking, A. Minikin, A. Petzold, H. Coe, and R. Krejci
Atmos. Chem. Phys., 12, 11533–11554, https://doi.org/10.5194/acp-12-11533-2012, https://doi.org/10.5194/acp-12-11533-2012, 2012
Diego Aliaga, Victoria A. Sinclair, Radovan Krejci, Marcos Andrade, Paulo Artaxo, Luis Blacutt, Runlong Cai, Samara Carbone, Yvette Gramlich, Liine Heikkinen, Dominic Heslin-Rees, Wei Huang, Veli-Matti Kerminen, Alkuin Maximilian Koenig, Markku Kulmala, Paolo Laj, Valeria Mardoñez-Balderrama, Claudia Mohr, Isabel Moreno, Pauli Paasonen, Wiebke Scholz, Karine Sellegri, Laura Ticona, Gaëlle Uzu, Fernando Velarde, Alfred Wiedensohler, Doug Worsnop, Cheng Wu, Chen Xuemeng, Qiaozhi Zha, and Federico Bianchi
Aerosol Research, 3, 15–44, https://doi.org/10.5194/ar-3-15-2025, https://doi.org/10.5194/ar-3-15-2025, 2025
Short summary
Short summary
This study examines new particle formation (NPF) in the Bolivian Andes at Chacaltaya mountain (CHC) and the urban El Alto–La Paz area (EAC). Days are clustered into four categories based on NPF intensity. Differences in particle size, precursor gases, and pollution levels are found. High NPF intensities increased Aitken mode particle concentrations at both sites, while volcanic influence selectively diminished NPF intensity at CHC but not EAC. This study highlights NPF dynamics in the Andes.
This article is included in the Encyclopedia of Geosciences
Roeland Van Malderen, Anne M. Thompson, Debra E. Kollonige, Ryan M. Stauffer, Herman G. J. Smit, Eliane Maillard Barras, Corinne Vigouroux, Irina Petropavlovskikh, Thierry Leblanc, Valérie Thouret, Pawel Wolff, Peter Effertz, David W. Tarasick, Deniz Poyraz, Gérard Ancellet, Marie-Renée De Backer, Stéphanie Evan, Victoria Flood, Matthias M. Frey, James W. Hannigan, José L. Hernandez, Marco Iarlori, Bryan J. Johnson, Nicholas Jones, Rigel Kivi, Emmanuel Mahieu, Glen McConville, Katrin Müller, Tomoo Nagahama, Justus Notholt, Ankie Piters, Natalia Prats, Richard Querel, Dan Smale, Wolfgang Steinbrecht, Kimberly Strong, and Ralf Sussmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3736, https://doi.org/10.5194/egusphere-2024-3736, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas and is an air pollutant. The time variability of tropospheric ozone is mainly driven by anthropogenic emissions. In this paper, we study the distribution and time variability of ozone from harmonized ground-based observations from five different measurement techniques. Our findings will provide clear standard references for atmospheric models and evolving tropospheric ozone satellite data for the 2000–2022 period.
This article is included in the Encyclopedia of Geosciences
Roeland Van Malderen, Zhou Zang, Kai-Lan Chang, Robin Björklund, Owen R. Cooper, Jane Liu, Eliane Maillard Barras, Corinne Vigouroux, Irina Petropavlovskikh, Thierry Leblanc, Valérie Thouret, Pawel Wolff, Peter Effertz, Audrey Gaudel, David W. Tarasick, Herman G. J. Smit, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Deniz Poyraz, Gérard Ancellet, Marie-Renée De Backer, Matthias M. Frey, James W. Hannigan, José L. Hernandez, Bryan J. Johnson, Nicholas Jones, Rigel Kivi, Emmanuel Mahieu, Isamu Morino, Glen McConville, Katrin Müller, Isao Murata, Justus Notholt, Ankie Piters, Maxime Prignon, Richard Querel, Vincenzo Rizi, Dan Smale, Wolfgang Steinbrecht, Kimberly Strong, and Ralf Sussmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3745, https://doi.org/10.5194/egusphere-2024-3745, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas and an air pollutant, whose distribution and time variability is mainly governed by anthropogenic emissions and dynamics. In this paper, we assess regional trends of tropospheric ozone column amounts, based on two different approaches of merging or synthesizing ground-based observations and their trends within specific regions. Our findings clearly demonstrate regional trend differences, but also consistently higher pre- than post-COVID trends.
This article is included in the Encyclopedia of Geosciences
Herman G.J. Smit, Torben Galle, Romain Blot, Florian Obersteiner, Philippe Nédélec, Andreas Zahn, Jean-Marc Cousin, Ulrich Bundke, Andreas Petzold, Valerie Thouret, and Hannah Clark
EGUsphere, https://doi.org/10.5194/egusphere-2024-3760, https://doi.org/10.5194/egusphere-2024-3760, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The two ozone instruments of IAGOS (In-service Aircraft for a Global Observation System) have been compared with the Ozone PhotoMeter (OPM) of the World Calibration Center of Ozone Sondes (WCCOS) in an atmospheric simulation chamber under realistic flight conditions of pressure, temperature, and ozone concentrations. The two IAGOS-instruments showed good agreement with the OPM within 5–6 %. The observed differences are small but systematic and reproducible during the intercomparison.
This article is included in the Encyclopedia of Geosciences
Thibaut Lebourgeois, Bastien Sauvage, Pawel Wolff, Béatrice Josse, Virginie Marécal, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Jean-Marc Cousin, Philippe Nedelec, and Valérie Thouret
Atmos. Chem. Phys., 24, 13975–14004, https://doi.org/10.5194/acp-24-13975-2024, https://doi.org/10.5194/acp-24-13975-2024, 2024
Short summary
Short summary
Our study examines intense-carbon-monoxide (CO) pollution events measured by commercial aircraft from the In-service Aircraft for a Global Observing System (IAGOS) research infrastructure. We combine these measurements with the SOFT-IO model to trace the origin of the observed CO. A comprehensive analysis of the geographical origin, source type, seasonal variation, and ozone levels of these pollution events is provided.
This article is included in the Encyclopedia of Geosciences
Marie Lothon, François Gheusi, Fabienne Lohou, Véronique Pont, Serge Soula, Corinne Jambert, Solène Derrien, Yannick Bezombes, Emmanuel Leclerc, Gilles Athier, Antoine Vial, Alban Philibert, Bernard Campistron, Frédérique Saïd, Jeroen Sonke, Julien Amestoy, Erwan Bargain, Pierre Bosser, Damien Boulanger, Guillaume Bret, Renaud Bodichon, Laurent Cabanas, Guylaine Canut, Jean-Bernard Estrampes, Eric Gardrat, Zaida Gomez Kuri, Jérémy Gueffier, Fabienne Guesdon, Morgan Lopez, Olivier Masson, Pierre-Yves Meslin, Yves Meyerfeld, Nicolas Pascal, Eric Pique, Michel Ramonet, Felix Starck, and Romain Vidal
Atmos. Meas. Tech., 17, 6265–6300, https://doi.org/10.5194/amt-17-6265-2024, https://doi.org/10.5194/amt-17-6265-2024, 2024
Short summary
Short summary
The Pyrenean Platform for Observation of the Atmosphere (P2OA) is a coupled plain–mountain instrumented platform in southwestern France for the monitoring of climate variables and the study of meteorological processes in a mountainous region. A comprehensive description of this platform is presented for the first time: its instrumentation, the associated dataset, and a meteorological characterization the site. The potential of the P2OA is illustrated through several examples of process studies.
This article is included in the Encyclopedia of Geosciences
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024, https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the Southern Hemisphere, especially in high-altitude conditions. This study provides insight into the concentration level, variability, and optical properties of BC in La Paz and El Alto and at the Chacaltaya Global Atmosphere Watch Station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, in addition to biomass and open waste burning.
This article is included in the Encyclopedia of Geosciences
Johannes Heuser, Claudia Di Biagio, Jerome Yon, Mathieu Cazaunau, Antonin Bergé, Edouard Pangui, Marco Zanatta, Laura Renzi, Angela Marinoni, Satoshi Inomata, Chenjie Yu, Vera Bernardoni, Servanne Chevaillier, Daniel Ferry, Paolo Laj, Michel Maillé, Dario Massabò, Federico Mazzei, Gael Noyalet, Hiroshi Tanimoto, Brice Temime-Roussel, Roberta Vecchi, Virginia Vernocchi, Paola Formenti, Bénédicte Picquet-Varrault, and Jean-François Doussin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2381, https://doi.org/10.5194/egusphere-2024-2381, 2024
Short summary
Short summary
The spectral optical properties of combustion soot aerosols with varying black (BC) and brown carbon (BrC) content were studied in an atmospheric simulation chamber. Measurements of the mass spectral absorption cross section (MAC), supplement by literature data, allowed to establish a generalized exponential relationship between the spectral MAC and the elemental-to-total carbon ratio (EC/TC) in soot. This relationship can provide a useful tool for modelling the properties of soot.
This article is included in the Encyclopedia of Geosciences
Henk Eskes, Athanasios Tsikerdekis, Melanie Ades, Mihai Alexe, Anna Carlin Benedictow, Yasmine Bennouna, Lewis Blake, Idir Bouarar, Simon Chabrillat, Richard Engelen, Quentin Errera, Johannes Flemming, Sebastien Garrigues, Jan Griesfeller, Vincent Huijnen, Luka Ilić, Antje Inness, John Kapsomenakis, Zak Kipling, Bavo Langerock, Augustin Mortier, Mark Parrington, Isabelle Pison, Mikko Pitkänen, Samuel Remy, Andreas Richter, Anja Schoenhardt, Michael Schulz, Valerie Thouret, Thorsten Warneke, Christos Zerefos, and Vincent-Henri Peuch
Atmos. Chem. Phys., 24, 9475–9514, https://doi.org/10.5194/acp-24-9475-2024, https://doi.org/10.5194/acp-24-9475-2024, 2024
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service (CAMS) provides global analyses and forecasts of aerosols and trace gases in the atmosphere. On 27 June 2023 a major upgrade, Cy48R1, became operational. Comparisons with in situ, surface remote sensing, aircraft, and balloon and satellite observations show that the new CAMS system is a significant improvement. The results quantify the skill of CAMS to forecast impactful events, such as wildfires, dust storms and air pollution peaks.
This article is included in the Encyclopedia of Geosciences
Kuo-Ying Wang, Philippe Nedelec, Valerie Thouret, Hannah Clark, Andreas Wahner, and Andreas Petzold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2414, https://doi.org/10.5194/egusphere-2024-2414, 2024
Short summary
Short summary
We use routine in-service commercial passenger airplanes Airbus A340 and A330 to collect air pollutants in the upper troposphere. The beauty in using commercial airplanes is that these commercial airplanes, like taxi on the ground, keep flying all the time. We find that short-lived air pollutants are very sensitive to ground-level emissions. Effective regulation in ground-level emissions can help to reduce air pollution in the upper troposphere.
This article is included in the Encyclopedia of Geosciences
Patrick Konjari, Christian Rolf, Michaela Imelda Hegglin, Susanne Rohs, Yun Li, Andreas Zahn, Harald Bönisch, Martina Krämer, and Andreas Petzold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2360, https://doi.org/10.5194/egusphere-2024-2360, 2024
Short summary
Short summary
This study introduces a new method to deriving adjusted water vapor (H2O) climatologies for the upper tropopshere and lower statosphere (UT/LS) using data from 60,000 flights under the IAGOS program. Biases in the IAGOS water vapor dataset are adjusted, based on the more accurate IAGOS-CARIBIC data. The resulting highly resolved H2O climatologies will contribute to a better understanding of the H2O variability in the UT/LS and its connection to various transport and mixing processes.
This article is included in the Encyclopedia of Geosciences
Yann Cohen, Didier Hauglustaine, Nicolas Bellouin, Marianne Tronstad Lund, Sigrun Matthes, Agnieszka Skowron, Robin Thor, Ulrich Bundke, Andreas Petzold, Susanne Rohs, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
EGUsphere, https://doi.org/10.5194/egusphere-2024-2208, https://doi.org/10.5194/egusphere-2024-2208, 2024
Short summary
Short summary
The chemical composition of the atmosphere near the tropopause is a key parameter for evaluating the climate impact of subsonic aviation pollutants. This study uses in-situ data on board passenger aircraft to assess the ability of 5 chemistry-climate models to reproduce (bi-)decadal climatologies in ozone, carbon monoxide, water vapour, and reactive nitrogen in this region. The models reproduce well the very distinct ozone seasonality in the upper troposphere and in the lower stratosphere.
This article is included in the Encyclopedia of Geosciences
Ziming Wang, Luca Bugliaro, Klaus Gierens, Michaela I. Hegglin, Susanne Rohs, Andreas Petzold, Stefan Kaufmann, and Christiane Voigt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2012, https://doi.org/10.5194/egusphere-2024-2012, 2024
Short summary
Short summary
Upper tropospheric relative humidity bias in the ERA5 weather model is corrected by 9 % by an artificial neural network using aircraft in-service humidity data and thermodynamic and dynamical variables. The improved skills of the weather model will advance cirrus research, weather forecast and measures for contrail reduction.
This article is included in the Encyclopedia of Geosciences
C. Isabel Moreno, Radovan Krejci, Jean-Luc Jaffrezo, Gaëlle Uzu, Andrés Alastuey, Marcos F. Andrade, Valeria Mardóñez, Alkuin Maximilian Koenig, Diego Aliaga, Claudia Mohr, Laura Ticona, Fernando Velarde, Luis Blacutt, Ricardo Forno, David N. Whiteman, Alfred Wiedensohler, Patrick Ginot, and Paolo Laj
Atmos. Chem. Phys., 24, 2837–2860, https://doi.org/10.5194/acp-24-2837-2024, https://doi.org/10.5194/acp-24-2837-2024, 2024
Short summary
Short summary
Aerosol chemical composition (ions, sugars, carbonaceous matter) from 2011 to 2020 was studied at Mt. Chacaltaya (5380 m a.s.l., Bolivian Andes). Minimum concentrations occur in the rainy season with maxima in the dry and transition seasons. The origins of the aerosol are located in a radius of hundreds of kilometers: nearby urban and rural areas, natural biogenic emissions, vegetation burning from Amazonia and Chaco, Pacific Ocean emissions, soil dust, and Peruvian volcanism.
This article is included in the Encyclopedia of Geosciences
Karl Espen Yttri, Are Bäcklund, Franz Conen, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Anne Kasper-Giebl, Avram Gold, Hans Gundersen, Cathrine Lund Myhre, Stephen Matthew Platt, David Simpson, Jason D. Surratt, Sönke Szidat, Martin Rauber, Kjetil Tørseth, Martin Album Ytre-Eide, Zhenfa Zhang, and Wenche Aas
Atmos. Chem. Phys., 24, 2731–2758, https://doi.org/10.5194/acp-24-2731-2024, https://doi.org/10.5194/acp-24-2731-2024, 2024
Short summary
Short summary
We discuss carbonaceous aerosol (CA) observed at the high Arctic Zeppelin Observatory (2017 to 2020). We find that organic aerosol is a significant fraction of the Arctic aerosol, though less than sea salt aerosol and mineral dust, as well as non-sea-salt sulfate, originating mainly from anthropogenic sources in winter and from natural sources in summer, emphasizing the importance of wildfires for biogenic secondary organic aerosol and primary biological aerosol particles observed in the Arctic.
This article is included in the Encyclopedia of Geosciences
Arto Heitto, Cheng Wu, Diego Aliaga, Luis Blacutt, Xuemeng Chen, Yvette Gramlich, Liine Heikkinen, Wei Huang, Radovan Krejci, Paolo Laj, Isabel Moreno, Karine Sellegri, Fernando Velarde, Kay Weinhold, Alfred Wiedensohler, Qiaozhi Zha, Federico Bianchi, Marcos Andrade, Kari E. J. Lehtinen, Claudia Mohr, and Taina Yli-Juuti
Atmos. Chem. Phys., 24, 1315–1328, https://doi.org/10.5194/acp-24-1315-2024, https://doi.org/10.5194/acp-24-1315-2024, 2024
Short summary
Short summary
Particle growth at the Chacaltaya station in Bolivia was simulated based on measured vapor concentrations and ambient conditions. Major contributors to the simulated growth were low-volatility organic compounds (LVOCs). Also, sulfuric acid had major role when volcanic activity was occurring in the area. This study provides insight on nanoparticle growth at this high-altitude Southern Hemispheric site and hence contributes to building knowledge of early growth of atmospheric particles.
This article is included in the Encyclopedia of Geosciences
Zhendong Wu, Alex Vermeulen, Yousuke Sawa, Ute Karstens, Wouter Peters, Remco de Kok, Xin Lan, Yasuyuki Nagai, Akinori Ogi, and Oksana Tarasova
Atmos. Chem. Phys., 24, 1249–1264, https://doi.org/10.5194/acp-24-1249-2024, https://doi.org/10.5194/acp-24-1249-2024, 2024
Short summary
Short summary
This study focuses on exploring the differences in calculating global surface CO2 and its growth rate, considering the impact of analysis methodologies and site selection. Our study reveals that the current global CO2 network has a good capacity to represent global surface CO2 and its growth rate, as well as trends in atmospheric CO2 mass changes. However, small differences exist in different analyses due to the impact of methodology and site selection.
This article is included in the Encyclopedia of Geosciences
Yann Cohen, Didier Hauglustaine, Bastien Sauvage, Susanne Rohs, Patrick Konjari, Ulrich Bundke, Andreas Petzold, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 23, 14973–15009, https://doi.org/10.5194/acp-23-14973-2023, https://doi.org/10.5194/acp-23-14973-2023, 2023
Short summary
Short summary
The upper troposphere–lower stratosphere (UTLS) is a key region regarding the lower atmospheric composition. This study consists of a comprehensive evaluation of an up-to-date chemistry–climate model in this layer, using regular in situ measurements based on passenger aircraft. For this purpose, a specific software (Interpol-IAGOS) has been updated and made publicly available. The model reproduces the carbon monoxide peaks due to biomass burning over the continental tropics particularly well.
This article is included in the Encyclopedia of Geosciences
Maria Tsivlidou, Bastien Sauvage, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Eric Le Flochmoën, Philippe Nédélec, Valérie Thouret, Pawel Wolff, and Brice Barret
Atmos. Chem. Phys., 23, 14039–14063, https://doi.org/10.5194/acp-23-14039-2023, https://doi.org/10.5194/acp-23-14039-2023, 2023
Short summary
Short summary
The tropics are a region where the ozone increase has been most apparent since 1980 and where observations are sparse. Using aircraft, satellite, and model data, we document the characteristics of tropospheric ozone and CO over the whole tropics for the last 2 decades. We explore the origin of the observed CO anomalies and investigate transport processes driving the tropical CO and O3 distribution. Our study highlights the importance of anthropogenic emissions, mostly over the northern tropics.
This article is included in the Encyclopedia of Geosciences
Valeria Mardoñez, Marco Pandolfi, Lucille Joanna S. Borlaza, Jean-Luc Jaffrezo, Andrés Alastuey, Jean-Luc Besombes, Isabel Moreno R., Noemi Perez, Griša Močnik, Patrick Ginot, Radovan Krejci, Vladislav Chrastny, Alfred Wiedensohler, Paolo Laj, Marcos Andrade, and Gaëlle Uzu
Atmos. Chem. Phys., 23, 10325–10347, https://doi.org/10.5194/acp-23-10325-2023, https://doi.org/10.5194/acp-23-10325-2023, 2023
Short summary
Short summary
La Paz and El Alto are two fast-growing, high-altitude Bolivian cities forming the second-largest metropolitan area in the country. The sources of particulate matter (PM) in this conurbation were not previously investigated. This study identified 11 main sources of PM, of which dust and vehicular emissions stand out as the main ones. The influence of regional biomass combustion and local waste combustion was also observed, with the latter being a major source of hazardous compounds.
This article is included in the Encyclopedia of Geosciences
Patrick Weber, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Susanne Hering, Steven Spielman, Gregory Lewis, Andreas Petzold, and Ulrich Bundke
Atmos. Meas. Tech., 16, 3505–3514, https://doi.org/10.5194/amt-16-3505-2023, https://doi.org/10.5194/amt-16-3505-2023, 2023
Short summary
Short summary
This study tests the new water condensation particle counter (MAGIC 210-LP) for deployment on passenger aircraft coordinated by the European research infrastructure IAGOS. We conducted a series of laboratory experiments for flight altitude conditions. We demonstrate that this water condensation particle counter model shows excellent agreement with a butanol-based instrument used in parallel and a Faraday cup electrometer as reference instrument at all tested pressure conditions.
This article is included in the Encyclopedia of Geosciences
Patrick Weber, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Jannik Schmitt, Gerhard Steiner, Lothar Keck, Andreas Petzold, and Ulrich Bundke
Aerosol Research, 1, 1–12, https://doi.org/10.5194/ar-1-1-2023, https://doi.org/10.5194/ar-1-1-2023, 2023
Short summary
Short summary
The aerosol number concentration is essential information for aerosol science. A condensation particle counter (CPC) can robustly provide this information. Butanol is often used as a working fluid in a CPC. We could show that dimethyl sulfoxide (DMSO) behaves equivalently to butanol in terms of the instrument`s counting efficiency, cut-off diameter and concentration linearity. We tested this on different aerosols, including sodium chloride, ammonium sulfate and fresh combustion soot.
