Articles | Volume 23, issue 10
https://doi.org/10.5194/acp-23-5605-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-5605-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A seasonal analysis of aerosol NO3− sources and NOx oxidation pathways in the Southern Ocean marine boundary layer
Jessica M. Burger
CORRESPONDING AUTHOR
Department of Oceanography, University of Cape Town, Rondebosch, 7701, South Africa
Emily Joyce
Department of Earth, Environmental and Planetary Science, Brown University, Providence, RI 02906, USA
Institute at Brown for Environment and Society, Brown University, Providence, RI 02906, USA
Meredith G. Hastings
Department of Earth, Environmental and Planetary Science, Brown University, Providence, RI 02906, USA
Institute at Brown for Environment and Society, Brown University, Providence, RI 02906, USA
Kurt A. M. Spence
Department of Oceanography, University of Cape Town, Rondebosch, 7701, South Africa
Katye E. Altieri
Department of Oceanography, University of Cape Town, Rondebosch, 7701, South Africa
Related authors
Mhlangabezi Mdutyana, Tanya Marshall, Xin Sun, Jessica M. Burger, Sandy J. Thomalla, Bess B. Ward, and Sarah E. Fawcett
Biogeosciences, 19, 3425–3444, https://doi.org/10.5194/bg-19-3425-2022, https://doi.org/10.5194/bg-19-3425-2022, 2022
Short summary
Short summary
Nitrite-oxidizing bacteria in the winter Southern Ocean show a high affinity for nitrite but require a minimum (i.e., "threshold") concentration before they increase their rates of nitrite oxidation significantly. The classic Michaelis–Menten model thus cannot be used to derive the kinetic parameters, so a modified equation was employed that also yields the threshold nitrite concentration. Dissolved iron availability may play an important role in limiting nitrite oxidation.
Shantelle Smith, Katye E. Altieri, Mhlangabezi Mdutyana, David R. Walker, Ruan G. Parrott, Sedick Gallie, Kurt A. M. Spence, Jessica M. Burger, and Sarah E. Fawcett
Biogeosciences, 19, 715–741, https://doi.org/10.5194/bg-19-715-2022, https://doi.org/10.5194/bg-19-715-2022, 2022
Short summary
Short summary
Ammonium is a crucial yet poorly understood component of the Southern Ocean nitrogen cycle. We attribute our finding of consistently high ammonium concentrations in the winter mixed layer to limited ammonium consumption and sustained ammonium production, conditions under which the Southern Ocean becomes a source of carbon dioxide to the atmosphere. From similar data collected over an annual cycle, we propose a seasonal cycle for ammonium in shallow polar waters – a first for the Southern Ocean.
Jessica M. Burger, Julie Granger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 22, 1081–1096, https://doi.org/10.5194/acp-22-1081-2022, https://doi.org/10.5194/acp-22-1081-2022, 2022
Short summary
Short summary
The nitrogen (N) isotopic composition of atmospheric nitrate in the Southern Ocean (SO) marine boundary layer (MBL) reveals the importance of oceanic alkyl nitrate emissions as a source of reactive N to the atmosphere. The oxygen isotopic composition suggests peroxy radicals contribute up to 63 % to NO oxidation and that nitrate forms via the OH pathway. This work improves our understanding of reactive N sources and cycling in a remote marine region, a proxy for the pre-industrial atmosphere.
Maija Peltola, Roseline Thakur, Kurt Spence, Janne Lampilahti, Ronja Mäkelä, Sasu Karttunen, Ekaterina Ezhova, Sami Haapanala, Aki Vähä, Juha Kangasluoma, Tommy Chan, Pauli Paasonen, Joanna Norkko, Alf Norkko, Markku Kulmala, and Mikael Ehn
EGUsphere, https://doi.org/10.5194/egusphere-2025-3809, https://doi.org/10.5194/egusphere-2025-3809, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Here we report aerosol properties from a new atmospheric observatory established at the Finnish Baltic Sea Coast. Aerosol formation was observed when air masses crossed over the continent whereas less newly formed particles were observed when the winds were from the sea. Aerosol formation was favoured by low condensation sink and sunny dry conditions.