This article is included in the Encyclopedia of Geosciences
Ida Storm, Ute Karstens, Claudio D'Onofrio, Alex Vermeulen, and Wouter Peters
Atmos. Chem. Phys., 23, 4993–5008, https://doi.org/10.5194/acp-23-4993-2023, https://doi.org/10.5194/acp-23-4993-2023, 2023
Short summary
Short summary
In this study, we evaluate what is in the influence regions of the ICOS atmospheric measurement stations to gain insight into what land cover types and land-cover-associated fluxes the network represents. Subsequently, insights about strengths, weaknesses, and potential gaps can assist in future network expansion decisions. The network is concentrated in central Europe, which leads to a general overrepresentation of coniferous forest and cropland and underrepresentation of grass and shrubland.
This article is included in the Encyclopedia of Geosciences
Yun Li, Christoph Mahnke, Susanne Rohs, Ulrich Bundke, Nicole Spelten, Georgios Dekoutsidis, Silke Groß, Christiane Voigt, Ulrich Schumann, Andreas Petzold, and Martina Krämer
Atmos. Chem. Phys., 23, 2251–2271, https://doi.org/10.5194/acp-23-2251-2023, https://doi.org/10.5194/acp-23-2251-2023, 2023
Short summary
Short summary
The radiative effect of aviation-induced cirrus is closely related to ambient conditions and its microphysical properties. Our study investigated the occurrence of contrail and natural cirrus measured above central Europe in spring 2014. It finds that contrail cirrus appears frequently in the pressure range 200 to 245 hPa and occurs more often in slightly ice-subsaturated environments than expected. Avoiding slightly ice-subsaturated regions by aviation might help mitigate contrail cirrus.
This article is included in the Encyclopedia of Geosciences
Auke M. van der Woude, Remco de Kok, Naomi Smith, Ingrid T. Luijkx, Santiago Botía, Ute Karstens, Linda M. J. Kooijmans, Gerbrand Koren, Harro A. J. Meijer, Gert-Jan Steeneveld, Ida Storm, Ingrid Super, Hubertus A. Scheeren, Alex Vermeulen, and Wouter Peters
Earth Syst. Sci. Data, 15, 579–605, https://doi.org/10.5194/essd-15-579-2023, https://doi.org/10.5194/essd-15-579-2023, 2023
Short summary
Short summary
To monitor the progress towards the CO2 emission goals set out in the Paris Agreement, the European Union requires an independent validation of emitted CO2. For this validation, atmospheric measurements of CO2 can be used, together with first-guess estimates of CO2 emissions and uptake. To quickly inform end users, it is imperative that this happens in near real-time. To aid these efforts, we create estimates of European CO2 exchange at high resolution in near real time.
This article is included in the Encyclopedia of Geosciences
Wiebke Scholz, Jiali Shen, Diego Aliaga, Cheng Wu, Samara Carbone, Isabel Moreno, Qiaozhi Zha, Wei Huang, Liine Heikkinen, Jean Luc Jaffrezo, Gaelle Uzu, Eva Partoll, Markus Leiminger, Fernando Velarde, Paolo Laj, Patrick Ginot, Paolo Artaxo, Alfred Wiedensohler, Markku Kulmala, Claudia Mohr, Marcos Andrade, Victoria Sinclair, Federico Bianchi, and Armin Hansel
Atmos. Chem. Phys., 23, 895–920, https://doi.org/10.5194/acp-23-895-2023, https://doi.org/10.5194/acp-23-895-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS), emitted from the ocean, is the most abundant biogenic sulfur emission into the atmosphere. OH radicals, among others, can oxidize DMS to sulfuric and methanesulfonic acid, which are relevant for aerosol formation. We quantified DMS and nearly all DMS oxidation products with novel mass spectrometric instruments for gas and particle phase at the high mountain station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes in free tropospheric air after long-range transport.
This article is included in the Encyclopedia of Geosciences
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
This article is included in the Encyclopedia of Geosciences
Patrick Weber, Andreas Petzold, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Andrew Freedman, Timothy B. Onasch, and Ulrich Bundke
Atmos. Meas. Tech., 15, 3279–3296, https://doi.org/10.5194/amt-15-3279-2022, https://doi.org/10.5194/amt-15-3279-2022, 2022
Short summary
Short summary
In our laboratory closure study, we measured the full set of aerosol optical properties for different light-absorbing aerosols using a set of instruments.
Our key finding is that the extensive and intensive aerosol optical properties obtained agree with data from reference instruments, except the absorption Ångström exponent of externally mixed aerosols. The reported uncertainty in the single-scattering albedo fulfils the defined goals for Global Climate Observing System applications of 10 %.
This article is included in the Encyclopedia of Geosciences
Saehee Lim, Meehye Lee, Joel Savarino, and Paolo Laj
Atmos. Chem. Phys., 22, 5099–5115, https://doi.org/10.5194/acp-22-5099-2022, https://doi.org/10.5194/acp-22-5099-2022, 2022
Short summary
Short summary
We determined δ15N(NO3−) and Δ17O(NO3−) of PM2.5 in Seoul during 2018–2019 and estimated quantitatively the contribution of oxidation pathways to NO3− formation and NOx emission sources. The nighttime pathway played a significant role in NO3− formation during the winter, and its contribution further increased up to 70 % on haze days when PM2.5 was greater than 75 µg m−3. Vehicle emissions were confirmed as a main NO3− source with an increasing contribution from coal combustion in winter.
This article is included in the Encyclopedia of Geosciences
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
This article is included in the Encyclopedia of Geosciences
Martin J. Osborne, Johannes de Leeuw, Claire Witham, Anja Schmidt, Frances Beckett, Nina Kristiansen, Joelle Buxmann, Cameron Saint, Ellsworth J. Welton, Javier Fochesatto, Ana R. Gomes, Ulrich Bundke, Andreas Petzold, Franco Marenco, and Jim Haywood
Atmos. Chem. Phys., 22, 2975–2997, https://doi.org/10.5194/acp-22-2975-2022, https://doi.org/10.5194/acp-22-2975-2022, 2022
Short summary
Short summary
Using the Met Office NAME dispersion model, supported by satellite- and ground-based remote-sensing observations, we describe the dispersion of aerosols from the 2019 Raikoke eruption and the concurrent wildfires in Alberta Canada. We show how the synergy of dispersion modelling and multiple observation sources allowed observers in the London VAAC to arrive at a more complete picture of the aerosol loading at altitudes commonly used by aviation.
This article is included in the Encyclopedia of Geosciences
Paola Formenti, Claudia Di Biagio, Yue Huang, Jasper Kok, Marc Daniel Mallet, Damien Boulanger, and Mathieu Cazaunau
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-403, https://doi.org/10.5194/amt-2021-403, 2021
Publication in AMT not foreseen
Short summary
Short summary
This paper provides with standardized correction factors for the measurements of the most common instruments used in the atmosphere to measure the concentration per size of aerosol particles. These correction factors are provided to users with supplementary information for their use.
This article is included in the Encyclopedia of Geosciences
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
This article is included in the Encyclopedia of Geosciences
Diego Aliaga, Victoria A. Sinclair, Marcos Andrade, Paulo Artaxo, Samara Carbone, Evgeny Kadantsev, Paolo Laj, Alfred Wiedensohler, Radovan Krejci, and Federico Bianchi
Atmos. Chem. Phys., 21, 16453–16477, https://doi.org/10.5194/acp-21-16453-2021, https://doi.org/10.5194/acp-21-16453-2021, 2021
Short summary
Short summary
We investigate the origin of air masses sampled at Mount Chacaltaya, Bolivia. Three-quarters of the measured air has not been influenced by the surface in the previous 4 d. However, it is rare that, at any given time, the sampled air has not been influenced at all by the surface, and often the sampled air has multiple origins. The influence of the surface is more prevalent during day than night. Furthermore, during the 6-month study, one-third of the air masses originated from Amazonia.
This article is included in the Encyclopedia of Geosciences
Hannah Clark, Yasmine Bennouna, Maria Tsivlidou, Pawel Wolff, Bastien Sauvage, Brice Barret, Eric Le Flochmoën, Romain Blot, Damien Boulanger, Jean-Marc Cousin, Philippe Nédélec, Andreas Petzold, and Valérie Thouret
Atmos. Chem. Phys., 21, 16237–16256, https://doi.org/10.5194/acp-21-16237-2021, https://doi.org/10.5194/acp-21-16237-2021, 2021
Short summary
Short summary
We examined 27 years of IAGOS (In-service Aircraft for a Global Observing System) profiles at Frankfurt to see if there were unusual features during the spring of 2020 related to COVID-19 lockdowns in Europe. Increased ozone near the surface was partly linked to the reduction in emissions. Carbon monoxide decreased near the surface, but the impact of the lockdowns was offset by polluted air masses from elsewhere. There were small reductions in ozone and carbon monoxide in the free troposphere.
This article is included in the Encyclopedia of Geosciences
Gaëlle Dufour, Didier Hauglustaine, Yunjiang Zhang, Maxim Eremenko, Yann Cohen, Audrey Gaudel, Guillaume Siour, Mathieu Lachatre, Axel Bense, Bertrand Bessagnet, Juan Cuesta, Jerry Ziemke, Valérie Thouret, and Bo Zheng
Atmos. Chem. Phys., 21, 16001–16025, https://doi.org/10.5194/acp-21-16001-2021, https://doi.org/10.5194/acp-21-16001-2021, 2021
Short summary
Short summary
The IASI observations and the LMDZ-OR-INCA model simulations show negative ozone trends in the Central East China region in the lower free (3–6 km column) and the upper free (6–9 km column) troposphere. Sensitivity studies from the model show that the Chinese anthropogenic emissions contribute to more than 50 % in the trend. The reduction in NOx emissions that has occurred since 2013 in China seems to lead to a decrease in ozone in the free troposphere, contrary to the increase at the surface.
This article is included in the Encyclopedia of Geosciences
Victor Lannuque, Bastien Sauvage, Brice Barret, Hannah Clark, Gilles Athier, Damien Boulanger, Jean-Pierre Cammas, Jean-Marc Cousin, Alain Fontaine, Eric Le Flochmoën, Philippe Nédélec, Hervé Petetin, Isabelle Pfaffenzeller, Susanne Rohs, Herman G. J. Smit, Pawel Wolff, and Valérie Thouret
Atmos. Chem. Phys., 21, 14535–14555, https://doi.org/10.5194/acp-21-14535-2021, https://doi.org/10.5194/acp-21-14535-2021, 2021
Short summary
Short summary
The African intertropical troposphere is one of the world areas where the increase in ozone mixing ratio has been most pronounced since 1980 and where high carbon monoxide mixing ratios are found in altitude. In this article, IAGOS aircraft measurements, IASI satellite instrument observations, and SOFT-IO model products are used to explore the seasonal distribution variations and the origin of ozone and carbon monoxide over the African upper troposphere.
This article is included in the Encyclopedia of Geosciences
Antoine Berchet, Espen Sollum, Rona L. Thompson, Isabelle Pison, Joël Thanwerdas, Grégoire Broquet, Frédéric Chevallier, Tuula Aalto, Adrien Berchet, Peter Bergamaschi, Dominik Brunner, Richard Engelen, Audrey Fortems-Cheiney, Christoph Gerbig, Christine D. Groot Zwaaftink, Jean-Matthieu Haussaire, Stephan Henne, Sander Houweling, Ute Karstens, Werner L. Kutsch, Ingrid T. Luijkx, Guillaume Monteil, Paul I. Palmer, Jacob C. A. van Peet, Wouter Peters, Philippe Peylin, Elise Potier, Christian Rödenbeck, Marielle Saunois, Marko Scholze, Aki Tsuruta, and Yuanhong Zhao
Geosci. Model Dev., 14, 5331–5354, https://doi.org/10.5194/gmd-14-5331-2021, https://doi.org/10.5194/gmd-14-5331-2021, 2021
Short summary
Short summary
We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is a programming protocol to allow various inversion bricks to be exchanged among researchers.
The ensemble of bricks makes a flexible, transparent and open-source Python-based tool. We describe the main structure and functionalities and demonstrate it in a simple academic case.
This article is included in the Encyclopedia of Geosciences
Michele Bertò, David Cappelletti, Elena Barbaro, Cristiano Varin, Jean-Charles Gallet, Krzysztof Markowicz, Anna Rozwadowska, Mauro Mazzola, Stefano Crocchianti, Luisa Poto, Paolo Laj, Carlo Barbante, and Andrea Spolaor
Atmos. Chem. Phys., 21, 12479–12493, https://doi.org/10.5194/acp-21-12479-2021, https://doi.org/10.5194/acp-21-12479-2021, 2021
Short summary
Short summary
We present the daily and seasonal variability in black carbon (BC) in surface snow inferred from two specific experiments based on the hourly and daily time resolution sampling during the Arctic spring in Svalbard. These unique data sets give us, for the first time, the opportunity to evaluate the associations between the observed surface snow BC mass concentration and a set of predictors corresponding to the considered meteorological and snow physico-chemical parameters.
This article is included in the Encyclopedia of Geosciences
Roeland Van Malderen, Dirk De Muer, Hugo De Backer, Deniz Poyraz, Willem W. Verstraeten, Veerle De Bock, Andy W. Delcloo, Alexander Mangold, Quentin Laffineur, Marc Allaart, Frans Fierens, and Valérie Thouret
Atmos. Chem. Phys., 21, 12385–12411, https://doi.org/10.5194/acp-21-12385-2021, https://doi.org/10.5194/acp-21-12385-2021, 2021
Short summary
Short summary
The main aim of initiating measurements of the vertical distribution of the ozone concentration by means of ozonesondes attached to weather balloons at Uccle in 1969 was to improve weather forecasts. Since then, this measurement technique has barely changed, but the dense, long-term, and homogeneous Uccle dataset currently remains crucial for studying the temporal evolution of ozone from the surface to the stratosphere and is also the backbone of the validation of satellite ozone retrievals.
This article is included in the Encyclopedia of Geosciences
Romain Blot, Philippe Nedelec, Damien Boulanger, Pawel Wolff, Bastien Sauvage, Jean-Marc Cousin, Gilles Athier, Andreas Zahn, Florian Obersteiner, Dieter Scharffe, Hervé Petetin, Yasmine Bennouna, Hannah Clark, and Valérie Thouret
Atmos. Meas. Tech., 14, 3935–3951, https://doi.org/10.5194/amt-14-3935-2021, https://doi.org/10.5194/amt-14-3935-2021, 2021
Short summary
Short summary
A lack of information about temporal changes in measurement uncertainties is an area of concern for long-term trend studies of the key compounds which have a direct or indirect impact on climate change. The IAGOS program has measured O3 and CO within the troposphere and lower stratosphere for more than 25 years. In this study, we demonstrated that the IAGOS database can be treated as one continuous program and is therefore appropriate for studies of long-term trends.
This article is included in the Encyclopedia of Geosciences
Yann Cohen, Virginie Marécal, Béatrice Josse, and Valérie Thouret
Geosci. Model Dev., 14, 2659–2689, https://doi.org/10.5194/gmd-14-2659-2021, https://doi.org/10.5194/gmd-14-2659-2021, 2021
Short summary
Short summary
Assessing long-term chemistry–climate simulations with in situ and frequent observations near the tropopause is possible with the IAGOS commercial aircraft data set. This study presents a method that distributes the IAGOS data (ozone and CO) on a monthly model grid, limiting the impact of resolution for the evaluation of the modelled chemical fields. We applied it to the CCMI REF-C1SD simulation from the MOCAGE CTM and notably highlighted well-reproduced O3 behaviour in the lower stratosphere.
This article is included in the Encyclopedia of Geosciences
Karl Espen Yttri, Francesco Canonaco, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Hans Gundersen, Anne-Gunn Hjellbrekke, Cathrine Lund Myhre, Stephen Matthew Platt, André S. H. Prévôt, David Simpson, Sverre Solberg, Jason Surratt, Kjetil Tørseth, Hilde Uggerud, Marit Vadset, Xin Wan, and Wenche Aas
Atmos. Chem. Phys., 21, 7149–7170, https://doi.org/10.5194/acp-21-7149-2021, https://doi.org/10.5194/acp-21-7149-2021, 2021
Short summary
Short summary
Carbonaceous aerosol sources and trends were studied at the Birkenes Observatory. A large decrease in elemental carbon (EC; 2001–2018) and a smaller decline in levoglucosan (2008–2018) suggest that organic carbon (OC)/EC from traffic/industry is decreasing, whereas the abatement of OC/EC from biomass burning has been less successful. Positive matrix factorization apportioned 72 % of EC to fossil fuel sources and 53 % (PM2.5) and 78 % (PM10–2.5) of OC to biogenic sources.
This article is included in the Encyclopedia of Geosciences
Saehee Lim, Meehye Lee, Paolo Laj, Sang-Woo Kim, Kang-Ho Ahn, Junsoo Gil, Xiaona Shang, Marco Zanatta, and Kyeong-Sik Kang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1247, https://doi.org/10.5194/acp-2020-1247, 2021
Preprint withdrawn
Short summary
Short summary
This study identifies the main drivers of the formation and transformation processes of submicron particles and highlights that the thick coating of rBC was a result of active conversion of hygroscopic inorganic salts leading to fine aerosol pollution. Consequently, we suggest BC particles as a key contributor to PM2.5 mass increase, which implies that BC reduction is an effective mitigation against haze pollution as well as climate change in Northeast Asia.
This article is included in the Encyclopedia of Geosciences
Alkuin Maximilian Koenig, Olivier Magand, Paolo Laj, Marcos Andrade, Isabel Moreno, Fernando Velarde, Grover Salvatierra, René Gutierrez, Luis Blacutt, Diego Aliaga, Thomas Reichler, Karine Sellegri, Olivier Laurent, Michel Ramonet, and Aurélien Dommergue
Atmos. Chem. Phys., 21, 3447–3472, https://doi.org/10.5194/acp-21-3447-2021, https://doi.org/10.5194/acp-21-3447-2021, 2021
Short summary
Short summary
The environmental cycling of atmospheric mercury, a harmful global contaminant, is still not sufficiently constrained, partly due to missing data in remote regions. Here, we address this issue by presenting 20 months of atmospheric mercury measurements, sampled in the Bolivian Andes. We observe a significant seasonal pattern, whose key features we explore. Moreover, we deduce ratios to constrain South American biomass burning mercury emissions and the mercury uptake by the Amazon rainforest.
This article is included in the Encyclopedia of Geosciences
Julia Perim de Faria, Ulrich Bundke, Andrew Freedman, Timothy B. Onasch, and Andreas Petzold
Atmos. Meas. Tech., 14, 1635–1653, https://doi.org/10.5194/amt-14-1635-2021, https://doi.org/10.5194/amt-14-1635-2021, 2021
Short summary
Short summary
An evaluation of the performance and accuracy of a Cavity Attenuated Phase-Shift Single Scattering Albedo Monitor (CAPS PMSSA; Aerodyne Research, Inc.) was conducted in an optical-closure study with proven technologies for aerosol particle optical-property measurements. This study demonstrates that the CAPS PMSSA is a robust and reliable instrument for the direct measurement of the particle scattering and extinction coefficients and thus single-scattering albedo.
This article is included in the Encyclopedia of Geosciences
Nikolaos Evangeliou, Stephen M. Platt, Sabine Eckhardt, Cathrine Lund Myhre, Paolo Laj, Lucas Alados-Arboledas, John Backman, Benjamin T. Brem, Markus Fiebig, Harald Flentje, Angela Marinoni, Marco Pandolfi, Jesus Yus-Dìez, Natalia Prats, Jean P. Putaud, Karine Sellegri, Mar Sorribas, Konstantinos Eleftheriadis, Stergios Vratolis, Alfred Wiedensohler, and Andreas Stohl
Atmos. Chem. Phys., 21, 2675–2692, https://doi.org/10.5194/acp-21-2675-2021, https://doi.org/10.5194/acp-21-2675-2021, 2021
Short summary
Short summary
Following the transmission of SARS-CoV-2 to Europe, social distancing rules were introduced to prevent further spread. We investigate the impacts of the European lockdowns on black carbon (BC) emissions by means of in situ observations and inverse modelling. BC emissions declined by 23 kt in Europe during the lockdowns as compared with previous years and by 11 % as compared to the period prior to lockdowns. Residential combustion prevailed in Eastern Europe, as confirmed by remote sensing data.
This article is included in the Encyclopedia of Geosciences
Jonas Gliß, Augustin Mortier, Michael Schulz, Elisabeth Andrews, Yves Balkanski, Susanne E. Bauer, Anna M. K. Benedictow, Huisheng Bian, Ramiro Checa-Garcia, Mian Chin, Paul Ginoux, Jan J. Griesfeller, Andreas Heckel, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Paolo Laj, Philippe Le Sager, Marianne Tronstad Lund, Cathrine Lund Myhre, Hitoshi Matsui, Gunnar Myhre, David Neubauer, Twan van Noije, Peter North, Dirk J. L. Olivié, Samuel Rémy, Larisa Sogacheva, Toshihiko Takemura, Kostas Tsigaridis, and Svetlana G. Tsyro
Atmos. Chem. Phys., 21, 87–128, https://doi.org/10.5194/acp-21-87-2021, https://doi.org/10.5194/acp-21-87-2021, 2021
Short summary
Short summary
Simulated aerosol optical properties as well as the aerosol life cycle are investigated for 14 global models participating in the AeroCom initiative. Considerable diversity is found in the simulated aerosol species emissions and lifetimes, also resulting in a large diversity in the simulated aerosol mass, composition, and optical properties. A comparison with observations suggests that, on average, current models underestimate the direct effect of aerosol on the atmosphere radiation budget.
This article is included in the Encyclopedia of Geosciences
Augustin Mortier, Jonas Gliß, Michael Schulz, Wenche Aas, Elisabeth Andrews, Huisheng Bian, Mian Chin, Paul Ginoux, Jenny Hand, Brent Holben, Hua Zhang, Zak Kipling, Alf Kirkevåg, Paolo Laj, Thibault Lurton, Gunnar Myhre, David Neubauer, Dirk Olivié, Knut von Salzen, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Simone Tilmes
Atmos. Chem. Phys., 20, 13355–13378, https://doi.org/10.5194/acp-20-13355-2020, https://doi.org/10.5194/acp-20-13355-2020, 2020
Short summary
Short summary
We present a multiparameter analysis of the aerosol trends over the last 2 decades in the different regions of the world. In most of the regions, ground-based observations show a decrease in aerosol content in both the total atmospheric column and at the surface. The use of climate models, assessed against these observations, reveals however an increase in the total aerosol load, which is not seen with the sole use of observation due to partial coverage in space and time.
This article is included in the Encyclopedia of Geosciences
Guillaume Monteil, Grégoire Broquet, Marko Scholze, Matthew Lang, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Naomi E. Smith, Rona L. Thompson, Ingrid T. Luijkx, Emily White, Antoon Meesters, Philippe Ciais, Anita L. Ganesan, Alistair Manning, Michael Mischurow, Wouter Peters, Philippe Peylin, Jerôme Tarniewicz, Matt Rigby, Christian Rödenbeck, Alex Vermeulen, and Evie M. Walton
Atmos. Chem. Phys., 20, 12063–12091, https://doi.org/10.5194/acp-20-12063-2020, https://doi.org/10.5194/acp-20-12063-2020, 2020
Short summary
Short summary
The paper presents the first results from the EUROCOM project, a regional atmospheric inversion intercomparison exercise involving six European research groups. It aims to produce an estimate of the net carbon flux between the European terrestrial ecosystems and the atmosphere for the period 2006–2015, based on constraints provided by observed CO2 concentrations and using inverse modelling techniques. The use of six different models enables us to investigate the robustness of the results.
This article is included in the Encyclopedia of Geosciences
Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Kenneth C. Aikin, Teresa Campos, Hannah Clark, Róisín Commane, Bruce Daube, Glenn W. Diskin, James W. Elkins, Ru-Shan Gao, Audrey Gaudel, Eric J. Hintsa, Bryan J. Johnson, Rigel Kivi, Kathryn McKain, Fred L. Moore, David D. Parrish, Richard Querel, Eric Ray, Ricardo Sánchez, Colm Sweeney, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Jacquelyn C. Witte, Steve C. Wofsy, and Thomas B. Ryerson
Atmos. Chem. Phys., 20, 10611–10635, https://doi.org/10.5194/acp-20-10611-2020, https://doi.org/10.5194/acp-20-10611-2020, 2020
Kai-Lan Chang, Owen R. Cooper, Audrey Gaudel, Irina Petropavlovskikh, and Valérie Thouret
Atmos. Chem. Phys., 20, 9915–9938, https://doi.org/10.5194/acp-20-9915-2020, https://doi.org/10.5194/acp-20-9915-2020, 2020
Short summary
Short summary
We provide a statistical framework for detecting trends of multiple autocorrelated time series from sparsely sampled profile data. The result is a better and more consistent quantification of trend estimates of vertical profile data. The focus was placed on the long-term ozone time series from commercial aircraft and balloon-borne ozonesonde measurements. This framework can be applied to other trace gases in the atmosphere.
This article is included in the Encyclopedia of Geosciences
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
This article is included in the Encyclopedia of Geosciences
Martin Cussac, Virginie Marécal, Valérie Thouret, Béatrice Josse, and Bastien Sauvage
Atmos. Chem. Phys., 20, 9393–9417, https://doi.org/10.5194/acp-20-9393-2020, https://doi.org/10.5194/acp-20-9393-2020, 2020
Short summary
Short summary
Biomass burning emissions are a major source of carbon monoxide in the atmosphere. Here, the vertical transport that these emissions can undergo until the upper troposphere is investigated, as well as their contribution to carbon monoxide concentrations. It was found that boreal forest emissions were specific to the occurrence of pyroconvection directly above the fires, whereas biomass burning emissions from other regions of the globe relied more on the occurrence of deep convection.
This article is included in the Encyclopedia of Geosciences
Martine Collaud Coen, Elisabeth Andrews, Andrés Alastuey, Todor Petkov Arsov, John Backman, Benjamin T. Brem, Nicolas Bukowiecki, Cédric Couret, Konstantinos Eleftheriadis, Harald Flentje, Markus Fiebig, Martin Gysel-Beer, Jenny L. Hand, András Hoffer, Rakesh Hooda, Christoph Hueglin, Warren Joubert, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Casper Labuschagne, Neng-Huei Lin, Yong Lin, Cathrine Lund Myhre, Krista Luoma, Hassan Lyamani, Angela Marinoni, Olga L. Mayol-Bracero, Nikos Mihalopoulos, Marco Pandolfi, Natalia Prats, Anthony J. Prenni, Jean-Philippe Putaud, Ludwig Ries, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Patrick Sheridan, James Patrick Sherman, Junying Sun, Gloria Titos, Elvis Torres, Thomas Tuch, Rolf Weller, Alfred Wiedensohler, Paul Zieger, and Paolo Laj
Atmos. Chem. Phys., 20, 8867–8908, https://doi.org/10.5194/acp-20-8867-2020, https://doi.org/10.5194/acp-20-8867-2020, 2020
Short summary
Short summary
Long-term trends of aerosol radiative properties (52 stations) prove that aerosol load has significantly decreased over the last 20 years. Scattering trends are negative in Europe (EU) and North America (NA), not ss in Asia, and show a mix of positive and negative trends at polar stations. Absorption has mainly negative trends. The single scattering albedo has positive trends in Asia and eastern EU and negative in western EU and NA, leading to a global positive median trend of 0.02 % per year.
This article is included in the Encyclopedia of Geosciences
Andreas Petzold, Patrick Neis, Mihal Rütimann, Susanne Rohs, Florian Berkes, Herman G. J. Smit, Martina Krämer, Nicole Spelten, Peter Spichtinger, Philippe Nédélec, and Andreas Wahner
Atmos. Chem. Phys., 20, 8157–8179, https://doi.org/10.5194/acp-20-8157-2020, https://doi.org/10.5194/acp-20-8157-2020, 2020
Short summary
Short summary
The first analysis of 15 years of global-scale water vapour and relative humidity observations by passenger aircraft in the MOZAIC and IAGOS programmes resolves detailed features of water vapour and ice-supersaturated air in the mid-latitude tropopause. Key results provide in-depth insight into seasonal and regional variability and chemical signatures of ice-supersaturated air masses, including trend analyses, and show a close link to cirrus clouds and their highly important effects on climate.
This article is included in the Encyclopedia of Geosciences
Michele Bertò, David Cappelletti, Elena Barbaro, Cristiano Varin, Jean-Charles Gallet, Krzysztof Markowicz, Anna Rozwadowska, Mauro Mazzola, Stefano Crocchianti, Luisa Poto, Paolo Laj, Carlo Barbante, and Andrea Spolaor
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-574, https://doi.org/10.5194/acp-2020-574, 2020
Preprint withdrawn
Short summary
Short summary
We present the daily and seasonal variability of Black carbon inferred from two specific experiment based on the hourly and daily time resolution sampling strategy. These unique datasets give us for the first time the opportunity to evaluate the associations between the observed surface snow rBC mass concentration and a set of predictors corresponding to the considered meteorological and snow physico-chemical parameters, via a multiple linear regression approach.
This article is included in the Encyclopedia of Geosciences
Jean-Luc Baray, Laurent Deguillaume, Aurélie Colomb, Karine Sellegri, Evelyn Freney, Clémence Rose, Joël Van Baelen, Jean-Marc Pichon, David Picard, Patrick Fréville, Laëtitia Bouvier, Mickaël Ribeiro, Pierre Amato, Sandra Banson, Angelica Bianco, Agnès Borbon, Lauréline Bourcier, Yannick Bras, Marcello Brigante, Philippe Cacault, Aurélien Chauvigné, Tiffany Charbouillot, Nadine Chaumerliac, Anne-Marie Delort, Marc Delmotte, Régis Dupuy, Antoine Farah, Guy Febvre, Andrea Flossmann, Christophe Gourbeyre, Claude Hervier, Maxime Hervo, Nathalie Huret, Muriel Joly, Victor Kazan, Morgan Lopez, Gilles Mailhot, Angela Marinoni, Olivier Masson, Nadège Montoux, Marius Parazols, Frédéric Peyrin, Yves Pointin, Michel Ramonet, Manon Rocco, Martine Sancelme, Stéphane Sauvage, Martina Schmidt, Emmanuel Tison, Mickaël Vaïtilingom, Paolo Villani, Miao Wang, Camille Yver-Kwok, and Paolo Laj
Atmos. Meas. Tech., 13, 3413–3445, https://doi.org/10.5194/amt-13-3413-2020, https://doi.org/10.5194/amt-13-3413-2020, 2020
Short summary
Short summary
CO-PDD (Cézeaux-Aulnat-Opme-puy de Dôme) is a fully instrumented platform for atmospheric research. The four sites located at different altitudes from 330 to 1465 m around Clermont-Ferrand (France) host in situ and remote sensing instruments to measure atmospheric composition, including long-term trends and variability, to study interconnected processes (microphysical, chemical, biological, chemical, and dynamical) and to provide a reference point for climate models.
This article is included in the Encyclopedia of Geosciences
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
This article is included in the Encyclopedia of Geosciences
Chris R. Flechard, Marcel van Oijen, David R. Cameron, Wim de Vries, Andreas Ibrom, Nina Buchmann, Nancy B. Dise, Ivan A. Janssens, Johan Neirynck, Leonardo Montagnani, Andrej Varlagin, Denis Loustau, Arnaud Legout, Klaudia Ziemblińska, Marc Aubinet, Mika Aurela, Bogdan H. Chojnicki, Julia Drewer, Werner Eugster, André-Jean Francez, Radosław Juszczak, Barbara Kitzler, Werner L. Kutsch, Annalea Lohila, Bernard Longdoz, Giorgio Matteucci, Virginie Moreaux, Albrecht Neftel, Janusz Olejnik, Maria J. Sanz, Jan Siemens, Timo Vesala, Caroline Vincke, Eiko Nemitz, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Ute M. Skiba, and Mark A. Sutton
Biogeosciences, 17, 1621–1654, https://doi.org/10.5194/bg-17-1621-2020, https://doi.org/10.5194/bg-17-1621-2020, 2020
Short summary
Short summary
Nitrogen deposition from the atmosphere to unfertilized terrestrial vegetation such as forests can increase carbon dioxide uptake and favour carbon sequestration by ecosystems. However the data from observational networks are difficult to interpret in terms of a carbon-to-nitrogen response, because there are a number of other confounding factors, such as climate, soil physical properties and fertility, and forest age. We propose a model-based method to untangle the different influences.
This article is included in the Encyclopedia of Geosciences
Aurélien Chauvigné, Diego Aliaga, Karine Sellegri, Nadège Montoux, Radovan Krejci, Griša Močnik, Isabel Moreno, Thomas Müller, Marco Pandolfi, Fernando Velarde, Kay Weinhold, Patrick Ginot, Alfred Wiedensohler, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 19, 14805–14824, https://doi.org/10.5194/acp-19-14805-2019, https://doi.org/10.5194/acp-19-14805-2019, 2019
Short summary
Short summary
The study presents for the first time the analysis of aerosol optical properties at the unique high-altitude station of Chacaltaya, Bolivia. Ideally located, the station allows us to better understand influences of urban areas and the Amazon Forest on tropospheric properties. An emerging method is applied to characterize aerosol origins and permits us to illustrate evidence of natural and anthropogenic influences.
This article is included in the Encyclopedia of Geosciences
Anna Agustí-Panareda, Michail Diamantakis, Sébastien Massart, Frédéric Chevallier, Joaquín Muñoz-Sabater, Jérôme Barré, Roger Curcoll, Richard Engelen, Bavo Langerock, Rachel M. Law, Zoë Loh, Josep Anton Morguí, Mark Parrington, Vincent-Henri Peuch, Michel Ramonet, Coleen Roehl, Alex T. Vermeulen, Thorsten Warneke, and Debra Wunch
Atmos. Chem. Phys., 19, 7347–7376, https://doi.org/10.5194/acp-19-7347-2019, https://doi.org/10.5194/acp-19-7347-2019, 2019
Short summary
Short summary
This paper demonstrates the benefits of using global models with high horizontal resolution to represent atmospheric CO2 patterns associated with evolving weather. The modelling of CO2 weather is crucial to interpret the variability from ground-based and satellite CO2 observations, which can then be used to infer CO2 fluxes in atmospheric inversions. The benefits of high resolution come from an improved representation of the topography, winds, tracer transport and CO2 flux distribution.
This article is included in the Encyclopedia of Geosciences
Marianne Tronstad Lund, Gunnar Myhre, Amund Søvde Haslerud, Ragnhild Bieltvedt Skeie, Jan Griesfeller, Stephen Matthew Platt, Rajesh Kumar, Cathrine Lund Myhre, and Michael Schulz
Geosci. Model Dev., 11, 4909–4931, https://doi.org/10.5194/gmd-11-4909-2018, https://doi.org/10.5194/gmd-11-4909-2018, 2018
Short summary
Short summary
Atmospheric aerosols play a key role in the climate system, but their exact impact on the energy balance remains uncertain. Accurate representation of the geographical distribution and properties of aerosols in global models is key to reduce this uncertainty. Here we use a new emission inventory and a range of observations to carefully validate a state-of-the-art model and present an updated estimate of the net direct effect of anthropogenic aerosols since the preindustrial era.
This article is included in the Encyclopedia of Geosciences
Hervé Petetin, Bastien Sauvage, Mark Parrington, Hannah Clark, Alain Fontaine, Gilles Athier, Romain Blot, Damien Boulanger, Jean-Marc Cousin, Philippe Nédélec, and Valérie Thouret
Atmos. Chem. Phys., 18, 17277–17306, https://doi.org/10.5194/acp-18-17277-2018, https://doi.org/10.5194/acp-18-17277-2018, 2018
Short summary
Short summary
This study derives a climatology of the impact of biomass burning versus anthropogenic emissions on the strongest CO plumes observed in the troposphere based on a dataset of about 30 000 in situ vertical profiles, combined with Lagrangian simulations coupled to CO emission. Results demonstrate the large contribution of biomass burning to the strongest CO plumes encountered in the troposphere in many locations of the world.
This article is included in the Encyclopedia of Geosciences
Stephen M. Platt, Sabine Eckhardt, Benedicte Ferré, Rebecca E. Fisher, Ove Hermansen, Pär Jansson, David Lowry, Euan G. Nisbet, Ignacio Pisso, Norbert Schmidbauer, Anna Silyakova, Andreas Stohl, Tove M. Svendby, Sunil Vadakkepuliyambatta, Jürgen Mienert, and Cathrine Lund Myhre
Atmos. Chem. Phys., 18, 17207–17224, https://doi.org/10.5194/acp-18-17207-2018, https://doi.org/10.5194/acp-18-17207-2018, 2018
Short summary
Short summary
We measured atmospheric mixing ratios of methane over the Arctic Ocean around Svalbard and compared observed variations to inventories for anthropogenic, wetland, and biomass burning methane emissions and an atmospheric transport model. With knowledge of where variations were expected due to the aforementioned land-based emissions, we were able to identify and quantify a methane source from the ocean north of Svalbard, likely from sub-sea hydrocarbon seeps and/or gas hydrate decomposition.
This article is included in the Encyclopedia of Geosciences
Marco Zanatta, Paolo Laj, Martin Gysel, Urs Baltensperger, Stergios Vratolis, Konstantinos Eleftheriadis, Yutaka Kondo, Philippe Dubuisson, Victor Winiarek, Stelios Kazadzis, Peter Tunved, and Hans-Werner Jacobi
Atmos. Chem. Phys., 18, 14037–14057, https://doi.org/10.5194/acp-18-14037-2018, https://doi.org/10.5194/acp-18-14037-2018, 2018
Short summary
Short summary
The research community aims to quantify the actual contribution of soot particles to the recent Arctic warming. We discovered that mixing of soot with other components might enhance its light absorption power by 50 %. The neglection of such amplification might lead to the underestimation of radiative forcing by 0.12 W m−2. Thus a better understanding of the optical properties of soot is a crucial step for an accurate quantification of the radiative impact of soot in the Arctic atmosphere.
This article is included in the Encyclopedia of Geosciences
Lauren Schmeisser, John Backman, John A. Ogren, Elisabeth Andrews, Eija Asmi, Sandra Starkweather, Taneil Uttal, Markus Fiebig, Sangeeta Sharma, Kostas Eleftheriadis, Stergios Vratolis, Michael Bergin, Peter Tunved, and Anne Jefferson
Atmos. Chem. Phys., 18, 11599–11622, https://doi.org/10.5194/acp-18-11599-2018, https://doi.org/10.5194/acp-18-11599-2018, 2018
Short summary
Short summary
This paper presents pan-Arctic seasonality of in-situ-measured aerosol optical properties from six surface monitoring sites. The analysis provides insight into aerosol annual variability throughout the region – something that is not possible using only measurements from satellite or temporary aircraft campaigns. This paper shows that the large spatiotemporal variability in aerosol optical properties needs to be taken into account in order to properly represent Arctic climate.
This article is included in the Encyclopedia of Geosciences
Angela Benedetti, Jeffrey S. Reid, Peter Knippertz, John H. Marsham, Francesca Di Giuseppe, Samuel Rémy, Sara Basart, Olivier Boucher, Ian M. Brooks, Laurent Menut, Lucia Mona, Paolo Laj, Gelsomina Pappalardo, Alfred Wiedensohler, Alexander Baklanov, Malcolm Brooks, Peter R. Colarco, Emilio Cuevas, Arlindo da Silva, Jeronimo Escribano, Johannes Flemming, Nicolas Huneeus, Oriol Jorba, Stelios Kazadzis, Stefan Kinne, Thomas Popp, Patricia K. Quinn, Thomas T. Sekiyama, Taichu Tanaka, and Enric Terradellas
Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, https://doi.org/10.5194/acp-18-10615-2018, 2018
Short summary
Short summary
Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centers. This development is due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation authorities, solar energy plant managers, climate service providers, and health professionals. This paper describes the advances in the field and sets out requirements for observations for the sustainability of these activities.
This article is included in the Encyclopedia of Geosciences
Hervé Petetin, Bastien Sauvage, Herman G. J. Smit, François Gheusi, Fabienne Lohou, Romain Blot, Hannah Clark, Gilles Athier, Damien Boulanger, Jean-Marc Cousin, Philippe Nedelec, Patrick Neis, Susanne Rohs, and Valérie Thouret
Atmos. Chem. Phys., 18, 9561–9581, https://doi.org/10.5194/acp-18-9561-2018, https://doi.org/10.5194/acp-18-9561-2018, 2018
Short summary
Short summary
Based on the numerous profiles available since 1994, this paper investigates the vertical stratification of ozone, carbon monoxide and relative humidity in the lower part of the troposphere (planetary boundary layer, lower free troposphere). Such a characterization of the vertical distribution of pollution is notably important for better understanding vertical exchanges and evaluating models on the vertical dimension.
This article is included in the Encyclopedia of Geosciences
Fabio Boschetti, Valerie Thouret, Greet Janssens Maenhout, Kai Uwe Totsche, Julia Marshall, and Christoph Gerbig
Atmos. Chem. Phys., 18, 9225–9241, https://doi.org/10.5194/acp-18-9225-2018, https://doi.org/10.5194/acp-18-9225-2018, 2018
Short summary
Short summary
Retrieving surface–atmosphere fluxes from the combination of atmospheric observations with atmospheric transport models can benefit from combining multiple species in a single inversion. The underlying effect is that species such as CO2 and CO have partially overlapping emission patterns for given sectors and fuel types and so share part of the uncertainties, both related to the a priori knowledge of emissions, and to model–data mismatch error. We show this for airborne profile data from IAGOS.