Wendell W. Walters, Masayuki Takeuchi, Danielle E. Blum, Gamze Eris, David Tanner, Weiqi Xu, Jean Rivera-Rios, Fobang Liu, Tianchang Xu, Greg Huey, Justin B. Min, Rodney Weber, Nga L. Ng, and Meredith G. Hastings
EGUsphere, https://doi.org/10.5194/egusphere-2024-3860, https://doi.org/10.5194/egusphere-2024-3860, 2024
Short summary
Short summary
We studied how chemicals released from plants and pollution interact in the atmosphere, affecting air quality and climate. By combining laboratory experiments and chemistry models, we tracked unique chemical fingerprints to understand how nitrogen compounds transform to form particles in the air. Our findings help explain the role of these reactions in pollution and provide tools to improve predictions for cleaner air and better climate policies.
Wendell W. Walters, Masayuki Takeuchi, Nga L. Ng, and Meredith G. Hastings
Geosci. Model Dev., 17, 4673–4687, https://doi.org/10.5194/gmd-17-4673-2024, https://doi.org/10.5194/gmd-17-4673-2024, 2024
Short summary
Short summary
The study introduces a novel chemical mechanism for explicitly tracking oxygen isotope transfer in oxidized reactive nitrogen and odd oxygen using the Regional Atmospheric Chemistry Mechanism, version 2. This model enhances our ability to simulate and compare oxygen isotope compositions of reactive nitrogen, revealing insights into oxidation chemistry. The approach shows promise for improving atmospheric chemistry models and tropospheric oxidation capacity predictions.
Rebecca M. Garland, Katye E. Altieri, Laura Dawidowski, Laura Gallardo, Aderiana Mbandi, Nestor Y. Rojas, and N'datchoh E. Touré
Atmos. Chem. Phys., 24, 5757–5764, https://doi.org/10.5194/acp-24-5757-2024, https://doi.org/10.5194/acp-24-5757-2024, 2024
Short summary
Short summary
This opinion piece focuses on two geographical areas in the Global South where the authors are based that are underrepresented in atmospheric science. This opinion provides context on common challenges and constraints, with suggestions on how the community can address these. The focus is on the strengths of atmospheric science research in these regions. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
Claire Bekker, Wendell W. Walters, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4185–4201, https://doi.org/10.5194/acp-23-4185-2023, https://doi.org/10.5194/acp-23-4185-2023, 2023
Short summary
Short summary
Nitrate is a critical component of the atmosphere that degrades air quality and ecosystem health. We have investigated the nitrogen isotope compositions of nitrate from deposition samples collected across the northeastern United States. Spatiotemporal variability in the nitrogen isotope compositions was found to track with nitrate formation chemistry. Our results highlight that nitrogen isotope compositions may be a robust tool for improving model representation of nitrate chemistry.
Heejeong Kim, Wendell W. Walters, Claire Bekker, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4203–4219, https://doi.org/10.5194/acp-23-4203-2023, https://doi.org/10.5194/acp-23-4203-2023, 2023
Short summary
Short summary
Atmospheric nitrate has an important impact on human and ecosystem health. We evaluated atmospheric nitrate formation pathways in the northeastern US utilizing oxygen isotope compositions, which indicated a significant difference between the phases of nitrate (i.e., gas vs. particle). Comparing the observations with model simulations indicated that N2O5 hydrolysis chemistry was overpredicted. Our study has important implications for improving atmospheric chemistry model representation.
Wendell W. Walters, Madeline Karod, Emma Willcocks, Bok H. Baek, Danielle E. Blum, and Meredith G. Hastings
Atmos. Chem. Phys., 22, 13431–13448, https://doi.org/10.5194/acp-22-13431-2022, https://doi.org/10.5194/acp-22-13431-2022, 2022
Short summary
Short summary
Atmospheric ammonia and its products are a significant source of urban haze and nitrogen deposition. We have investigated the seasonal source contributions to a mid-sized city in the northeastern US megalopolis utilizing geospatial statistical analysis and novel isotopic constraints, which indicate that vehicle emissions were significant components of the urban-reduced nitrogen budget. Reducing vehicle ammonia emissions should be considered to improve ecosystems and human health.