This article is included in the Encyclopedia of Geosciences
Florian Berkes, Norbert Houben, Ulrich Bundke, Harald Franke, Hans-Werner Pätz, Franz Rohrer, Andreas Wahner, and Andreas Petzold
Atmos. Meas. Tech., 11, 3737–3757, https://doi.org/10.5194/amt-11-3737-2018, https://doi.org/10.5194/amt-11-3737-2018, 2018
Short summary
Short summary
The need for in situ nitrogen oxide measurements on a global scale is crucial to improve the chemistry in global chemistry models and evaluate satellite retrievals. Here we present the characterization of the new IAGOS NOx instrument installed on passenger aircraft, which will provide statistical robust measurements from the surface up to 13 km.
This article is included in the Encyclopedia of Geosciences
Marco Pandolfi, Lucas Alados-Arboledas, Andrés Alastuey, Marcos Andrade, Christo Angelov, Begoña Artiñano, John Backman, Urs Baltensperger, Paolo Bonasoni, Nicolas Bukowiecki, Martine Collaud Coen, Sébastien Conil, Esther Coz, Vincent Crenn, Vadimas Dudoitis, Marina Ealo, Kostas Eleftheriadis, Olivier Favez, Prodromos Fetfatzis, Markus Fiebig, Harald Flentje, Patrick Ginot, Martin Gysel, Bas Henzing, Andras Hoffer, Adela Holubova Smejkalova, Ivo Kalapov, Nikos Kalivitis, Giorgos Kouvarakis, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Chris Lunder, Krista Luoma, Hassan Lyamani, Angela Marinoni, Nikos Mihalopoulos, Marcel Moerman, José Nicolas, Colin O'Dowd, Tuukka Petäjä, Jean-Eudes Petit, Jean Marc Pichon, Nina Prokopciuk, Jean-Philippe Putaud, Sergio Rodríguez, Jean Sciare, Karine Sellegri, Erik Swietlicki, Gloria Titos, Thomas Tuch, Peter Tunved, Vidmantas Ulevicius, Aditya Vaishya, Milan Vana, Aki Virkkula, Stergios Vratolis, Ernest Weingartner, Alfred Wiedensohler, and Paolo Laj
Atmos. Chem. Phys., 18, 7877–7911, https://doi.org/10.5194/acp-18-7877-2018, https://doi.org/10.5194/acp-18-7877-2018, 2018
Short summary
Short summary
This investigation presents the variability in near-surface in situ aerosol particle light-scattering measurements obtained over the past decade at 28 measuring atmospheric observatories which are part of the ACTRIS Research Infrastructure, and most of them belong to the GAW network. This paper provides a comprehensive picture of the spatial and temporal variability of aerosol particles optical properties in Europe.
This article is included in the Encyclopedia of Geosciences
Yann Cohen, Hervé Petetin, Valérie Thouret, Virginie Marécal, Béatrice Josse, Hannah Clark, Bastien Sauvage, Alain Fontaine, Gilles Athier, Romain Blot, Damien Boulanger, Jean-Marc Cousin, and Philippe Nédélec
Atmos. Chem. Phys., 18, 5415–5453, https://doi.org/10.5194/acp-18-5415-2018, https://doi.org/10.5194/acp-18-5415-2018, 2018
Short summary
Short summary
Measurements of ozone and carbon monoxide were performed during 1994–2013 around the tropopause on board commercial aircraft. Seasonal cycles and trends were calculated above eight well-sampled regions in Northern Hemisphere midlatitudes. CO shows decreasing concentrations over the last 10 years, thus reflecting the impact of the legislation on anthropogenic emissions. Ozone amounts increased over the 20 years in the upper troposphere during different seasons, depending on the longitudes.
This article is included in the Encyclopedia of Geosciences
Isabelle Pison, Antoine Berchet, Marielle Saunois, Philippe Bousquet, Grégoire Broquet, Sébastien Conil, Marc Delmotte, Anita Ganesan, Olivier Laurent, Damien Martin, Simon O'Doherty, Michel Ramonet, T. Gerard Spain, Alex Vermeulen, and Camille Yver Kwok
Atmos. Chem. Phys., 18, 3779–3798, https://doi.org/10.5194/acp-18-3779-2018, https://doi.org/10.5194/acp-18-3779-2018, 2018
Short summary
Short summary
Methane emissions on the national scale in France in 2012 are inferred by assimilating continuous atmospheric mixing ratio measurements from nine stations of the European network ICOS. Two complementary inversion set-ups are computed and analysed: (i) a regional run correcting for the spatial distribution of fluxes in France and (ii) a sectorial run correcting fluxes for activity sectors on the national scale. The results are compared with existing inventories and other regional inversions.
This article is included in the Encyclopedia of Geosciences
Peter Bergamaschi, Ute Karstens, Alistair J. Manning, Marielle Saunois, Aki Tsuruta, Antoine Berchet, Alexander T. Vermeulen, Tim Arnold, Greet Janssens-Maenhout, Samuel Hammer, Ingeborg Levin, Martina Schmidt, Michel Ramonet, Morgan Lopez, Jost Lavric, Tuula Aalto, Huilin Chen, Dietrich G. Feist, Christoph Gerbig, László Haszpra, Ove Hermansen, Giovanni Manca, John Moncrieff, Frank Meinhardt, Jaroslaw Necki, Michal Galkowski, Simon O'Doherty, Nina Paramonova, Hubertus A. Scheeren, Martin Steinbacher, and Ed Dlugokencky
Atmos. Chem. Phys., 18, 901–920, https://doi.org/10.5194/acp-18-901-2018, https://doi.org/10.5194/acp-18-901-2018, 2018
Short summary
Short summary
European methane (CH4) emissions are estimated for 2006–2012 using atmospheric in situ measurements from 18 European monitoring stations and 7 different inverse models. Our analysis highlights the potential significant contribution of natural emissions from wetlands (including peatlands and wet soils) to the total European emissions. The top-down estimates of total EU-28 CH4 emissions are broadly consistent with the sum of reported anthropogenic CH4 emissions and the estimated natural emissions.
This article is included in the Encyclopedia of Geosciences
Bastien Sauvage, Alain Fontaine, Sabine Eckhardt, Antoine Auby, Damien Boulanger, Hervé Petetin, Ronan Paugam, Gilles Athier, Jean-Marc Cousin, Sabine Darras, Philippe Nédélec, Andreas Stohl, Solène Turquety, Jean-Pierre Cammas, and Valérie Thouret
Atmos. Chem. Phys., 17, 15271–15292, https://doi.org/10.5194/acp-17-15271-2017, https://doi.org/10.5194/acp-17-15271-2017, 2017
Short summary
Short summary
We provide the scientific community with a SOFT-IO tool based on the coupling of Lagrangian modeling with emission inventories and aircraft CO measurements, which is able to calculate the contribution of the sources and geographical origins of CO measurements, with good performances. Calculated CO added-value products will help scientists in interpreting large IAGOS CO data set. SOFT-IO could further be applied to other CO data sets or used to help validate emission inventories.
This article is included in the Encyclopedia of Geosciences
John Backman, Lauren Schmeisser, Aki Virkkula, John A. Ogren, Eija Asmi, Sandra Starkweather, Sangeeta Sharma, Konstantinos Eleftheriadis, Taneil Uttal, Anne Jefferson, Michael Bergin, Alexander Makshtas, Peter Tunved, and Markus Fiebig
Atmos. Meas. Tech., 10, 5039–5062, https://doi.org/10.5194/amt-10-5039-2017, https://doi.org/10.5194/amt-10-5039-2017, 2017
Short summary
Short summary
Light absorption by aerosol particles is of climatic importance. A widely used means to measure aerosol light absorption is a filter-based measurement technique. In remote areas, such as the Arctic, filter-based instruments operate close to their detection limit. The study presents how a lower detection limit can be achieved for one such instrument, the Aethalometer. Additionally, the Aethalometer is compared to similar instruments, thus improving measurement inter-comparability in the Arctic.
This article is included in the Encyclopedia of Geosciences
Sunil Vadakkepuliyambatta, Ragnhild B. Skeie, Gunnar Myhre, Stig B. Dalsøren, Anna Silyakova, Norbert Schmidbauer, Cathrine Lund Myhre, and Jürgen Mienert
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-110, https://doi.org/10.5194/esd-2017-110, 2017
Preprint retracted
Short summary
Short summary
Release of methane, one of the major greenhouse gases, from melting hydrates has been proposed as a mechanism that accelerated global warming in the past. We focus on Arctic Ocean warming as a robust case study for accelerated melting of hydrates, assessing the impact of Arctic methane release on global air temperatures during the next century. Contrary to popular belief, it is shown that methane emissions from melting hydrates from the Arctic seafloor is not a major driver of global warming.
This article is included in the Encyclopedia of Geosciences
Florian Berkes, Patrick Neis, Martin G. Schultz, Ulrich Bundke, Susanne Rohs, Herman G. J. Smit, Andreas Wahner, Paul Konopka, Damien Boulanger, Philippe Nédélec, Valerie Thouret, and Andreas Petzold
Atmos. Chem. Phys., 17, 12495–12508, https://doi.org/10.5194/acp-17-12495-2017, https://doi.org/10.5194/acp-17-12495-2017, 2017
Short summary
Short summary
This study highlights the importance of independent global measurements with high and long-term accuracy to quantify long-term changes, especially in the UTLS region, and to help identify inconsistencies between different data sets of observations and models. Here we investigated temperature trends over different regions within a climate-sensitive area of the atmosphere and demonstrated the value of the IAGOS temperature observations as an anchor point for the evaluation of reanalyses.
This article is included in the Encyclopedia of Geosciences
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J. R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette Joseph, Rigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin-Ya Ogino, Nozomu Ohkawara, Ankie J. M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter von der Gathen, Jacquelyn C. Witte, and Margarita Yela
Atmos. Meas. Tech., 10, 2455–2475, https://doi.org/10.5194/amt-10-2455-2017, https://doi.org/10.5194/amt-10-2455-2017, 2017
Short summary
Short summary
It is essential to understand the data quality of +10-year OMI ozone product and impacts of the “row anomaly” (RA). We validate the OMI Ozone Profile (PROFOZ) product from Oct 2004 to Dec 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability.
This article is included in the Encyclopedia of Geosciences
Dominik Schmithüsen, Scott Chambers, Bernd Fischer, Stefan Gilge, Juha Hatakka, Victor Kazan, Rolf Neubert, Jussi Paatero, Michel Ramonet, Clemens Schlosser, Sabine Schmid, Alex Vermeulen, and Ingeborg Levin
Atmos. Meas. Tech., 10, 1299–1312, https://doi.org/10.5194/amt-10-1299-2017, https://doi.org/10.5194/amt-10-1299-2017, 2017
Short summary
Short summary
A European-wide 222radon/222radon progeny comparison study has been conducted at nine measurement stations in order to determine differences between existing 222radon instrumentation and atmospheric data sets, respectively. Mean differences up to 45 % were found between monitors. These differences need to be taken into account if the data shall serve for quantitative regional atmospheric transport model validation.
This article is included in the Encyclopedia of Geosciences
Ingeborg Levin, Dominik Schmithüsen, and Alex Vermeulen
Atmos. Meas. Tech., 10, 1313–1321, https://doi.org/10.5194/amt-10-1313-2017, https://doi.org/10.5194/amt-10-1313-2017, 2017
Short summary
Short summary
222Radon is often used to parameterise atmospheric transport in the lower troposphere. It can be measured via its decay products, which are bound to aerosol. Air sampling through long tubing, which sometimes cannot be avoided at tall tower sites, may then cause severe aerosol and corresponding radon daughter activity loss. We have quantified this loss for 8.2 mm ID Decabon tubing used at European stations and provide a length-dependent correction function for this experimental setting.
This article is included in the Encyclopedia of Geosciences
Christian Brümmer, Bjarne Lyshede, Dirk Lempio, Jean-Pierre Delorme, Jeremy J. Rüffer, Roland Fuß, Antje M. Moffat, Miriam Hurkuck, Andreas Ibrom, Per Ambus, Heinz Flessa, and Werner L. Kutsch
Biogeosciences, 14, 1365–1381, https://doi.org/10.5194/bg-14-1365-2017, https://doi.org/10.5194/bg-14-1365-2017, 2017
Short summary
Short summary
We present a novel chamber design for measuring soil–atmosphere N2O fluxes and compare the performance of a commonly applied gas chromatography (GC) setup with laser-based (QCL) concentration detection. While GC was still a useful method for longer-term investigations, we found that closure times of 10 min and sampling every 5 s is sufficient when using a QCL system. Further, extremely low standard errors (< 2 % of flux value) were observed regardless of linear or exponential flux calculation.
This article is included in the Encyclopedia of Geosciences
Rona L. Thompson, Motoki Sasakawa, Toshinobu Machida, Tuula Aalto, Doug Worthy, Jost V. Lavric, Cathrine Lund Myhre, and Andreas Stohl
Atmos. Chem. Phys., 17, 3553–3572, https://doi.org/10.5194/acp-17-3553-2017, https://doi.org/10.5194/acp-17-3553-2017, 2017
Short summary
Short summary
Methane (CH4) fluxes were estimated for the high northern latitudes for 2005–2013 based on observations of atmospheric CH4 mixing ratios. Methane fluxes were found to be higher than prior estimates in northern Eurasia and Canada, especially in the Western Siberian Lowlands and the Canadian province Alberta. Significant inter-annual variations in the fluxes were found as well as a small positive trend. In Canada, the trend may be related to an increase in soil temperature over the study period.
This article is included in the Encyclopedia of Geosciences
Saehee Lim, Xavier Faïn, Patrick Ginot, Vladimir Mikhalenko, Stanislav Kutuzov, Jean-Daniel Paris, Anna Kozachek, and Paolo Laj
Atmos. Chem. Phys., 17, 3489–3505, https://doi.org/10.5194/acp-17-3489-2017, https://doi.org/10.5194/acp-17-3489-2017, 2017
Short summary
Short summary
A record of light-absorbing refractory black carbon (rBC), emitted by fossil fuel combustion and biomass burning, was reconstructed from the ice cores drilled at a high-altitude eastern European site in Mt. Elbrus. This record reports for the first time the high-resolution rBC mass concentrations in the European outflows over the past 189 years. Our study suggests that the past changes in BC emissions of eastern Europe need to be considered in assessing ongoing air quality regulations.
This article is included in the Encyclopedia of Geosciences
Gunnar Myhre, Wenche Aas, Ribu Cherian, William Collins, Greg Faluvegi, Mark Flanner, Piers Forster, Øivind Hodnebrog, Zbigniew Klimont, Marianne T. Lund, Johannes Mülmenstädt, Cathrine Lund Myhre, Dirk Olivié, Michael Prather, Johannes Quaas, Bjørn H. Samset, Jordan L. Schnell, Michael Schulz, Drew Shindell, Ragnhild B. Skeie, Toshihiko Takemura, and Svetlana Tsyro
Atmos. Chem. Phys., 17, 2709–2720, https://doi.org/10.5194/acp-17-2709-2017, https://doi.org/10.5194/acp-17-2709-2017, 2017
Short summary
Short summary
Over the past decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990–2015, as simulated by seven global atmospheric composition models. The global mean radiative forcing is more strongly positive than reported in IPCC AR5.
This article is included in the Encyclopedia of Geosciences
Clémence Rose, Karine Sellegri, Isabel Moreno, Fernando Velarde, Michel Ramonet, Kay Weinhold, Radovan Krejci, Marcos Andrade, Alfred Wiedensohler, Patrick Ginot, and Paolo Laj
Atmos. Chem. Phys., 17, 1529–1541, https://doi.org/10.5194/acp-17-1529-2017, https://doi.org/10.5194/acp-17-1529-2017, 2017
Short summary
Short summary
Using an indirect method based on particle size distribution measurements, we show that new particle formation (NPF) is responsible for a large contribution to the cloud condensation nuclei concentration at the highest observatory in the world (Bolivia, 5240 m a.s.l.) as expected from some global model predictions. We also provide unique results related to the influence of the boundary layer on the NPF process, showing direct evidence for the important NPF frequency in the free troposphere.
This article is included in the Encyclopedia of Geosciences
Hervé Petetin, Valérie Thouret, Alain Fontaine, Bastien Sauvage, Giles Athier, Romain Blot, Damien Boulanger, Jean-Marc Cousin, and Philippe Nédélec
Atmos. Chem. Phys., 16, 15147–15163, https://doi.org/10.5194/acp-16-15147-2016, https://doi.org/10.5194/acp-16-15147-2016, 2016
Short summary
Short summary
Ozone (O3) and carbon monoxide (CO) are two compounds of major importance in the atmosphere. In this paper we investigated their variability and trends at Frankfurt based on the MOZAIC–IAGOS dataset, a unique dataset of about 21 300 vertical profiles recorded by commercial aircraft. The CO concentrations have been decreasing since 2002, while no strong tendency is observed for O3 since 1994. However, the O3 seasonal variations are changing, with the spring maximum occurring earlier and earlier.
This article is included in the Encyclopedia of Geosciences
Sander van der Laan, Swagath Manohar, Alex Vermeulen, Fred Bosveld, Harro Meijer, Andrew Manning, Michiel van der Molen, and Ingrid van der Laan-Luijkx
Atmos. Meas. Tech., 9, 5523–5533, https://doi.org/10.5194/amt-9-5523-2016, https://doi.org/10.5194/amt-9-5523-2016, 2016
Short summary
Short summary
A new methodology is presented to estimate regional-scale surface fluxes of 222Rn. 222Rn is an increasingly important trace gas which is used to calculate regional-scale greenhouse gas emissions and to validate atmospheric transport models. We tested our method at two atmospheric research stations in the Netherlands and compared our results with measurements from accumulation chambers and two recently published 222Rn soil flux maps for Europe.
This article is included in the Encyclopedia of Geosciences
Ralf Weigel, Peter Spichtinger, Christoph Mahnke, Marcus Klingebiel, Armin Afchine, Andreas Petzold, Martina Krämer, Anja Costa, Sergej Molleker, Philipp Reutter, Miklós Szakáll, Max Port, Lucas Grulich, Tina Jurkat, Andreas Minikin, and Stephan Borrmann
Atmos. Meas. Tech., 9, 5135–5162, https://doi.org/10.5194/amt-9-5135-2016, https://doi.org/10.5194/amt-9-5135-2016, 2016
Short summary
Short summary
The subject of our study concerns measurements with optical array probes (OAPs) on fast-flying aircraft such as the G550 (HALO or HIAPER). At up to Mach 0.7 the effect of air compression upstream of underwing-mounted instruments and particles' inertia need consideration for determining ambient particle concentrations. Compared to conventional practices the introduced correction procedure eliminates ambiguities and exhibits consistency over flight speeds between 50 and 250 m s−.
This article is included in the Encyclopedia of Geosciences
E. N. Koffi, P. Bergamaschi, U. Karstens, M. Krol, A. Segers, M. Schmidt, I. Levin, A. T. Vermeulen, R. E. Fisher, V. Kazan, H. Klein Baltink, D. Lowry, G. Manca, H. A. J. Meijer, J. Moncrieff, S. Pal, M. Ramonet, H. A. Scheeren, and A. G. Williams
Geosci. Model Dev., 9, 3137–3160, https://doi.org/10.5194/gmd-9-3137-2016, https://doi.org/10.5194/gmd-9-3137-2016, 2016
Short summary
Short summary
We evaluate the capability of the TM5 model to reproduce observations of the boundary layer dynamics and the associated variability of trace gases close to the surface, using 222Rn. Focusing on the European scale, we compare the TM5 boundary layer heights with observations from radiosondes, lidar, and ceilometer. Furthermore, we compare TM5 simulations of 222Rn activity concentrations, using a novel, process-based 222Rn flux map over Europe, with 222Rn harmonized measurements from 10 stations.
This article is included in the Encyclopedia of Geosciences
Undine Zöll, Christian Brümmer, Frederik Schrader, Christof Ammann, Andreas Ibrom, Christophe R. Flechard, David D. Nelson, Mark Zahniser, and Werner L. Kutsch
Atmos. Chem. Phys., 16, 11283–11299, https://doi.org/10.5194/acp-16-11283-2016, https://doi.org/10.5194/acp-16-11283-2016, 2016
Short summary
Short summary
Accurate quantification of atmospheric ammonia concentration and exchange fluxes with the land surface has been a major metrological challenge. We demonstrate the applicability of a novel laser device to identify concentration and flux patterns over a peatland ecosystem influenced by nearby agricultural practices. Results help to strengthen air quality monitoring networks, lead to better understanding of ecosystem functionality and improve parameterizations in air chemistry and transport models.