Mhlangabezi Mdutyana, Tanya Marshall, Xin Sun, Jessica M. Burger, Sandy J. Thomalla, Bess B. Ward, and Sarah E. Fawcett
Biogeosciences, 19, 3425–3444, https://doi.org/10.5194/bg-19-3425-2022, https://doi.org/10.5194/bg-19-3425-2022, 2022
Short summary
Short summary
Nitrite-oxidizing bacteria in the winter Southern Ocean show a high affinity for nitrite but require a minimum (i.e., "threshold") concentration before they increase their rates of nitrite oxidation significantly. The classic Michaelis–Menten model thus cannot be used to derive the kinetic parameters, so a modified equation was employed that also yields the threshold nitrite concentration. Dissolved iron availability may play an important role in limiting nitrite oxidation.
Shantelle Smith, Katye E. Altieri, Mhlangabezi Mdutyana, David R. Walker, Ruan G. Parrott, Sedick Gallie, Kurt A. M. Spence, Jessica M. Burger, and Sarah E. Fawcett
Biogeosciences, 19, 715–741, https://doi.org/10.5194/bg-19-715-2022, https://doi.org/10.5194/bg-19-715-2022, 2022
Short summary
Short summary
Ammonium is a crucial yet poorly understood component of the Southern Ocean nitrogen cycle. We attribute our finding of consistently high ammonium concentrations in the winter mixed layer to limited ammonium consumption and sustained ammonium production, conditions under which the Southern Ocean becomes a source of carbon dioxide to the atmosphere. From similar data collected over an annual cycle, we propose a seasonal cycle for ammonium in shallow polar waters – a first for the Southern Ocean.
Jessica M. Burger, Julie Granger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 22, 1081–1096, https://doi.org/10.5194/acp-22-1081-2022, https://doi.org/10.5194/acp-22-1081-2022, 2022
Short summary
Short summary
The nitrogen (N) isotopic composition of atmospheric nitrate in the Southern Ocean (SO) marine boundary layer (MBL) reveals the importance of oceanic alkyl nitrate emissions as a source of reactive N to the atmosphere. The oxygen isotopic composition suggests peroxy radicals contribute up to 63 % to NO oxidation and that nitrate forms via the OH pathway. This work improves our understanding of reactive N sources and cycling in a remote marine region, a proxy for the pre-industrial atmosphere.
Jiajue Chai, Jack E. Dibb, Bruce E. Anderson, Claire Bekker, Danielle E. Blum, Eric Heim, Carolyn E. Jordan, Emily E. Joyce, Jackson H. Kaspari, Hannah Munro, Wendell W. Walters, and Meredith G. Hastings
Atmos. Chem. Phys., 21, 13077–13098, https://doi.org/10.5194/acp-21-13077-2021, https://doi.org/10.5194/acp-21-13077-2021, 2021
Short summary
Short summary
Nitrous acid (HONO) derived from wildfire emissions plays a key role in controlling atmospheric oxidation chemistry. However, the HONO budget remains poorly constrained. By combining the field-observed concentrations and novel isotopic composition (N and O) of HONO and nitrogen oxides (NOx), we quantitatively constrained the relative contribution of each pathway to secondary HONO production and the relative importance of major atmospheric oxidants (ozone versus peroxy) in aged wildfire smoke.