This article is included in the Encyclopedia of Geosciences
Wolfram Birmili, Kay Weinhold, Fabian Rasch, André Sonntag, Jia Sun, Maik Merkel, Alfred Wiedensohler, Susanne Bastian, Alexander Schladitz, Gunter Löschau, Josef Cyrys, Mike Pitz, Jianwei Gu, Thomas Kusch, Harald Flentje, Ulrich Quass, Heinz Kaminski, Thomas A. J. Kuhlbusch, Frank Meinhardt, Andreas Schwerin, Olaf Bath, Ludwig Ries, Holger Gerwig, Klaus Wirtz, and Markus Fiebig
Earth Syst. Sci. Data, 8, 355–382, https://doi.org/10.5194/essd-8-355-2016, https://doi.org/10.5194/essd-8-355-2016, 2016
Short summary
Short summary
The German Ultrafine Aerosol Network (GUAN) provides new continuous data on tropospheric aerosol particles including number size distributions and black carbon. The data are equally relevant for atmospheric studies related to both climate-related and health-related issues. The published data underwent uniform measures of quality assurance and control. The data are available free of charge at the World Data Center for Aerosols EBAS data repository.
This article is included in the Encyclopedia of Geosciences
Tero Mielonen, Anca Hienola, Thomas Kühn, Joonas Merikanto, Antti Lipponen, Tommi Bergman, Hannele Korhonen, Pekka Kolmonen, Larisa Sogacheva, Darren Ghent, Antti Arola, Gerrit de Leeuw, and Harri Kokkola
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-625, https://doi.org/10.5194/acp-2016-625, 2016
Revised manuscript not accepted
Short summary
Short summary
We studied the temperature dependence of AOD and its radiative effects over the southeastern US. We used spaceborne observations of AOD, LST and tropospheric NO2 with simulations of ECHAM-HAMMOZ. The level of AOD in this region is governed by anthropogenic emissions but the temperature dependency is most likely caused by BVOC emissions. According to the observations and simulations, the regional clear-sky DRE for biogenic aerosols is −0.43 ± 0.88 W/m2/K and −0.86 ± 0.06 W/m2/K, respectively.
This article is included in the Encyclopedia of Geosciences
L. Wingate, J. Ogée, E. Cremonese, G. Filippa, T. Mizunuma, M. Migliavacca, C. Moisy, M. Wilkinson, C. Moureaux, G. Wohlfahrt, A. Hammerle, L. Hörtnagl, C. Gimeno, A. Porcar-Castell, M. Galvagno, T. Nakaji, J. Morison, O. Kolle, A. Knohl, W. Kutsch, P. Kolari, E. Nikinmaa, A. Ibrom, B. Gielen, W. Eugster, M. Balzarolo, D. Papale, K. Klumpp, B. Köstner, T. Grünwald, R. Joffre, J.-M. Ourcival, M. Hellstrom, A. Lindroth, C. George, B. Longdoz, B. Genty, J. Levula, B. Heinesch, M. Sprintsin, D. Yakir, T. Manise, D. Guyon, H. Ahrends, A. Plaza-Aguilar, J. H. Guan, and J. Grace
Biogeosciences, 12, 5995–6015, https://doi.org/10.5194/bg-12-5995-2015, https://doi.org/10.5194/bg-12-5995-2015, 2015
Short summary
Short summary
The timing of plant development stages and their response to climate and management were investigated using a network of digital cameras installed across different European ecosystems. Using the relative red, green and blue content of images we showed that the green signal could be used to estimate the length of the growing season in broadleaf forests. We also developed a model that predicted the seasonal variations of camera RGB signals and how they relate to leaf pigment content and area well.
This article is included in the Encyclopedia of Geosciences
M. Lopez, M. Schmidt, M. Ramonet, J.-L. Bonne, A. Colomb, V. Kazan, P. Laj, and J.-M. Pichon
Atmos. Meas. Tech., 8, 3941–3958, https://doi.org/10.5194/amt-8-3941-2015, https://doi.org/10.5194/amt-8-3941-2015, 2015
H.-W. Jacobi, S. Lim, M. Ménégoz, P. Ginot, P. Laj, P. Bonasoni, P. Stocchi, A. Marinoni, and Y. Arnaud
The Cryosphere, 9, 1685–1699, https://doi.org/10.5194/tc-9-1685-2015, https://doi.org/10.5194/tc-9-1685-2015, 2015
Short summary
Short summary
We detected up to 70 ppb of black carbon (BC) in surface snow in the upper Khumbu Valley, Nepal. With an upgraded snowpack model, including radiative transfer inside the snow, we studied the impact of BC on snow albedo, melting and radiative forcing for the sensitive high altitude regions of the Himalayas. We found that due to BC, the melting of the snow can be shifted by several days up to several weeks depending on meteorological conditions. The impact of BC is larger in dirty snow.
This article is included in the Encyclopedia of Geosciences
A. Worringen, K. Kandler, N. Benker, T. Dirsch, S. Mertes, L. Schenk, U. Kästner, F. Frank, B. Nillius, U. Bundke, D. Rose, J. Curtius, P. Kupiszewski, E. Weingartner, P. Vochezer, J. Schneider, S. Schmidt, S. Weinbruch, and M. Ebert
Atmos. Chem. Phys., 15, 4161–4178, https://doi.org/10.5194/acp-15-4161-2015, https://doi.org/10.5194/acp-15-4161-2015, 2015
P. Neis, H. G. J. Smit, M. Krämer, N. Spelten, and A. Petzold
Atmos. Meas. Tech., 8, 1233–1243, https://doi.org/10.5194/amt-8-1233-2015, https://doi.org/10.5194/amt-8-1233-2015, 2015
H. G. J. Smit, S. Rohs, P. Neis, D. Boulanger, M. Krämer, A. Wahner, and A. Petzold
Atmos. Chem. Phys., 14, 13241–13255, https://doi.org/10.5194/acp-14-13241-2014, https://doi.org/10.5194/acp-14-13241-2014, 2014
Short summary
Short summary
Long-term water vapour measurements from the MOZAIC programme are a unique source for upper troposphere humidity data. However, due to an error in the calibration procedure, RH data from MOZAIC were biased towards higher values for the period starting in year 2000. Here we report the procedures followed to reanalyse the calibrations and to reprocess the entire MOZAIC RH data. This study serves as the reference publication for the reanalysed MOZAIC RH data base for the period 1994 to 2009.
This article is included in the Encyclopedia of Geosciences
J.-P. Pietikäinen, S. Mikkonen, A. Hamed, A. I. Hienola, W. Birmili, M. Kulmala, and A. Laaksonen
Atmos. Chem. Phys., 14, 11711–11729, https://doi.org/10.5194/acp-14-11711-2014, https://doi.org/10.5194/acp-14-11711-2014, 2014
M. Hervo, K. Sellegri, J. M. Pichon, J. C. Roger, and P. Laj
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-27731-2014, https://doi.org/10.5194/acpd-14-27731-2014, 2014
Revised manuscript not accepted
L. P. Schenk, S. Mertes, U. Kästner, F. Frank, B. Nillius, U. Bundke, D. Rose, S. Schmidt, J. Schneider, A. Worringen, K. Kandler, N. Bukowiecki, M. Ebert, J. Curtius, and F. Stratmann
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-7-10585-2014, https://doi.org/10.5194/amtd-7-10585-2014, 2014
Revised manuscript has not been submitted
Short summary
Short summary
A pumped counterflow virtual impactor (PCVI) was set up to separate ice nucleating particle (INP) counter produced ice particles that had been activated to ice from non-activated aerosol particles. The released INP were characterized with regard to their physico-chemical properties. A successful separation (PCVI) of INP for water-subsaturated conditions is proven. First results of INP properties are presented which were gained during a campaign at the high altitude research station Jungfraujoch.
This article is included in the Encyclopedia of Geosciences
S. Lim, X. Faïn, M. Zanatta, J. Cozic, J.-L. Jaffrezo, P. Ginot, and P. Laj
Atmos. Meas. Tech., 7, 3307–3324, https://doi.org/10.5194/amt-7-3307-2014, https://doi.org/10.5194/amt-7-3307-2014, 2014
A. M. Thompson, N. V. Balashov, J. C. Witte, J. G. R. Coetzee, V. Thouret, and F. Posny
Atmos. Chem. Phys., 14, 9855–9869, https://doi.org/10.5194/acp-14-9855-2014, https://doi.org/10.5194/acp-14-9855-2014, 2014
H. Holmgren, K. Sellegri, M. Hervo, C. Rose, E. Freney, P. Villani, and P. Laj
Atmos. Chem. Phys., 14, 9537–9554, https://doi.org/10.5194/acp-14-9537-2014, https://doi.org/10.5194/acp-14-9537-2014, 2014
P. Ginot, M. Dumont, S. Lim, N. Patris, J.-D. Taupin, P. Wagnon, A. Gilbert, Y. Arnaud, A. Marinoni, P. Bonasoni, and P. Laj
The Cryosphere, 8, 1479–1496, https://doi.org/10.5194/tc-8-1479-2014, https://doi.org/10.5194/tc-8-1479-2014, 2014
K. E. Yttri, C. Lund Myhre, S. Eckhardt, M. Fiebig, C. Dye, D. Hirdman, J. Ström, Z. Klimont, and A. Stohl
Atmos. Chem. Phys., 14, 6427–6442, https://doi.org/10.5194/acp-14-6427-2014, https://doi.org/10.5194/acp-14-6427-2014, 2014
J. Tian, N. Riemer, M. West, L. Pfaffenberger, H. Schlager, and A. Petzold
Atmos. Chem. Phys., 14, 5327–5347, https://doi.org/10.5194/acp-14-5327-2014, https://doi.org/10.5194/acp-14-5327-2014, 2014
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
D. C. S. Beddows, M. Dall'Osto, R. M. Harrison, M. Kulmala, A. Asmi, A. Wiedensohler, P. Laj, A.M. Fjaeraa, K. Sellegri, W. Birmili, N. Bukowiecki, E. Weingartner, U. Baltensperger, V. Zdimal, N. Zikova, J.-P. Putaud, A. Marinoni, P. Tunved, H.-C. Hansson, M. Fiebig, N. Kivekäs, E. Swietlicki, H. Lihavainen, E. Asmi, V. Ulevicius, P. P. Aalto, N. Mihalopoulos, N. Kalivitis, I. Kalapov, G. Kiss, G. de Leeuw, B. Henzing, C. O'Dowd, S. G. Jennings, H. Flentje, F. Meinhardt, L. Ries, H. A. C. Denier van der Gon, and A. J. H. Visschedijk
Atmos. Chem. Phys., 14, 4327–4348, https://doi.org/10.5194/acp-14-4327-2014, https://doi.org/10.5194/acp-14-4327-2014, 2014
M. Fiebig, D. Hirdman, C. R. Lunder, J. A. Ogren, S. Solberg, A. Stohl, and R. L. Thompson
Atmos. Chem. Phys., 14, 3083–3093, https://doi.org/10.5194/acp-14-3083-2014, https://doi.org/10.5194/acp-14-3083-2014, 2014
J. C. Corbin, B. Sierau, M. Gysel, M. Laborde, A. Keller, J. Kim, A. Petzold, T. B. Onasch, U. Lohmann, and A. A. Mensah
Atmos. Chem. Phys., 14, 2591–2603, https://doi.org/10.5194/acp-14-2591-2014, https://doi.org/10.5194/acp-14-2591-2014, 2014
L. Deguillaume, T. Charbouillot, M. Joly, M. Vaïtilingom, M. Parazols, A. Marinoni, P. Amato, A.-M. Delort, V. Vinatier, A. Flossmann, N. Chaumerliac, J. M. Pichon, S. Houdier, P. Laj, K. Sellegri, A. Colomb, M. Brigante, and G. Mailhot
Atmos. Chem. Phys., 14, 1485–1506, https://doi.org/10.5194/acp-14-1485-2014, https://doi.org/10.5194/acp-14-1485-2014, 2014
J. Staufer, J. Staehelin, R. Stübi, T. Peter, F. Tummon, and V. Thouret
Atmos. Meas. Tech., 7, 241–266, https://doi.org/10.5194/amt-7-241-2014, https://doi.org/10.5194/amt-7-241-2014, 2014
R. M. Zbinden, V. Thouret, P. Ricaud, F. Carminati, J.-P. Cammas, and P. Nédélec
Atmos. Chem. Phys., 13, 12363–12388, https://doi.org/10.5194/acp-13-12363-2013, https://doi.org/10.5194/acp-13-12363-2013, 2013
P. Jeßberger, C. Voigt, U. Schumann, I. Sölch, H. Schlager, S. Kaufmann, A. Petzold, D. Schäuble, and J.-F. Gayet
Atmos. Chem. Phys., 13, 11965–11984, https://doi.org/10.5194/acp-13-11965-2013, https://doi.org/10.5194/acp-13-11965-2013, 2013
J. Staufer, J. Staehelin, R. Stübi, T. Peter, F. Tummon, and V. Thouret
Atmos. Meas. Tech., 6, 3393–3406, https://doi.org/10.5194/amt-6-3393-2013, https://doi.org/10.5194/amt-6-3393-2013, 2013
C. Rose, J. Boulon, M. Hervo, H. Holmgren, E. Asmi, M. Ramonet, P. Laj, and K. Sellegri
Atmos. Chem. Phys., 13, 11573–11594, https://doi.org/10.5194/acp-13-11573-2013, https://doi.org/10.5194/acp-13-11573-2013, 2013
P. D. Kalabokas, J.-P. Cammas, V. Thouret, A. Volz-Thomas, D. Boulanger, and C. C. Repapis
Atmos. Chem. Phys., 13, 10339–10352, https://doi.org/10.5194/acp-13-10339-2013, https://doi.org/10.5194/acp-13-10339-2013, 2013
J. Genberg, H. A. C. Denier van der Gon, D. Simpson, E. Swietlicki, H. Areskoug, D. Beddows, D. Ceburnis, M. Fiebig, H. C. Hansson, R. M. Harrison, S. G. Jennings, S. Saarikoski, G. Spindler, A. J. H. Visschedijk, A. Wiedensohler, K. E. Yttri, and R. Bergström
Atmos. Chem. Phys., 13, 8719–8738, https://doi.org/10.5194/acp-13-8719-2013, https://doi.org/10.5194/acp-13-8719-2013, 2013
A. Petzold, J. A. Ogren, M. Fiebig, P. Laj, S.-M. Li, U. Baltensperger, T. Holzer-Popp, S. Kinne, G. Pappalardo, N. Sugimoto, C. Wehrli, A. Wiedensohler, and X.-Y. Zhang
Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, https://doi.org/10.5194/acp-13-8365-2013, 2013
A. Petzold, T. Onasch, P. Kebabian, and A. Freedman
Atmos. Meas. Tech., 6, 1141–1151, https://doi.org/10.5194/amt-6-1141-2013, https://doi.org/10.5194/amt-6-1141-2013, 2013
A. I. Hienola, J.-P. Pietikäinen, D. Jacob, R. Pozdun, T. Petäjä, A.-P. Hyvärinen, L. Sogacheva, V.-M. Kerminen, M. Kulmala, and A. Laaksonen
Atmos. Chem. Phys., 13, 4033–4055, https://doi.org/10.5194/acp-13-4033-2013, https://doi.org/10.5194/acp-13-4033-2013, 2013
A. Inness, F. Baier, A. Benedetti, I. Bouarar, S. Chabrillat, H. Clark, C. Clerbaux, P. Coheur, R. J. Engelen, Q. Errera, J. Flemming, M. George, C. Granier, J. Hadji-Lazaro, V. Huijnen, D. Hurtmans, L. Jones, J. W. Kaiser, J. Kapsomenakis, K. Lefever, J. Leitão, M. Razinger, A. Richter, M. G. Schultz, A. J. Simmons, M. Suttie, O. Stein, J.-N. Thépaut, V. Thouret, M. Vrekoussis, C. Zerefos, and the MACC team
Atmos. Chem. Phys., 13, 4073–4109, https://doi.org/10.5194/acp-13-4073-2013, https://doi.org/10.5194/acp-13-4073-2013, 2013
S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold
Atmos. Chem. Phys., 13, 2487–2505, https://doi.org/10.5194/acp-13-2487-2013, https://doi.org/10.5194/acp-13-2487-2013, 2013
R. Weller, A. Minikin, A. Petzold, D. Wagenbach, and G. König-Langlo
Atmos. Chem. Phys., 13, 1579–1590, https://doi.org/10.5194/acp-13-1579-2013, https://doi.org/10.5194/acp-13-1579-2013, 2013
A. Asmi, M. Collaud Coen, J. A. Ogren, E. Andrews, P. Sheridan, A. Jefferson, E. Weingartner, U. Baltensperger, N. Bukowiecki, H. Lihavainen, N. Kivekäs, E. Asmi, P. P. Aalto, M. Kulmala, A. Wiedensohler, W. Birmili, A. Hamed, C. O'Dowd, S. G Jennings, R. Weller, H. Flentje, A. M. Fjaeraa, M. Fiebig, C. L. Myhre, A. G. Hallar, E. Swietlicki, A. Kristensson, and P. Laj
Atmos. Chem. Phys., 13, 895–916, https://doi.org/10.5194/acp-13-895-2013, https://doi.org/10.5194/acp-13-895-2013, 2013
M. Collaud Coen, E. Andrews, A. Asmi, U. Baltensperger, N. Bukowiecki, D. Day, M. Fiebig, A. M. Fjaeraa, H. Flentje, A. Hyvärinen, A. Jefferson, S. G. Jennings, G. Kouvarakis, H. Lihavainen, C. Lund Myhre, W. C. Malm, N. Mihapopoulos, J. V. Molenar, C. O'Dowd, J. A. Ogren, B. A. Schichtel, P. Sheridan, A. Virkkula, E. Weingartner, R. Weller, and P. Laj
Atmos. Chem. Phys., 13, 869–894, https://doi.org/10.5194/acp-13-869-2013, https://doi.org/10.5194/acp-13-869-2013, 2013
M. Gysel, M. Laborde, A. A. Mensah, J. C. Corbin, A. Keller, J. Kim, A. Petzold, and B. Sierau
Atmos. Meas. Tech., 5, 3099–3107, https://doi.org/10.5194/amt-5-3099-2012, https://doi.org/10.5194/amt-5-3099-2012, 2012
T. Hamburger, G. McMeeking, A. Minikin, A. Petzold, H. Coe, and R. Krejci
Atmos. Chem. Phys., 12, 11533–11554, https://doi.org/10.5194/acp-12-11533-2012, https://doi.org/10.5194/acp-12-11533-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Long-term observations of black carbon and carbon monoxide in the Poker Flat Research Range, central Alaska, with a focus on forest wildfire emissions
High ice-nucleating particle concentrations associated with Arctic haze in springtime cold-air outbreaks
CCN estimations at a high-altitude remote site: role of organic aerosol variability and hygroscopicity
Aerosol hygroscopicity over the southeast Atlantic Ocean during the biomass burning season – Part 1: From the perspective of scattering enhancement
Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: increase in particulate matter concentrations across New Mexico and West Texas
Large spatiotemporal variability in aerosol properties over central Argentina during the CACTI field campaign
Quantification and characterization of primary biological aerosol particles and microbes aerosolized from Baltic seawater
Brownness of organics in anthropogenic biomass burning aerosols over South Asia
Source apportionment of particle number size distribution at the street canyon and urban background sites
Long-range transport of coarse mineral dust: an evaluation of the Met Office Unified Model against aircraft observations
Extreme Saharan dust events expand northward over the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 episodes
Atmospheric black carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sources
Changing optical properties of black carbon and brown carbon aerosols during long-range transport from the Indo-Gangetic Plain to the equatorial Indian Ocean
Aerosol size distribution properties associated with cold-air outbreaks in the Norwegian Arctic
Ice-nucleating particles active below −24 °C in a Finnish boreal forest and their relationship to bioaerosols
Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise
Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland
Multi-year gradient measurements of sea spray fluxes over the Baltic Sea and the North Atlantic Ocean
External particle mixing influences hygroscopicity in a sub-urban area
Measurement report: In situ vertical profiles of below-cloud aerosol over the central Greenland Ice Sheet
Occurrence, abundance, and formation of atmospheric tarballs from a wide range of wildfires in the western US
Size-resolved hygroscopicity and volatility properties of ambient urban aerosol particles measured by the VH-TDMA system in the autumn of 2023
Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei, and radiative forcing – results from 5-year observations in central Europe
Simulated contrail-processed aviation soot aerosols are poor ice-nucleating particles at cirrus temperatures
In situ vertical observations of the layered structure of air pollution in a continental high latitude urban boundary layer during winter
Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Quantifying the dust direct radiative effect in the southwestern United States: findings from multiyear measurements
How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Markedly different impacts of primary emissions and secondary aerosol formation on aerosol mixing states revealed by simultaneous measurements of CCNC, H(/V)TDMA, and SP2
Aerosol spectral optical properties in the Paris urban area, and its peri−urban and forested surroundings during summer 2022 from ACROSS surface observations
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Contributions of the synoptic meteorology to the seasonal CCN cycle over the Southern Ocean
Measurement report: Analysis of aerosol optical depth variation at Zhongshan Station in Antarctica
Measurement Report: An investigation of the spatiotemporal variability of aerosol in the mountainous terrain of the Upper Colorado River Basin from SAIL-Net
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Terrestrial runoff is an important source of biological INPs in Arctic marine systems
Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires
Attribution of aerosol particle number size distributions to main sources using an 11-year urban dataset
Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals
Measurement report: A comparison of ground-level ice-nucleating-particle abundance and aerosol properties during autumn at contrasting marine and terrestrial locations
Measurement Report: Seasonal variation and anthropogenic influence on cloud condensation nuclei (CCN) activity in the South China Sea: Insights from shipborne observations during summer and winter of 2021
Efficient droplet activation of ambient black carbon particles in a suburban environment
Tropospheric sulfate from Cumbre Vieja (La Palma) observed over Cabo Verde contrasted with background conditions: a lidar case study of aerosol extinction, backscatter, depolarization and lidar ratio profiles at 355, 532 and 1064 nm
The radiative impact of biomass burning aerosols on dust emissions over Namibia and the long-range transport of smoke observed during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) campaign
Pollution affects Arabian and Saharan dust optical properties in the Eastern Mediterranean
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Amazonian aerosol size distributions in a lognormal phase space: characteristics and trajectories
Measurement report: Hygroscopicity of size-selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of chloride aerosol
An observation-constrained estimation of brown carbon aerosol direct radiative effects
The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air
Takeshi Kinase, Fumikazu Taketani, Masayuki Takigawa, Chunmao Zhu, Yongwon Kim, Petr Mordovskoi, and Yugo Kanaya
Atmos. Chem. Phys., 25, 143–156, https://doi.org/10.5194/acp-25-143-2025, https://doi.org/10.5194/acp-25-143-2025, 2025
Short summary
Short summary
Boreal forest wildfires in interior Alaska represent an important black carbon (BC) source for the Arctic and surrounding regions. We observed BC and carbon monoxide (CO) concentrations in the Poker Flat Research Range since 2016 and found a positive correlation between the observed BC / ∆CO ratio and fire radiative power (FRP) observed in Alaska and Canada. Our finding suggests the BC emission factor and/or inventory could be potentially improved by using FRP.