Veronica R. Rollinson, Julie Granger, Sydney C. Clark, Mackenzie L. Blanusa, Claudia P. Koerting, Jamie M. P. Vaudrey, Lija A. Treibergs, Holly C. Westbrook, Catherine M. Matassa, Meredith G. Hastings, and Craig R. Tobias
Biogeosciences, 18, 3421–3444, https://doi.org/10.5194/bg-18-3421-2021, https://doi.org/10.5194/bg-18-3421-2021, 2021
Short summary
Short summary
We measured nutrients and the naturally occurring nitrogen (N) and oxygen (O) stable isotope ratios of nitrate discharged from a New England river over an annual cycle, to monitor N loading and identify dominant sources from the watershed. We uncovered a seasonality to loading and sources of N from the watershed. Seasonality in the nitrate isotope ratios also informed on N cycling, conforming to theoretical expectations of riverine nutrient cycling.
Guitao Shi, Hongmei Ma, Zhengyi Hu, Zhenlou Chen, Chunlei An, Su Jiang, Yuansheng Li, Tianming Ma, Jinhai Yu, Danhe Wang, Siyu Lu, Bo Sun, and Meredith G. Hastings
The Cryosphere, 15, 1087–1095, https://doi.org/10.5194/tc-15-1087-2021, https://doi.org/10.5194/tc-15-1087-2021, 2021
Short summary
Short summary
It is important to understand atmospheric chemistry over Antarctica under a changing climate. Thus snow collected on a traverse from the coast to Dome A was used to investigate variations in snow chemistry. The non-sea-salt fractions of K+, Mg2+, and Ca2+ are associated with terrestrial inputs, and nssCl− is from HCl. In general, proportions of non-sea-salt fractions of ions to the totals are higher in the interior areas than on the coast, and the proportions are higher in summer than in winter.
Wendell W. Walters, Linlin Song, Jiajue Chai, Yunting Fang, Nadia Colombi, and Meredith G. Hastings
Atmos. Chem. Phys., 20, 11551–11567, https://doi.org/10.5194/acp-20-11551-2020, https://doi.org/10.5194/acp-20-11551-2020, 2020
Short summary
Short summary
This article details new field observations of the nitrogen stable isotopic composition of ammonia emitted from vehicles conducted in the US and China. Vehicle emissions of ammonia may be a significant source to urban regions with important human health and environmental implications. Our measurements have indicated a consistent isotopic signature from vehicle ammonia emissions. The nitrogen isotopic composition of ammonia may be a useful tool for tracking vehicle emissions.
Cited articles
Alexander, B., Sherwen, T., Holmes, C. D., Fisher, J. A., Chen, Q., Evans, M. J., and Kasibhatla, P.: Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations, Atmos. Chem. Phys., 20, 3859–3877, https://doi.org/10.5194/acp-20-3859-2020, 2020.
Altieri, K. E., Hastings, M. G., Gobel, A. R., Peters, A. J., and Sigman, D.
M.: Isotopic composition of rainwater nitrate at Bermuda: the influence of
air mass source and chemistry in the marine boundary layer, J. Geophys.
Res.-Atmos., 118, 11304–11316, https://doi.org/10.1002/jgrd.50829, 2013.
Altieri, K. E., Fawcett, S. E., and Hastings, M. G.: Reactive Nitrogen
Cycling in the Atmosphere and Ocean, Annu. Rev. Earth Pl. Sc., 49, 513–540,
https://doi.org/10.1146/annurev-earth-083120-052147, 2021.
Aun, M., Lakkala, K., Sanchez, R., Asmi, E., Nollas, F., Meinander, O., Sogacheva, L., De Bock, V., Arola, A., de Leeuw, G., Aaltonen, V., Bolsée, D., Cizkova, K., Mangold, A., Metelka, L., Jakobson, E., Svendby, T., Gillotay, D., and Van Opstal, B.: Solar UV radiation measurements in Marambio, Antarctica, during years 2017–2019, Atmos. Chem. Phys., 20, 6037–6054, https://doi.org/10.5194/acp-20-6037-2020, 2020.
Baker, A. R., Weston, K., Kelly, S. D., Voss, M., Streu, P., and Cape, J. N.:
Dry and wet deposition of nutrients from the tropical Atlantic atmosphere:
links to primary productivity and nitrogen fixation, Deep Sea Res. Pt. I, 54, 1704–1720, https://doi.org/10.1016/j.dsr.2007.07.001, 2007.
Barkan, E., and Luz, B.: High precision measurements of 17O 16O and 18O 16O ratios in H2O, Rapid Commun. Mass Spectrom., 19, 3737–3742, https://doi.org/10.1002/rcm.2250, 2005.
Bauguitte, S. J.-B., Bloss, W. J., Evans, M. J., Salmon, R. A., Anderson, P. S., Jones, A. E., Lee, J. D., Saiz-Lopez, A., Roscoe, H. K., Wolff, E. W., and Plane, J. M. C.: Summertime NOx measurements during the CHABLIS campaign: can source and sink estimates unravel observed diurnal cycles?, Atmos. Chem. Phys., 12, 989–1002, https://doi.org/10.5194/acp-12-989-2012, 2012.
Berhanu, T. A., Savarino, J., Bhattacharya, S. K., and Vicars, W. C.:
17O excess transfer during the NO2 + O3 → NO3 + O2 reaction, J. Chem. Phys., 136, 1–9, https://doi.org/10.1063/1.3666852, 2012.
Berhanu, T. A., Meusinger, C., Erbland, J., Jost, R., Bhattacharya, S. K.,
Johnson, M. S., and Savarino, J.: Laboratory study of nitrate photolysis in
Antarctic snow. II. Isotopic effects and wavelength dependence, J. Chem.
Phys., 140, 244306, https://doi.org/10.1063/1.4882899, 2014.
Berhanu, T. A., Savarino, J., Erbland, J., Vicars, W. C., Preunkert, S., Martins, J. F., and Johnson, M. S.: Isotopic effects of nitrate photochemistry in snow: a field study at Dome C, Antarctica, Atmos. Chem. Phys., 15, 11243–11256, https://doi.org/10.5194/acp-15-11243-2015, 2015.
Bölhke, J. K., Mroczkowski, S. J., and Coplen, T. B.: Oxygen isotopes in
nitrate: new reference materials for 18O : 17O : 16O measurements and observations on nitrate-water equilibrium, Rapid Commun. Mass Sp., 17, 1835–1846, https://doi.org/10.1002/rcm.1123, 2003.
Brough, N., Jones, A. E., and Griffiths, P. T.: Influence of sea ice derived
halogens on atmospheric HOx as observed in Springtime coastal Antarctica, Geophys. Res. Lett., 46, 10168–10176, https://doi.org/10.1029/2019GL083825, 2019.
Burger, J. M., Granger, J., Joyce, E., Hastings, M. G., Spence, K. A. M., and Altieri, K. E.: The importance of alkyl nitrates and sea ice emissions to atmospheric NOx sources and cycling in the summertime Southern Ocean marine boundary layer, Atmos. Chem. Phys., 22, 1081–1096, https://doi.org/10.5194/acp-22-1081-2022, 2022a.
Burger, J. M., Joyce, E., Hastings, M. G., Spence, K. A. M., and Altieri, K. E.: A seasonal analysis of aerosol NO sources and NOx oxidation pathways in the Southern Ocean marine boundary layer, Zenodo [data set], https://doi.org/10.5281/zenodo.7142722, 2022b.
Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K., and
Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in
seawater and freshwater using the denitrifier method, Anal. Chem., 74,
4905–4912, https://doi.org/10.1021/ac020113w, 2002.
Dahl, E. E. and Saltzman, S. E.: Alkyl nitrate photochemical production
rates in North Pacific seawater, Mar. Chem., 112, 137–141,
https://doi.org/10.1016/j.marchem.2008.10.002, 2008.
Dahl, E. E., Heiss, E. M., and Murawski, K.: The effects of dissolved
organic matter on alkyl nitrate production during GOMECC and laboratory
studies, Mar. Chem., 142, 11–17, https://doi.org/10.1016/j.marchem.2012.08.001, 2012.