This article is included in the Encyclopedia of Geosciences
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 14045–14072, https://doi.org/10.5194/acp-24-14045-2024, https://doi.org/10.5194/acp-24-14045-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) allow ice to form in clouds at temperatures warmer than −35°C. We measured INP concentrations over the Norwegian and Barents seas in weather events where cold air is ejected from the Arctic. These concentrations were among the highest measured in the Arctic. It is likely that the INPs were transported to the Arctic from distant regions. These results show it is important to consider hemispheric-scale INP processes to understand INP concentrations in the Arctic.
This article is included in the Encyclopedia of Geosciences
Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos
Atmos. Chem. Phys., 24, 13865–13888, https://doi.org/10.5194/acp-24-13865-2024, https://doi.org/10.5194/acp-24-13865-2024, 2024
Short summary
Short summary
This study provides valuable insights to improve cloud condensation nuclei (CCN) estimations at a high-altitude remote site which is influenced by nearby urban pollution. Understanding the factors that affect CCN estimations is essential to improve the CCN data coverage worldwide and assess aerosol–cloud interactions on a global scale. This is crucial for improving climate models, since aerosol–cloud interactions are the most important source of uncertainty in climate projections.
This article is included in the Encyclopedia of Geosciences
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, Paola Formenti, and Steven G. Howell
Atmos. Chem. Phys., 24, 13849–13864, https://doi.org/10.5194/acp-24-13849-2024, https://doi.org/10.5194/acp-24-13849-2024, 2024
Short summary
Short summary
Using airborne measurements over the southeast Atlantic Ocean, we examined how much moisture aerosols take up during Africa’s biomass burning season. Our study revealed the important role of organic aerosols and introduced a predictive model for moisture uptake, accounting for organics, sulfate, and black carbon, summarizing results from various campaigns. These findings improve our understanding of aerosol–moisture interactions and their radiative effects in this climatically critical region.
This article is included in the Encyclopedia of Geosciences
Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer
Atmos. Chem. Phys., 24, 13733–13750, https://doi.org/10.5194/acp-24-13733-2024, https://doi.org/10.5194/acp-24-13733-2024, 2024
Short summary
Short summary
On 26 February 2023, New Mexico and West Texas were impacted by a severe dust storm. To analyze this storm, 28 meteorological stations and 19 PM2.5 and PM10 stations were used. Dust particles were in the air for 16 h, and dust storm conditions lasted for up to 120 min. Hourly PM2.5 and PM10 concentrations were up to 518 and 9983 µg m−3, respectively. For Lubbock, Texas, the maximum PM2.5 concentrations were the highest ever recorded.
This article is included in the Encyclopedia of Geosciences
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024, https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary
Short summary
Aerosol property measurements recently collected on the ground and by a research aircraft in central Argentina during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign exhibit large spatial and temporal variability. These measurements coupled with coincident meteorological information provide a valuable data set needed to evaluate and improve model predictions of aerosols in a traditionally data-sparse region of South America.
This article is included in the Encyclopedia of Geosciences
Julika Zinke, Gabriel Pereira Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 13413–13428, https://doi.org/10.5194/acp-24-13413-2024, https://doi.org/10.5194/acp-24-13413-2024, 2024
Short summary
Short summary
Bioaerosols, which can influence climate and human health, were studied in the Baltic Sea. In May and August 2021, we used a sea spray simulation chamber during two ship-based campaigns to collect and measure these aerosols. We found that microbes were enriched in air compared to seawater. Bacterial diversity was analysed using DNA sequencing. Our methods provided consistent estimates of microbial emission fluxes, aligning with previous studies.
This article is included in the Encyclopedia of Geosciences
Chimurkar Navinya, Taveen Singh Kapoor, Gupta Anurag, Chandra Venkataraman, Harish C. Phuleria, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 24, 13285–13297, https://doi.org/10.5194/acp-24-13285-2024, https://doi.org/10.5194/acp-24-13285-2024, 2024
Short summary
Short summary
Brown carbon (BrC) aerosols show an order-of-magnitude variation in their light absorption strength. Our understanding of BrC from real-world biomass burning remains limited, complicating the determination of its radiative impact. Our study reports absorption properties of BrC emitted from four major biomass burning sources using field measurements in India. It develops an absorption parameterization for BrC and examines the spatial variability in BrC's absorption strength across India.
This article is included in the Encyclopedia of Geosciences
Sami D. Harni, Minna Aurela, Sanna Saarikoski, Jarkko V. Niemi, Harri Portin, Hanna Manninen, Ville Leinonen, Pasi Aalto, Phil K. Hopke, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 24, 12143–12160, https://doi.org/10.5194/acp-24-12143-2024, https://doi.org/10.5194/acp-24-12143-2024, 2024
Short summary
Short summary
In this study, particle number size distribution data were used in a novel way in positive matrix factorization analysis to find aerosol source profiles in the area. Measurements were made in Helsinki at a street canyon and urban background sites between February 2015 and June 2019. Five different aerosol sources were identified. These sources underline the significance of traffic-related emissions in urban environments despite recent improvements in emission reduction technologies.
This article is included in the Encyclopedia of Geosciences
Natalie G. Ratcliffe, Claire L. Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Lisa-Maria Wieland, Maximilian Dollner, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Chem. Phys., 24, 12161–12181, https://doi.org/10.5194/acp-24-12161-2024, https://doi.org/10.5194/acp-24-12161-2024, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large-dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
This article is included in the Encyclopedia of Geosciences
Sergio Rodríguez and Jessica López-Darias
Atmos. Chem. Phys., 24, 12031–12053, https://doi.org/10.5194/acp-24-12031-2024, https://doi.org/10.5194/acp-24-12031-2024, 2024
Short summary
Short summary
Extreme Saharan dust events expanded northward to the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 events. These episodes are caused by low-to-high dipole meteorology during hemispheric anomalies characterized by subtropical anticyclones shifting to higher latitudes, anomalous low pressures beyond the tropics and amplified Rossby waves. Extreme dust events occur in a paradoxical context of a multidecadal decrease in dust emissions, a topic that requires further investigation.
This article is included in the Encyclopedia of Geosciences
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024, https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the Southern Hemisphere, especially in high-altitude conditions. This study provides insight into the concentration level, variability, and optical properties of BC in La Paz and El Alto and at the Chacaltaya Global Atmosphere Watch Station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, in addition to biomass and open waste burning.
This article is included in the Encyclopedia of Geosciences
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
This article is included in the Encyclopedia of Geosciences
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
This article is included in the Encyclopedia of Geosciences
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly B. Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 11737–11757, https://doi.org/10.5194/acp-24-11737-2024, https://doi.org/10.5194/acp-24-11737-2024, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties; hence, it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months of INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INPs we observe are, at least some of the time, of biological origin.
This article is included in the Encyclopedia of Geosciences
Rebecca Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 11255–11273, https://doi.org/10.5194/acp-24-11255-2024, https://doi.org/10.5194/acp-24-11255-2024, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude, and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
This article is included in the Encyclopedia of Geosciences
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024, https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known about the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer and occasionally reach the free troposphere.
This article is included in the Encyclopedia of Geosciences
Piotr Markuszewski, E. Douglas Nilsson, Julika Zinke, E. Monica Mårtensson, Matthew Salter, Przemysław Makuch, Małgorzata Kitowska, Iwona Niedźwiecka-Wróbel, Violetta Drozdowska, Dominik Lis, Tomasz Petelski, Luca Ferrero, and Jacek Piskozub
Atmos. Chem. Phys., 24, 11227–11253, https://doi.org/10.5194/acp-24-11227-2024, https://doi.org/10.5194/acp-24-11227-2024, 2024
Short summary
Short summary
Our research provides new insights into the study of sea spray aerosol (SSA) emissions in the Baltic Sea and North Atlantic. We observed that SSA flux is suppressed during increased marine biological activity in the Baltic Sea. At the same time, the influence of wave age showed higher SSA emissions in the Baltic Sea for younger waves compared to the Atlantic Ocean. These insights underscore the complex interplay between biological activity and physical dynamics in regulating SSA emissions.
This article is included in the Encyclopedia of Geosciences
Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3027, https://doi.org/10.5194/egusphere-2024-3027, 2024
Short summary
Short summary
Aerosol hygroscopicity has been investigated at the sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity.
This article is included in the Encyclopedia of Geosciences
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
Atmos. Chem. Phys., 24, 11103–11114, https://doi.org/10.5194/acp-24-11103-2024, https://doi.org/10.5194/acp-24-11103-2024, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud–aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
This article is included in the Encyclopedia of Geosciences
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
Atmos. Chem. Phys., 24, 10985–11004, https://doi.org/10.5194/acp-24-10985-2024, https://doi.org/10.5194/acp-24-10985-2024, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. This study reveals the compositions, abundance, sizes, and mixing states of TBs and shows that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass-burning events and ages, enhancing our knowledge of TB emissions and our understanding of their climate impact.
This article is included in the Encyclopedia of Geosciences
Aoyuan Yu, Xiaojing Shen, Qianli Ma, Jiayuan Lu, Xinyao Hu, Yangmei Zhang, Quan Liu, Linlin Liang, Lei Liu, Shuo Liu, Hongfei Tong, Huizheng Che, Xiaoye Zhang, and Junying Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-2232, https://doi.org/10.5194/egusphere-2024-2232, 2024
Short summary
Short summary
In this work, we utilized the VH-TDMA system to investigate the hygroscopicity and volatility, as well as the hygroscopicity after heated of submicron aerosols in urban Beijing during the autumn of 2023 for the first time. We analyzed the size-resolved characteristics of hygroscopicity and volatility, the relationship between hygroscopic and volatile properties, as well as the hygroscopicity of heated submicron aerosols.
This article is included in the Encyclopedia of Geosciences
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 24, 10667–10687, https://doi.org/10.5194/acp-24-10667-2024, https://doi.org/10.5194/acp-24-10667-2024, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. NPF features differ between site categories, implying the crucial role of local environmental factors such as the degree of emissions and meteorological conditions. The results also underscore the importance of local environments when assessing the impact of NPF on climate in models.
This article is included in the Encyclopedia of Geosciences
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 10409–10424, https://doi.org/10.5194/acp-24-10409-2024, https://doi.org/10.5194/acp-24-10409-2024, 2024
Short summary
Short summary
Aviation soot residuals released from contrails can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates where ice nucleation can occur. Here we show that contrail-processed soot is highly compact but that it remains unable to form ice at a relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that it will not perturb cirrus cloud formation via ice nucleation.
This article is included in the Encyclopedia of Geosciences
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-2863, https://doi.org/10.5194/egusphere-2024-2863, 2024
Short summary
Short summary
This study presents an analysis of vertical measurements of pollution in an Alaskan city during winter. It investigates the relationship between the atmospheric structure and the layering of aerosols and trace gases. Results indicate an overall very shallow surface mixing layer. The height of this layer is strongly influenced by a local shallow wind. The study also provides information on the pollution chemical composition at different altitudes, including pollution signatures from power plants.
This article is included in the Encyclopedia of Geosciences
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
This article is included in the Encyclopedia of Geosciences
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024, https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over 3 years and during dust storms at a field site in a desert region in the southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
This article is included in the Encyclopedia of Geosciences
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024, https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Short summary
The study combines aerosol particle measurements at the surface and vertical profiling of the atmosphere with a scanning Doppler lidar to investigate how particle transportation together with boundary layer evolution can affect particle and SO2 concentrations at the surface in the Arabian Peninsula region. The instrumentation enabled us to see elevated nucleation mode particle and SO2 concentrations at the surface when air masses transported from polluted areas are mixed in the boundary layer.
This article is included in the Encyclopedia of Geosciences
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024, https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Short summary
Using simultaneous measurements of DMA–CCNC, H(/V)TDMA, and DMA–SP2, impacts of primary emissions and secondary aerosol formations on changes in aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing-state parameters derived from different techniques can help us gain more insight into aerosol physical properties which, in turn, will aid the investigation of emission characteristics and secondary aerosol formation pathways.
This article is included in the Encyclopedia of Geosciences
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2299, https://doi.org/10.5194/egusphere-2024-2299, 2024
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed the urban emission impact on the surrounding areas. The CRI full period averages at 520 nm were 1.41–0.037i (urban), 1.52–0.038i (peri-urban), 1.50−0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22% of absorption at 370 nm.
This article is included in the Encyclopedia of Geosciences
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
This article is included in the Encyclopedia of Geosciences
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2397, https://doi.org/10.5194/egusphere-2024-2397, 2024
Short summary
Short summary
Our research explores how weather patterns affect cloud-forming particles (CCN) over the Southern Ocean, crucial for more accurately simulate the Earth's climate. We discovered that winter and summer weather systems significantly influence CCN levels. By analysing air mass trajectories and precipitation, we identified a seasonal cycle in CCN driven by synoptic meteorology. This work enhances climate predictions by improving our understanding of cloud-aerosol interactions in this remote region.
This article is included in the Encyclopedia of Geosciences
Lijing Chen, Lei Zhang, Yong She, Zhaoliang Zeng, Yu Zheng, Biao Tian, Wenqian Zhang, Zhaohui Liu, and Minghu Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-798, https://doi.org/10.5194/egusphere-2024-798, 2024
Short summary
Short summary
AOD at Zhongshan Station varies seasonally, with lower values in summer and higher values in winter. Winter and spring AOD increases due to reduced fine mode particles, while summer and autumn increases are linked to particle growth. Duirnal AOD variation correlates positively with temperature but negatively with wind speed and humidity. Backward trajectory shows aerosols on high (low) AOD days primarily originate from the ocean (interior Antarctica).
This article is included in the Encyclopedia of Geosciences
Leah D. Gibson, Ezra J. T. Levin, Ethan Emerson, Nick Good, Anna Hodshire, Gavin McMeeking, Kate Patterson, Bryan Rainwater, Tom Ramin, and Ben Swanson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1780, https://doi.org/10.5194/egusphere-2024-1780, 2024
Short summary
Short summary
From Fall 2021 to Summer 2023, SAIL-Net, a network of six aerosol measurement nodes, was stationed in the East River Watershed in CO, USA to study the variability of aerosol in mountainous terrain. We found that aerosol variability was related to elevation differences and the variability changed seasonally. This suggests that model accuracy could be inconsistent over different seasons in complex terrain. This work provides a blueprint for future studies in other mountainous regions.
This article is included in the Encyclopedia of Geosciences
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005, https://doi.org/10.5194/acp-24-7983-2024, https://doi.org/10.5194/acp-24-7983-2024, 2024
Short summary
Short summary
The springtime southeast Atlantic atmosphere contains lots of smoke from continental fires. This smoke travels with water vapor; more smoke means more humidity. We use aircraft observations and models to describe how the values change through the season and over the region. We sort the atmosphere into different types by vertical structure and amount of smoke and humidity. Since our work shows how frequently these components coincide, it helps to better quantify heating effects over this region.
This article is included in the Encyclopedia of Geosciences
Corina Wieber, Lasse Z. Jensen, Leendert Vergeynst, Lorenz Maire, Thomas Juul-Pedersen, Kai Finster, and Tina Šantl-Temkiv
EGUsphere, https://doi.org/10.5194/egusphere-2024-1633, https://doi.org/10.5194/egusphere-2024-1633, 2024
Short summary
Short summary
The Arctic region is subjected to profound changes due to the warming climate. Ice nucleating particles (INPs) in the seawater can get transported to the atmosphere and impact cloud formation. However, the sources of characteristics of INPs in the marine areas are poorly understood. We investigated the INPs in seawater from Greenlandic fjords and identified a seasonal variability and highly active INPs originating from terrestrial sources.
This article is included in the Encyclopedia of Geosciences
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
This article is included in the Encyclopedia of Geosciences
Máté Vörösmarty, Philip K. Hopke, and Imre Salma
Atmos. Chem. Phys., 24, 5695–5712, https://doi.org/10.5194/acp-24-5695-2024, https://doi.org/10.5194/acp-24-5695-2024, 2024
Short summary
Short summary
The World Health Organization identified ultrafine particles, which make up most of the particle number concentrations, as a potential risk factor for humans. The sources of particle numbers are very different from those of the particulate matter mass. We performed source apportionment of size-segregated particle number concentrations over the diameter range of 6–1000 nm in Budapest for 11 full years. Six source types were identified, characterized and quantified.
This article is included in the Encyclopedia of Geosciences
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
This article is included in the Encyclopedia of Geosciences
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
This article is included in the Encyclopedia of Geosciences
Hengjia Ou, Mingfu Cai, Yongyun Zhang, Xue Ni, Baoling Liang, Qibin Sun, Shixin Mai, Cuizhi Sun, Shengzhen Zhou, Haichao Wang, Jiaren Sun, and Jun Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-956, https://doi.org/10.5194/egusphere-2024-956, 2024
Short summary
Short summary
Two shipborne observations in the South China Sea (SCS) during the summer and winter of 2021 were conducted. Our study found that aerosol hygroscopicity is higher in SCS in summer than in winter, with significant influences from various terrestrial air masses. Aerosol size distribution had a stronger effect on activation ratio (AR) than aerosol hygroscopicity in summer and vice versa in winter. Our study provides valuable information to enhance our understanding of CCN activities in the SCS.
This article is included in the Encyclopedia of Geosciences
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
This article is included in the Encyclopedia of Geosciences
Henriette Gebauer, Athena Augusta Floutsi, Moritz Haarig, Martin Radenz, Ronny Engelmann, Dietrich Althausen, Annett Skupin, Albert Ansmann, Cordula Zenk, and Holger Baars
Atmos. Chem. Phys., 24, 5047–5067, https://doi.org/10.5194/acp-24-5047-2024, https://doi.org/10.5194/acp-24-5047-2024, 2024
Short summary
Short summary
Sulfate aerosol from the volcanic eruption at La Palma in 2021 was observed over Cabo Verde. We characterized the aerosol burden based on a case study of lidar and sun photometer observations. We compared the volcanic case to the typical background conditions (reference case) to quantify the volcanic pollution. We show the first ever measurements of the extinction coefficient, lidar ratio and depolarization ratio at 1064 nm for volcanic sulfate.
This article is included in the Encyclopedia of Geosciences
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
This article is included in the Encyclopedia of Geosciences
Marilena Teri, Josef Gasteiger, Katharina Heimerl, Maximilian Dollner, Manuel Schöberl, Petra Seibert, Anne Tipka, Thomas Müller, Sudharaj Aryasree, Konrad Kandler, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2024-701, https://doi.org/10.5194/egusphere-2024-701, 2024
Short summary
Short summary
The A-LIFE aircraft field experiment was carried out in the Eastern Mediterranean in 2017. Using A-LIFE data, we studied the change in mineral dust optical properties due to mixing with anthropogenic aerosols. We found that increasing pollution affects dust optical properties which has implications for identifying dust events and understanding their climate effects. We also show that optical properties of Saharan and Arabian dust are similar when comparing cases with equal pollution content.