Dar, S. S., Ghosh, P., Swaraj, A., and Kumar, A.: Craig–Gordon model validation using stable isotope ratios in water vapor over the Southern Ocean, Atmos. Chem. Phys., 20, 11435–11449, https://doi.org/10.5194/acp-20-11435-2020, 2020.
Davidson, E. A. and Kingerlee, W.: A global inventory of nitric oxide
emissions from soils, Nutr. Cycl. Agroecosys., 48, 37–50,
https://doi.org/10.1023/A:1009738715891, 1997.
Derwent, R. G., Parrish, D. D., Galbally, I. E., Stevenson, D. S., Doherty,
R. M., Young, P. J., and Shallcross, D. E.: Interhemispheric differences in
seasonal cycles of tropospheric ozone in the marine boundary layer:
Observation-model comparisons, J. Geophys. Res.-Atmos., 121, 11075–11085,
https://doi.org/10.1002/2016JD024836, 2016.
Elliott, E. M., Kendall, C., Wankel, S. D., Burns, S. A., Boyer, E. W.,
Harlin, K., Bain, D. J., and Butler, T. J.: Nitrogen isotopes as indicators
of NOx source contributions to atmospheric nitrate deposition across the
Midwestern and Northeastern United States, Environ. Sci. Technol., 41,
7661–7667, https://doi.org/10.1021/es070898t, 2007.
Elliot, E. M., Yu, Z., Cole, A. S., and Coughlin, J. G.: Isotopic advances
in understanding reactive nitrogen deposition and atmospheric processing,
Sci. Total Environ., 662, 393–403, https://doi.org/10.1016/j.scitotenv.2018.12.177, 2019.
Erbland, J., Vicars, W. C., Savarino, J., Morin, S., Frey, M. M., Frosini, D., Vince, E., and Martins, J. M. F.: Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer, Atmos. Chem. Phys., 13, 6403–6419, https://doi.org/10.5194/acp-13-6403-2013, 2013.
Fang, Y. T., Koba, K., Wang, X. M., Wen, D. Z., Li, J., Takebayashi, Y., Liu, X. Y., and Yoh, M.: Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China, Atmos. Chem. Phys., 11, 1313–1325, https://doi.org/10.5194/acp-11-1313-2011, 2011.
Fibiger, D. L., and Hastings, M. G.: First Measurements of the Nitrogen
Isotopic Composition of NOx from Biomass Burning, Environ. Sci. Technol., 50, 11569–11574, https://doi.org/10.1021/acs.est.6b03510, 2016.
Fibiger, D. L., Hastings, M. G., Dibb, J. E., and Huey, L. G.: The
preservation of atmospheric nitrate in snow at Summit, Greenland, Geophys.
Res. Lett., 40, 3484–3489, https://doi.org/10.1002/grl.50659, 2013.
Finlayson-Pitts, B. J. and Pitts, J. N.: Chemistry of the upper and lower
troposphere, Academic Press, San Diego, California,
https://doi.org/10.1016/B978-0-12-257060-5.X5000-X, 2000.
Fisher, J. A., Atlas, E. L., Barletta, B., Meinardi, S., Blake, D. R.,
Thompson, C. R., Ryerson, T. B., Peischl, J., Tzompa-Sosa, Z. A., and
Murray, L. T.: Methyl, ethyl and propyl nitrates: global distribution and
impacts on reactive nitrogen in remote marine environments, J. Geophys.
Res.-Atmos., 123, 12412–12429, https://doi.org/10.1029/2018JD029046, 2018.
Frey, M. M., Savarino, J., Morin, S., Erbland, J., and Martins, J. M. F.: Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling, Atmos. Chem. Phys., 9, 8681–8696, https://doi.org/10.5194/acp-9-8681-2009, 2009.
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, https://doi.org/10.5194/acp-7-4329-2007, 2007.
Hamilton, D. S., Lee, L. A., Pringle, K. J., Reddington, C. L., Spracklen,
D. V., and Carslaw, K. S.: Occurrence of pristine aerosol environments on a
polluted planet, P. Natl. Acad. Sci. USA, 111, 18466–18471,
https://doi.org/10.1073/pnas.1415440111, 2014.