This article is included in the Encyclopedia of Geosciences
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
This article is included in the Encyclopedia of Geosciences
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
This article is included in the Encyclopedia of Geosciences
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
This article is included in the Encyclopedia of Geosciences
Yueyue Cheng, Chao Liu, Jiandong Wang, Jiaping Wang, Zhouyang Zhang, Li Chen, Dafeng Ge, Caijun Zhu, Jinbo Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 3065–3078, https://doi.org/10.5194/acp-24-3065-2024, https://doi.org/10.5194/acp-24-3065-2024, 2024
Short summary
Short summary
Brown carbon (BrC), a light-absorbing aerosol, plays a pivotal role in influencing global climate. However, assessing BrC radiative effects remains challenging because the required observational data are hardly accessible. Here we develop a new BrC radiative effect estimation method combining conventional observations and numerical models. Our findings reveal that BrC absorbs up to a third of the sunlight at 370 nm that black carbon does, highlighting its importance in aerosol radiative effects.
This article is included in the Encyclopedia of Geosciences
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
This article is included in the Encyclopedia of Geosciences
Cited articles
Atkinson, M., Gesing, S., Montagnat, J., and Taylor, I.: Scientific workflows: Past, present and future, Future Gener. Comput. Syst., 75, 216–227, https://doi.org/10.1016/j.future.2017.05.041, 2017.
ATMO-ACCESS: Sustainable Access to Atmospheric Research Facilities, https://www.atmo-access.eu/ (last access: 21 March 2024), 2024.
Bailo, D.: Four-stages FAIR Roadmap – FAIR Pyramid, Zenodo, https://doi.org/10.5281/zenodo.3299353, 2019.
Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., and Wedi, N. P.: The digital revolution of Earth-system science, Nat. Comput. Sci., 1, 104–113, https://doi.org/10.1038/s43588-021-00023-0, 2021.
Bell, G., Hey, T., and Szalay, A.: Beyond the Data Deluge, Science, 323, 1297-1298, https://doi.org/10.1126/science.1170411, 2009.
Belle, J. v., Barneveld-Biesma, J. v., Bastiaanssen, V., Buitenhuis, A., Saes, L., and Veen, G. v.: ICOS Impact Assessment Report, technopolis group, Amsterdam, 73 pp., https://www.icos-cp.eu/sites/default/files/2018-10/ICOS_Impact_Assessment_2018.pdf (last access: 30 April 2024), 2018.
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and Zemp, M.: The concept of essential climate variables in support of climate research, applications and policy, B. Am. Meteorol. Soc., 95, 1431–1443, https://doi.org/10.1175/bams-d-13-00047.1, 2014.
Bouwer, L. M., Dransch, D., Ruhnke, R., Rechid, D., Frickenhaus, S., and Greinert, J.: Integrating Data Science and Earth Science, 1 Ed., SpringerBriefs in Earth System Sciences, Springer Cham, eBook, XIV, 148 pp., https://doi.org/10.1007/978-3-030-99546-1, 2022.
Brenninkmeijer, C. A. M., Crutzen, P. J., Fischer, H., Gusten, H., Hans, W., Heinrich, G., Heintzenberg, J., Hermann, M., Immelmann, T., Kersting, D., Maiss, M., Nolle, M., Pitscheider, A., Pohlkamp, H., Scharffe, D., Specht, K., and Wiedensohler, A.: CARIBIC – Civil aircraft for global measurement of trace gases and aerosols in the tropopause region, J. Ocean. Atmos. Technol., 16, 1373–1383, https://doi.org/10.1175/1520-0426(1999)016<1373:ccafgm>2.0.co;2, 1999.
Carmichael, G. R., Tarasova, O., Hov, Ø., Barrie, L., and Butler, J. H.: Global Atmospheric Composition Observations: The Heart of Vital Climate and Environmental Action, B. Am. Meteorol. Soc., 104, E666–E672, https://doi.org/10.1175/BAMS-D-22-0016.1, 2023.
Cerezo, N., Montagnat, J., and Blay-Fornarino, M.: Computer-Assisted Scientific Workflow Design, J. Comput., 11, 585–612, https://doi.org/10.1007/s10723-013-9264-5, 2013.
Clark, H., Bennouna, Y., Tsivlidou, M., Wolff, P., Sauvage, B., Barret, B., Le Flochmoën, E., Blot, R., Boulanger, D., Cousin, J.-M., Nédélec, P., Petzold, A., and Thouret, V.: The effects of the COVID-19 lockdowns on the composition of the troposphere as seen by In-service Aircraft for a Global Observing System (IAGOS) at Frankfurt, Atmos. Chem. Phys., 21, 16237–16256, https://doi.org/10.5194/acp-21-16237-2021, 2021.
Collaud Coen, M., Andrews, E., Alastuey, A., Arsov, T. P., Backman, J., Brem, B. T., Bukowiecki, N., Couret, C., Eleftheriadis, K., Flentje, H., Fiebig, M., Gysel-Beer, M., Hand, J. L., Hoffer, A., Hooda, R., Hueglin, C., Joubert, W., Keywood, M., Kim, J. E., Kim, S.-W., Labuschagne, C., Lin, N.-H., Lin, Y., Lund Myhre, C., Luoma, K., Lyamani, H., Marinoni, A., Mayol-Bracero, O. L., Mihalopoulos, N., Pandolfi, M., Prats, N., Prenni, A. J., Putaud, J.-P., Ries, L., Reisen, F., Sellegri, K., Sharma, S., Sheridan, P., Sherman, J. P., Sun, J., Titos, G., Torres, E., Tuch, T., Weller, R., Wiedensohler, A., Zieger, P., and Laj, P.: Multidecadal trend analysis of in situ aerosol radiative properties around the world, Atmos. Chem. Phys., 20, 8867–8908, https://doi.org/10.5194/acp-20-8867-2020, 2020.
Dai, Q., Shin, E., and Smith, C.: Open and inclusive collaboration in science, OECD Science, Technology and Industry Working Papers No 2018/04, OECD, Paris, France, 29 pp., https://doi.org/10.1787/2dbff737-en, 2018.
De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard, G., Blumenstock, T., Braathen, G. O., Hannigan, J. W., Lambert, J.-C., Leblanc, T., McGee, T. J., Nedoluha, G., Petropavlovskikh, I., Seckmeyer, G., Simon, P. C., Steinbrecht, W., and Strahan, S. E.: The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives, Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018, 2018.
EC: REGULATION (EU) No 1291/2013 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL establishing Horizon 2020 – the Framework Programme for Research and Innovation (2014–2020) and repealing Decision No 1982/2006/EC, European Commission, Brussels, Belgium, 11 December 2013, 173 pp., https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:347:0104:0173:EN:PDF (last access: 30 April 2024), 2013.
EC: EOSC Declaration, European Commission, Brussels, Ref. Ares(2017)3488418 – 11/07/2017, 9 pp., https://eosc-portal.eu/sites/default/files/eosc_declaration.pdf (last access: 30 April 2024), 2017.
ENVRI: Environmental Research Infrastructures, https://envri.eu/ (last access: 21 March 2024), 2024.
ENVRI-Community: ENVRI-Community at Zenodo, https://zenodo.org/communities/envri/ (last access: 21 March 2024), 2024.
ENVRI-Hub: ENVRI-Hub Demonstrator, https://envri-hub.envri.eu/ (last access: 21 March 2024), 2024.
ESFRI: Landscape Analysis – Environment, in: Strategy Report on Research Infrasructures – Roadmap 2021, edited by: Euopean Strategy Forum for Research Infrastructures, Brussels, Belgium, 62–75, https://roadmap2021.esfri.eu/landscape-analysis/section-1/environment/ (last access: 30 April 2024), 2021a.
ESFRI: Strategy Report on Research Infrasructures – Roadmap 2021, Euopean Strategy Forum for Research Infrastructures, Brussels, Belgium, 243 pp., https://roadmap2021.esfri.eu/ (last access: 30 April 2024), 2021b.
Evangeliou, N., Platt, S. M., Eckhardt, S., Lund Myhre, C., Laj, P., Alados-Arboledas, L., Backman, J., Brem, B. T., Fiebig, M., Flentje, H., Marinoni, A., Pandolfi, M., Yus-Dìez, J., Prats, N., Putaud, J. P., Sellegri, K., Sorribas, M., Eleftheriadis, K., Vratolis, S., Wiedensohler, A., and Stohl, A.: Changes in black carbon emissions over Europe due to COVID-19 lockdowns, Atmos. Chem. Phys., 21, 2675–2692, https://doi.org/10.5194/acp-21-2675-2021, 2021.
Farshidi, S., Liao, X., Li, N., Goldfarb, D., Magagna, B., Stocker, M., Jeffery, K., Thijsse, P., Pichot, C., Petzold, A., and Zhao, Z.: Knowledge sharing and discovery across heterogeneous research infrastructures, Open Res. Europe, 1, 68, https://doi.org/10.12688/openreseurope.13677.2, 2021.
Farshidi, S. and Zhao, Z.: An Adaptable Indexing Pipeline for Enriching Meta Information of Datasets from Heterogeneous Repositories, Advances in Knowledge Discovery and Data Mining, Cham, 2022, Springer International Publishing, 472–484, https://link.springer.com/chapter/10.1007/978-3-031-05936-0_37 (last access: 30 April 2024), 2022.
Franz, D., Acosta, M., Altimir, N., Arriga, N., Arrouays, D., Aubinet, M., Aurela, M., Ayres, E., Lopez-Ballesteros, A., Barbaste, M., Berveiller, D., Biraud, S., Boukir, H., Brown, T., Brummer, C., Buchmann, N., Burba, G., Carrara, A., Cescatti, A., Ceschia, E., Clement, R., Cremonese, E., Crill, P., Darenova, E., Dengel, S., D'Odorico, P., Filippa, G., Fleck, S., Fratini, G., Fuss, R., Gielen, B., Gogo, S., Grace, J., Graf, A., Grelle, A., Gross, P., Grunwald, T., Haapanala, S., Hehn, M., Heinesch, B., Heiskanen, J., Herbst, M., Herschlein, C., Hortnagl, L., Hufkens, K., Ibrom, A., Jolivet, C., Joly, L., Jones, M., Kiese, R., Klemedtsson, L., Kljun, N., Klumpp, K., Kolari, P., Kolle, O., Kowalski, A., Kutsch, W., Laurila, T., de Ligne, A., Linder, S., Lindroth, A., Lohila, A., Longdoz, B., Mammarella, I., Manise, T., Jimenez, S. M., Matteucci, G., Mauder, M., Meier, P., Merbold, L., Mereu, S., Metzger, S., Migliavacca, M., Molder, M., Montagnani, L., Moureaux, C., Nelson, D., Nemitz, E., Nicolini, G., Nilsson, M. B., Op de Beeck, M., Osborne, B., Lofvenius, M. O., Pavelka, M., Peichl, M., Peltola, O., Pihlatie, M., Pitacco, A., Pokorny, R., Pumpanen, J., Ratie, C., Rebmann, C., Roland, M., Sabbatini, S., Saby, N. P. A., Saunders, M., Schmid, H. P., Schrumpf, M., Sedlak, P., Ortiz, P. S., Siebicke, L., Sigut, L., Silvennoinen, H., Simioni, G., Skiba, U., Sonnentag, O., Soudani, K., Soule, P., Steinbrecher, R., Tallec, T., Thimonier, A., Tuittila, E. S., Tuovinen, J. P., Vestin, P., Vincent, G., Vincke, C., Vitale, D., Waldner, P., Weslien, P., Wingate, L., Wohlfahrt, G., Zahniser, M., and Vesala, T.: Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems: a review, Int. Agrophys., 32, 439–455, https://doi.org/10.1515/intag-2017-0039, 2018.
Gaudel, A., Cooper, O. R., Ancellet, G., Barret, B., Boynard, A., Burrows, J. P., Clerbaux, C., Coheur, P. F., Cuesta, J., Cuevas, E., Doniki, S., Dufour, G., Ebojie, F., Foret, G., Garcia, O., Granados-Munoz, M. J., Hannigan, J. W., Hase, F., Hassler, B., Huang, G., Hurtmans, D., Jaffe, D., Jones, N., Kalabokas, P., Kerridge, B., Kulawik, S., Latter, B., Leblanc, T., Le Flochmoen, E., Lin, W., Liu, J., Liu, X., Mahieu, E., McClure-Begley, A., Neu, J. L., Osman, M., Palm, M., Petetin, H., Petropavlovskikh, I., Querel, R., Rahpoe, N., Rozanov, A., Schultz, M. G., Schwab, J., Siddans, R., Smale, D., Steinbacher, M., Tanimoto, H., Tarasick, D. W., Thouret, V., Thompson, A. M., Trickl, T., Weatherhead, E., Wespes, C., Worden, H. M., Vigouroux, C., Xu, X., Zeng, G., and Ziemke, J.: Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation, Elementa-Sci. Anthrop., 6, 58, https://doi.org/10.1525/elementa.291, 2018.
Gaudel, A., Cooper, O. R., Chang, K. L., Bourgeois, I., Ziemke, J. R., Strode, S. A., Oman, L. D., Sellitto, P., Nedelec, P., Blot, R., Thouret, V., and Granier, C.: Aircraft observations since the 1990s reveal increases of tropospheric ozone at multiple locations across the Northern Hemisphere, Sci. Adv., 6, 11, https://doi.org/10.1126/sciadv.aba8272, 2020.
GCOS: Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC, World Meteorological Organization, Geneva, Switzerland, Report GCOS-138, 186 pp., https://library.wmo.int/viewer/58703/?offset=#page=1&viewer=picture&o=bookmark&n=0&q= (last access: 30 April 2024), 2010.
GCOS: The Global Observing System for Climate: Implementation Needs, World Meteorological Organization, Geneva, Switzerland, Report GCOS-200, 315 pp., https://library.wmo.int/viewer/55469?medianame=GCOS-200_OnlineVersion_#page=1&viewer=picture&o=bookmark&n=0&q= (last access: 30 April 2024), 2016.
GCOS: The 2022 GCOS ECVs Requirements, World Meteorological Organization, Geneva, Switzerland, Report GCOS-245, 244 pp., https://library.wmo.int/records/item/58111-the-2022-gcos-ecvs-requirements-gcos-245 (last access: 30 April 2024), 2022a.
GCOS: The 2022 GCOS Implementation Plan, World Meteorological Organization, Geneva, Switzerland, Report GCOS-244, 85 pp., https://gcos.wmo.int/en/publications/gcos-implementation-plan2022 (last access: 30 April 2024), 2022b.
Gkatzelis, G. I., Gilman, J. B., Brown, S. S., Eskes, H., Gomes, A. R., Lange, A. C., McDonald, B. C., Peischl, J., Petzold, A., Thompson, C. R., and Kiendler-Scharr, A.: The global impacts of COVID-19 lockdowns on urban air pollution: A critical review and recommendations, Elementa-Sci. Anthrop., 9, 00176, https://doi.org/10.1525/elementa.2021.00176, 2021.
Gray, J.: Jim Gray on eScience: A Transformed Scientific Method, in: The Fourth Paradigm: Data-Intensive Scientific Discovery, edited by: Hey, T., Tansley, S., and Tolle, K., Microsoft Research, Redmond, Washington, USA, xvii–xxxi, https://www.microsoft.com/en-us/research/wp-content/uploads/2009/10/Fourth_Paradigm.pdf (last access: 30 April 2024), 2009.
Heiskanen, J., Brümmer, C., Buchmann, N., Calfapietra, C., Chen, H., Gielen, B., Gkritzalis, T., Hammer, S., Hartman, S., Herbst, M., Janssens, I. A., Jordan, A., Juurola, E., Karstens, U., Kasurinen, V., Kruijt, B., Lankreijer, H., Levin, I., Linderson, M.-L., Loustau, D., Merbold, L., Myhre, C. L., Papale, D., Pavelka, M., Pilegaard, K., Ramonet, M., Rebmann, C., Rinne, J., Rivier, L., Saltikoff, E., Sanders, R., Steinbacher, M., Steinhoff, T., Watson, A., Vermeulen, A. T., Vesala, T., Vítková, G., and Kutsch, W.: The Integrated Carbon Observation System in Europe, B. Am. Meteorol. Soc., 103, E855–E872, https://doi.org/10.1175/BAMS-D-19-0364.1, 2022.
Hidalga, A. N. d. l., Hardisty, A., Martin, P., Magagna, B., and Zhao, Z.: The ENVRI Reference Model, in: Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges, edited by: Zhao, Z., and Hellström, M., Springer International Publishing, Cham, 61–81, https://doi.org/10.1007/978-3-030-52829-4_1, 2020.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, doi: https://doi.org/10.1016/s0034-4257(98)00031-5, 1998.
ICOS-Cities: ICOS-Cities, https://www.icos-cp.eu/projects/icos-cities (last access: 21 March 2024), 2024.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896, 2021a.
IPCC: Summary for Policymakers, in: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, 3-32, https://doi.org/10.1017/9781009157896.001, 2021b.
IPCC: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change edited by: Core Writing Team, Lee, H., and Romero, J., IPCC, Geneva, 184 pp., https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Kulmala, M.: Build a global Earth observatory, Nature, 553, 21–23, https://doi.org/10.1038/d41586-017-08967-y, 2018.
Kulmala, M., Kokkonen, T., Ezhova, E., Baklanov, A., Mahura, A., Mammarella, I., Back, J., Lappalainen, H. K., Tyuryakov, S., Kerminen, V. M., Zilitinkevich, S., and Petaja, T.: Aerosols, Clusters, Greenhouse Gases, Trace Gases and Boundary-Layer Dynamics: on Feedbacks and Interactions, Bound.-Layer Meteor., 186, 475–503, https://doi.org/10.1007/s10546-022-00769-8, 2023a.
Kulmala, M., Lintunen, A., Lappalainen, H., Virtanen, A., Yan, C., Ezhova, E., Nieminen, T., Riipinen, I., Makkonen, R., Tamminen, J., Sundström, A.-M., Arola, A., Hansel, A., Lehtinen, K., Vesala, T., Petäjä, T., Bäck, J., Kokkonen, T., and Kerminen, V.-M.: Opinion: The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere, Atmos. Chem. Phys., 23, 14949–14971, https://doi.org/10.5194/acp-23-14949-2023, 2023b.
Laj, P., Bigi, A., Rose, C., Andrews, E., Lund Myhre, C., Collaud Coen, M., Lin, Y., Wiedensohler, A., Schulz, M., Ogren, J. A., Fiebig, M., Gliß, J., Mortier, A., Pandolfi, M., Petäja, T., Kim, S.-W., Aas, W., Putaud, J.-P., Mayol-Bracero, O., Keywood, M., Labrador, L., Aalto, P., Ahlberg, E., Alados Arboledas, L., Alastuey, A., Andrade, M., Artíñano, B., Ausmeel, S., Arsov, T., Asmi, E., Backman, J., Baltensperger, U., Bastian, S., Bath, O., Beukes, J. P., Brem, B. T., Bukowiecki, N., Conil, S., Couret, C., Day, D., Dayantolis, W., Degorska, A., Eleftheriadis, K., Fetfatzis, P., Favez, O., Flentje, H., Gini, M. I., Gregorič, A., Gysel-Beer, M., Hallar, A. G., Hand, J., Hoffer, A., Hueglin, C., Hooda, R. K., Hyvärinen, A., Kalapov, I., Kalivitis, N., Kasper-Giebl, A., Kim, J. E., Kouvarakis, G., Kranjc, I., Krejci, R., Kulmala, M., Labuschagne, C., Lee, H.-J., Lihavainen, H., Lin, N.-H., Löschau, G., Luoma, K., Marinoni, A., Martins Dos Santos, S., Meinhardt, F., Merkel, M., Metzger, J.-M., Mihalopoulos, N., Nguyen, N. A., Ondracek, J., Pérez, N., Perrone, M. R., Petit, J.-E., Picard, D., Pichon, J.-M., Pont, V., Prats, N., Prenni, A., Reisen, F., Romano, S., Sellegri, K., Sharma, S., Schauer, G., Sheridan, P., Sherman, J. P., Schütze, M., Schwerin, A., Sohmer, R., Sorribas, M., Steinbacher, M., Sun, J., Titos, G., Toczko, B., Tuch, T., Tulet, P., Tunved, P., Vakkari, V., Velarde, F., Velasquez, P., Villani, P., Vratolis, S., Wang, S.-H., Weinhold, K., Weller, R., Yela, M., Yus-Diez, J., Zdimal, V., Zieger, P., and Zikova, N.: A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories, Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, 2020.
Laj, P., Lund Myhre, C., Riffault, V., Amiridis, V., Fuchs, H., Eleftheriadis, E., Petäjä, T., Kivekäs, N., Juurola, E., Saponaro, G., Philippin, S., Cornacchia, C., Alados Arboledas, L., Baars, H., Claude, A., De Mazière, M., Dils, B., Murberg, L.-E., Fiebig, M., Haeffelin, M., Herrmann, H., Höhler, K., Illmann, N., Kreuter, A., Ludewig, E., Marinou, E., Möhler, O., Mona, L., Nicolae, D., O'Connor, E., Petracca Altieri, R.-M., Picquet-Varrault, B., Pospichal, B., Putaud, J.-P., Reimann, S., Salameh, T., Siomos, N., Stachlewska, I., van Pinxteren, D., Voudouri, K.-A., Wandinger, U., Wiedensohler, A., Apituley, A., Comerón, A., Gysel-Beer, M., Mihalopoulos, N., Nikolova, N., Pietruczuk, A., Sauvage, S., Sciare, J., Skov, S., Svendby, T., Swietlicki, E., Tonev, D., Vaughan, G., Zdimal, V., Baltensperger, U., Doussin, J.-F., Kulmala, M., Pappalardo, G., Sorvari Sundet, S., and Vana, M.: Aerosol, Clouds and Trace Gases Research Infrastructure – ACTRIS, the European research infrastructure supporting atmospheric science, B. Am. Meteor. Soc., in review, 2024.
Lynch, C. A.: Jim Gray's Fourth Paradigm and the Construction of the Scientific Record, in: The Fourth Paradigm: Data-Intensive Scientific Discovery, edited by: Hey, T., Tansley, S., and Tolle, K., Microsoft Research, Redmond, Washington, USA, 177–183, https://www.microsoft.com/en-us/research/wp-content/uploads/2009/10/Fourth_Paradigm.pdf (last access: 30 April 2024), 2009.
Marenco, A., Thouret, V., Nédélec, P., Smit, H., Helten, M., Kley, D., Karcher, F., Simon, P., Law, K., Pyle, J., Poschmann, G., Von Wrede, R., Hume, C., and Cook, T.: Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, An overview, J. Geophys. Res., 103, 25631–25642, https://doi.org/10.1029/98jd00977, 1998.
Petetin, H., Thouret, V., Fontaine, A., Sauvage, B., Athier, G., Blot, R., Boulanger, D., Cousin, J.-M., and Nédélec, P.: Characterising tropospheric O3 and CO around Frankfurt over the period 1994–2012 based on MOZAIC–IAGOS aircraft measurements, Atmos. Chem. Phys., 16, 15147–15163, https://doi.org/10.5194/acp-16-15147-2016, 2016.
Petetin, H., Jeoffrion, M., Sauvage, B., Athier, G., Blot, R., Boulanger, D., Clark, H., Cousin, J.-M., Gheusi, F., Nedelec, P., Steinbacher, M., and Thouret, V.: Representativeness of the IAGOS airborne measurements in the lower troposphere, Elementa-Sci. Anthrop., 6, 23, https://doi.org/10.1525/elementa.280, 2018.
Petzold, A., Thouret, V., Gerbig, C., Zahn, A., Brenninkmeijer, C. A. M., Gallagher, M., Hermann, M., Pontaud, M., Ziereis, H., Boulanger, D., Marshall, J., Nédélec, P., Smit, H. G. J., Frieß, U., Flaud, J.-M., Wahner, A., Cammas, J.-P., Volz-Thomas, A., and IAGOS-Team: Global-Scale Atmosphere Monitoring by In-Service Aircraft – Current Achievements and Future Prospects of the European Research Infrastructure IAGOS, Tellus B, 67, 28452, https://doi.org/10.3402/tellusb.v67.28452, 2015.
Petzold, A., Asmi, A., Vermeulen, A., Pappalardo, G., Bailo, D., Schaap, D., Glaves, H. M., Bundke, U., and Zhao, Z.: ENVRI-FAIR - Interoperable environmental FAIR data and services for society, innovation and research, 15th IEEE International Conference on eScience 2019, 277–280, https://doi.org/10.1109/eScience.2019.00038, 2019.
Petzold, A., Neis, P., Rütimann, M., Rohs, S., Berkes, F., Smit, H. G. J., Krämer, M., Spelten, N., Spichtinger, P., Nédélec, P., and Wahner, A.: Ice-supersaturated air masses in the northern mid-latitudes from regular in situ observations by passenger aircraft: vertical distribution, seasonality and tropospheric fingerprint, Atmos. Chem. Phys., 20, 8157–8179, https://doi.org/10.5194/acp-20-8157-2020, 2020.
Petzold, A., Gomes, A. R., Bundke, U., Schleiermacher, C., Adamaki, A., Vermeulen, A., Zhao, Z., Stocker, M., Lund Myhre, C., Boulanger, D., Hienola, A., and Bailo, D.: ENVRI-Hub Design and Architecture White Paper (Version 1), Zenodo, 21 pp., https://zenodo.org/record/8046894 (last access: 30 April 2024), 2023.
Peuch, V. H., Engelen, R., Rixen, M., Dee, D., Flemming, J., Suttie, M., Ades, M., Agusti-Panareda, A., Ananasso, C., Andersson, E., Armstrong, D., Barre, J., Bousserez, N., Dominguez, J. J., Garrigues, S., Inness, A., Jones, L., Kipling, Z., Letertre-Danczak, J., Parrington, M., Razinger, M., Ribas, R., Vermoote, S., Yang, X. B., Simmons, A., de Marcilla, J. G., and Thepaut, J. N.: The Copernicus Atmosphere Monitoring Service: From Research to Operations, B. Am. Meteorol. Soc., 103, E2650–E2668, https://doi.org/10.1175/bams-d-21-0314.1, 2022.
Putaud, J. P. and Martins dos Santos, S.: ACTRIS, EMEP, GAW-WDCA, 2008–2022: Aerosol particle absorption coefficient observed by filter absorption photometer at Ispra, data hosted by EBAS at NILU, https://ebas-data.nilu.no/DataSets.aspx?stations=IT0004R&projects=ACTRIS&InstrumentTypes=filter_absorption_photometer&fromDate=1970-01-01&toDate=2023-12-31 (last access: 30 April 2024), 2022a.
Putaud, J. P. and Martins dos Santos, S.: ACTRIS, EMEP, GAW-WDCA, 2004–2022: Aerosol particle scattering coefficient observed by nephelometer at Ispra, data hosted by EBAS at NILU, https://ebas-data.nilu.no/DataSets.aspx?stations=IT0004R&projects=ACTRIS&InstrumentTypes=nephelometer&fromDate=1970-01-01&toDate=2023-12-31 (last access: 30 April 2024), 2022b.
RI-URBANS: Research Infrastructures Services Reinforcing Air Quality Monitoring Capacities in European Urban & Industrial AreaS, https://riurbans.eu/ (last access: 21 March 2024), 2024.
Romanello, M., Napoli, C. D., Drummond, P., Green, C., Kennard, H., Lampard, P., Scamman, D., Arnell, N., Ayeb-Karlsson, S., Ford, L. B., Belesova, K., Bowen, K., Cai, W., Callaghan, M., Campbell-Lendrum, D., Chambers, J., Daalen, K. R. v., Dalin, C., Dasandi, N., Dasgupta, S., Davies, M., Dominguez-Salas, P., Dubrow, R., Ebi, K. L., Eckelman, M., Ekins, P., Escobar, L. E., Georgeson, L., Graham, H., Gunther, S. H., Hamilton, I., Hang, Y., Hänninen, R., Hartinger, S., He, K., Hess, J. J., Hsu, S.-C., Jankin, S., Jamart, L., Jay, O., Kelman, I., Kiesewetter, G., Kinney, P., Kjellstrom, T., Kniveton, D., Lee, J. K. W., Lemke, B., Liu, Y., Liu, Z., Lott, M., Batista, M. L., Lowe, R., MacGuire, F., Sewe, M. O., Martinez-Urtaza, J., Maslin, M., McAllister, L., McGushin, A., McMichael, C., Mi, Z., Milner, J., Minor, K., Minx, J. C., Mohajeri, N., Moradi-Lakeh, M., Morrissey, K., Munzert, S., Murray, K. A., Neville, T., Nilsson, M., Obradovich, N., O'Hare, M. B., Oreszczyn, T., Otto, M., Owfi, F., Pearman, O., Rabbaniha, M., Robinson, E. J. Z., Rocklöv, J., Salas, R. N., Semenza, J. C., Sherman, J. D., Shi, L., Shumake-Guillemot, J., Silbert, G., Sofiev, M., Springmann, M., Stowell, J., Tabatabaei, M., Taylor, J., Triñanes, J., Wagner, F., Wilkinson, P., Winning, M., Yglesias-González, M., Zhang, S., Gong, P., Montgomery, H., and Costello, A.: The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels, Lancet, 400, 1619–1654, https://doi.org/10.1016/S0140-6736(22)01540-9, 2022.
Schulthess, T. C.: Programming revisited, Nat. Phys., 11, 369–373, https://doi.org/10.1038/nphys3294, 2015.
Schultz, M. G., Schroder, S., Lyapina, O., Cooper, O. R., Galbally, I., Petropavlovskikh, I., von Schneidemesser, E., Tanimoto, H., Elshorbany, Y., Naja, M., Seguel, R. J., Dauert, U., Eckhardt, P., Feigenspan, S., Fiebig, M., Hjellbrekke, A. G., Hong, Y. D., Kjeld, P. C., Koide, H., Lear, G., Tarasick, D., Ueno, M., Wallasch, M., Baumgardner, D., Chuang, M. T., Gillett, R., Lee, M., Molloy, S., Moolla, R., Wang, T., Sharps, K., Adame, J. A., Ancellet, G., Apadula, F., Artaxo, P., Barlasina, M. E., Bogucka, M., Bonasoni, P., Chang, L., Colomb, A., Cuevas-Agullo, E., Cupeiro, M., Degorska, A., Ding, A. J., FrHlich, M., Frolova, M., Gadhavi, H., Gheusi, F., Gilge, S., Gonzalez, M. Y., Gros, V., Hamad, S. H., Helmig, D., Henriques, D., Hermansen, O., Holla, R., Hueber, J., Im, U., Jaffe, D. A., Komala, N., Kubistin, D., Lam, K. S., Laurila, T., Lee, H., Levy, I., Mazzoleni, C., Mazzoleni, L. R., McClure-Begley, A., Mohamad, M., Murovec, M., Navarro-Comas, M., Nicodim, F., Parrish, D., Read, K. A., Reid, N., Ries, N. R. L., Saxena, P., Schwab, J. J., Scorgie, Y., Senik, I., Simmonds, P., Sinha, V., Skorokhod, A. I., Spain, G., Spangl, W., Spoor, R., Springston, S. R., Steer, K., Steinbacher, M., Suharguniyawan, E., Torre, P., Trickl, T., Lin, W. L., Weller, R., Xu, X. B., Xue, L. K., and Ma, Z. Q.: Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations, Elementa-Sci. Anthrop., 5, 26, https://doi.org/10.1525/elementa.244, 2017.
SDG: United Nations Sustainable Development Goals, https://sdgs.un.org/goals (last access: 21 March 2024), 2024.
Sokhi, R. S., Singh, V., Querol, X., Finardi, S., Targino, A. C., Andrade, M. d. F., Pavlovic, R., Garland, R. M., Massagué, J., Kong, S., Baklanov, A., Ren, L., Tarasova, O., Carmichael, G., Peuch, V.-H., Anand, V., Arbilla, G., Badali, K., Beig, G., Belalcazar, L. C., Bolignano, A., Brimblecombe, P., Camacho, P., Casallas, A., Charland, J.-P., Choi, J., Chourdakis, E., Coll, I., Collins, M., Cyrys, J., da Silva, C. M., Di Giosa, A. D., Di Leo, A., Ferro, C., Gavidia-Calderon, M., Gayen, A., Ginzburg, A., Godefroy, F., Gonzalez, Y. A., Guevara-Luna, M., Haque, S. M., Havenga, H., Herod, D., Hõrrak, U., Hussein, T., Ibarra, S., Jaimes, M., Kaasik, M., Khaiwal, R., Kim, J., Kousa, A., Kukkonen, J., Kulmala, M., Kuula, J., La Violette, N., Lanzani, G., Liu, X., MacDougall, S., Manseau, P. M., Marchegiani, G., McDonald, B., Mishra, S. V., Molina, L. T., Mooibroek, D., Mor, S., Moussiopoulos, N., Murena, F., Niemi, J. V., Noe, S., Nogueira, T., Norman, M., Pérez-Camaño, J. L., Petäjä, T., Piketh, S., Rathod, A., Reid, K., Retama, A., Rivera, O., Rojas, N. Y., Rojas-Quincho, J. P., San José, R., Sánchez, O., Seguel, R. J., Sillanpää, S., Su, Y., Tapper, N., Terrazas, A., Timonen, H., Toscano, D., Tsegas, G., Velders, G. J. M., Vlachokostas, C., von Schneidemesser, E., Vpm, R., Yadav, R., Zalakeviciute, R., and Zavala, M.: A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions, Env. Int., 157, 106818, https://doi.org/10.1016/j.envint.2021.106818, 2021.
Steffen, W., Grinevald, J., Crutzen, P., and McNeill, J.: The Anthropocene: conceptual and historical perspectives, Philos. Trans. R. Soc. A, 369, 842–867, https://doi.org/10.1098/rsta.2010.0327, 2011.
Stocker, M.: Advancing the Software Systems of Environmental Knowledge Infrastructures, in: Terrestrial Ecosystem Research Infrastructures: Challenges and Opportunities, edited by: Chabbi, A. and Loescher, H. W., CRC Press, Taylor & Francis Group, 399–423, https://doi.org/10.1201/9781315368252-19, 2017.
Stocker, M., Oelen, A., Jaradeh, M. Y., Haris, M., Oghli, O. A., Heidari, G., Hussein, H., Lorenz, A.-L., Kabenamualu, S., Farfar, K. E., Prinz, M., Karras, O., D'Souza, J., Vogt, L., and Auer, S.: FAIR scientific information with the Open-Research Knowledge Graph, FAIR Connect, 1, 19–21, https://doi.org/10.3233/FC-221513, 2023.
Tarasick, D., Galbally, I. E., Cooper, O. R., Schultz, M. G., Ancellet, G., Leblanc, T., Wallington, T. J., Ziemke, J., Liu, X., Steinbacher, M., Staehelin, J., Vigouroux, C., Hannigan, J. W., Garcia, O., Foret, G., Zanis, P., Weatherhead, E., Petropavlovskikh, I., Worden, H., Osman, M., Liu, J., Chang, K. L., Gaudel, A., Lin, M. Y., Granados-Munoz, M., Thompson, A. M., Oltmans, S. J., Cuesta, J., Dufour, G., Thouret, V., Hassler, B., Trickl, T., and Neu, J. L.: Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties, Elementa-Sci. Anthrop., 7, 72 pp., https://doi.org/10.1525/elementa.376, 2019.
Tarasick, D. W., Smit, H. G. J., Thompson, A. M., Morris, G. A., Witte, J. C., Davies, J., Nakano, T., Van Malderen, R., Stauffer, R. M., Johnson, B. J., Stübi, R., Oltmans, S. J., and Vömel, H.: Improving ECC Ozonesonde Data Quality: Assessment of Current Methods and Outstanding Issues, Earth Space Sci., 8, e2019EA000914, https://doi.org/10.1029/2019EA000914, 2021.
The Lancet Planetary, H.: A tale of two emergencies, Lancet, 4, e86, https://doi.org/10.1016/S2542-5196(20)30062-0, 2020.
Thepaut, J. N., Pinty, B., Dee, D., and Engelen, R.: The Copernicus Programme and its Climate Change Service, in: IEEE International Symposium on Geoscience and Remote Sensing IGARSS, 38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, SPAIN, 2018, IEEE, WOS:000451039801193, 1591–1593, 2018.
Thouret, V., Clark, H., Petzold, A., Nédélec, P., and Zahn, A.: IAGOS: Monitoring Atmospheric Composition for Air Quality and Climate by Passenger Aircraft, in: Handbook of Air Quality and Climate Change, edited by: Akimoto, H., and Tanimoto, H., Springer Nature Singapore, Singapore, 1–14, https://doi.org/10.1007/978-981-15-2527-8_57-1, 2022.
Trewin, B., Cazenave, A., Howell, S., Huss, M., Isensee, K., Palmer, M. D., Tarasova, O., and Vermeulen, A.: Headline Indicators for Global Climate Monitoring, B. Am. Meteorol. Soc., 102, E20–E37, https://doi.org/10.1175/bams-d-19-0196.1, 2021.
Vermeulen, A., Glaves, H., Pouliquen, S., and Kokkinaki, A.: Supporting Cross-Domain System-Level Environmental and Earth Science, in: Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges, edited by: Zhao, Z. and Hellström, M., Springer International Publishing, Cham, 3–16, https://doi.org/10.1007/978-3-030-52829-4_1, 2020.
von Schneidemesser, E., Monks, P. S., Allan, J. D., Bruhwiler, L., Forster, P., Fowler, D., Lauer, A., Morgan, W. T., Paasonen, P., Righi, M., Sindelarova, K., and Sutton, M. A.: Chemistry and the Linkages between Air Quality and Climate Change, Chem. Rev., 115, 3856–3897, https://doi.org/10.1021/acs.chemrev.5b00089, 2015.
Wagner, A., Bennouna, Y., Blechschmidt, A.-M., Brasseur, G., Chabrillat, S., Christophe, Y., Errera, Q., Eskes, H., Flemming, J., Hansen, K. M., Inness, A., Kapsomenakis, J., Langerock, B., Richter, A., Sudarchikova, N., Thouret, V., and Zerefos, C.: Comprehensive evaluation of the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis against independent observations: Reactive gases, Elementa-Sci. Anthrop., 9, 00171, https://doi.org/10.1525/elementa.2020.00171, 2021.
WCRP: World Climate Research Programme, https://www.wcrp-climate.org/ (last access: 21 March 2024), 2024.
Weatherhead, E. C., Wielicki, B. A., Ramaswamy, V., Abbott, M., Ackerman, T. P., Atlas, R., Brasseur, G., Bruhwiler, L., Busalacchi, A. J., Butler, J. H., Clack, C. T. M., Cooke, R., Cucurull, L., Davis, S. M., English, J. M., Fahey, D. W., Fine, S. S., Lazo, J. K., Liang, S. L., Loeb, N. G., Rignot, E., Soden, B., Stanitski, D., Stephens, G., Tapley, B. D., Thompson, A. M., Trenberth, K. E., and Wuebbles, D.: Designing the Climate Observing System of the Future, Earth Future, 6, 80–102, https://doi.org/10.1002/2017ef000627, 2018.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
WMO-OSCAR: Observing Systems Capability Analysis and Review Tool, https://space.oscar.wmo.int/ (last access: 21 March 2024), 2024.
Wunch, D., Toon, G. C., Blavier, J. F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V., and Wennberg, P. O.: The Total Carbon Column Observing Network, Philos. Trans. R. Soc. A, 369, 2087–2112, https://doi.org/10.1098/rsta.2010.0240, 2011.
Zanatta, M., Gysel, M., Bukowiecki, N., Muller, T., Weingartner, E., Areskoug, H., Fiebig, M., Yttri, K. E., Mihalopoulos, N., Kouvarakis, G., Beddows, D., Harrison, R. M., Cavalli, F., Putaud, J. P., Spindler, G., Wiedensohler, A., Alastuey, A., Pandolfi, M., Sellegri, K., Swietlicki, E., Jaffrezo, J. L., Baltensperger, U., and Laj, P.: A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe, Atmos. Environ., 145, 346–364, https://doi.org/10.1016/j.atmosenv.2016.09.035, 2016.
Zhao, Z. and Hellström, M.: Towards Interoperable Research Infrastructures for Environmental and Earth Sciences, Lecture Notes in Computer Science, Springer Cham, Open Access, 373 pp., https://doi.org/10.1007/978-3-030-52829-4, 2020.
zu Castell, W., Ruhnke, R., Bouwer, L. M., Brix, H., Dietrich, P., Dransch, D., Frickenhaus, S., Greinert, J., and Petzold, A.: Data Science and Earth System Science, in: Integrating Data Science and Earth Science: Challenges and Solutions, edited by: Bouwer, L. M., Dransch, D., Ruhnke, R., Rechid, D., Frickenhaus, S., and Greinert, J., Springer International Publishing, Cham, 1–6, https://doi.org/10.1007/978-3-030-99546-1_1, 2022.
Executive editor
The acquisition and proliferation of large datasets presents one of the greatest opportunities in environmental science in recent years, particularly with the application of open data principles in dissemination. However, the effective utilisation of these data poses new, ever greater technical and organisational challenges. This article discusses the methods and benefits of the application of the European ENVRI infrastructure to atmospheric science in programmes such as ACTRIS, IAGOS and ICOS, in particular through the application of FAIR principles, and how this will help to push back the frontiers of atmospheric science.
The acquisition and proliferation of large datasets presents one of the greatest opportunities...
Short summary
Easy and fast access to long-term and high-quality observational data is recognised as fundamental to environmental research and the development of climate forecasting and assessment services. We discuss the potential new directions in atmospheric sciences offered by the atmosphere-centric European research infrastructures ACTRIS, IAGOS, and ICOS, building on their capabilities for standardised provision of data through open access combined with tools and methods of data-intensive science.
Easy and fast access to long-term and high-quality observational data is recognised as...
Special issue
Altmetrics
Final-revised paper
Preprint