Hastings, M. G., Sigman, D. M., and Lipschultz, F.: Isotopic evidence for
source changes of nitrate in rain at Bermuda, J. Geophys. Res., 108, 4790,
https://doi.org/10.1029/2003JD003789, 2003.
Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative
forcing due to tropospheric aerosols: a review, Rev. Geophys., 38, 513–543,
https://doi.org/10.1029/1999RG000078, 2000.
Heidenreich, J. E. III. and Thiemens, M. H.: A non-mass-dependent oxygen
isotope effect in the production of ozone from molecular oxygen: the role of symmetry in isotope chemistry, J. Chem. Phys., 84, 2129–2136, https://doi.org/10.1063/1.450373, 1986.
Hoering, T.: The isotopic composition of the ammonia and the nitrate ion in
rain, Geochim. Cosmochim. Ac., 12, 97–102, https://doi.org/10.1016/0016-7037(57)90021-2, 1957.
Hosaynali Beygi, Z., Fischer, H., Harder, H. D., Martinez, M., Sander, R., Williams, J., Brookes, D. M., Monks, P. S., and Lelieveld, J.: Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state, Atmos. Chem. Phys., 11, 8497–8513, https://doi.org/10.5194/acp-11-8497-2011, 2011.
IPCC: Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J, Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, ISBN 9781107661820, 2013.
Ireland, T. R., Avila, J., Greenwood, R. C., Hicks, L. J., and Bridges, J.
C.: Oxygen Isotopes and Sampling of the Solar System, Space Sci. Rev.,
216, 1–60, https://doi.org/10.1007/s11214-020-0645-3, 2020.
Ishino, S., Hattori, S., Savarino, J., Jourdain, B., Preunkert, S., Legrand, M., Caillon, N., Barbero, A., Kuribayashi, K., and Yoshida, N.: Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica, Atmos. Chem. Phys., 17, 3713–3727, https://doi.org/10.5194/acp-17-3713-2017, 2017.
Jacobi, H.-W., Weller, R., Jones, A. E., Anderson, P. S., and Schrems, O.:
Peroxyaccetyl nitrate (PAN) concentrations in the Antarctic troposphere
measured during the photochemical experiment at Neumayer (PEAN'99), Atmos.
Environ., 34, 5235–5247, https://doi.org/10.1016/S1352-2310(00)00190-4, 2000.
Jones, A. E., Weller, R., Minikin, A., Wolff, E. W., Sturges, W. T., McIntyre, H. P., Leonard, S. R., Schrems, O., and Bauguitte, S.: Oxidized nitrogen chemistry and speciation in the Antarctic troposphere, J. Geophys. Res., 104, 21355–21366, https://doi.org/10.1029/1999JD900362, 1999.
Jones, A. E., Weller, R., Wolff, E. W., and Jacobi, H.-W.: Speciation and
rate of photochemical NO and NO2 production in Antarctic snow, Geophys. Res. Lett., 27, 345–348, https://doi.org/10.1029/1999GL010885, 2000.
Jones, A. E., Weller, R., Anderson, P. S., Jacobi, H.-W., Wolff, E. W.,
Schrems, O., and Miller, H.: Measurements of NOx emissions from the
Antarctic snowpack, Geophys. Res. Lett., 28, 1499–1502,
https://doi.org/10.1029/2000GL011956, 2001.
Jones, A. E., Wolff, E. W., Ames, D., Bauguitte, S. J.-B., Clemitshaw, K. C., Fleming, Z., Mills, G. P., Saiz-Lopez, A., Salmon, R. A., Sturges, W. T., and Worton, D. R.: The multi-seasonal NOy budget in coastal Antarctica and its link with surface snow and ice core nitrate: results from the CHABLIS campaign, Atmos. Chem. Phys., 11, 9271–9285, https://doi.org/10.5194/acp-11-9271-2011, 2011.
Joyce, E. E., Balint, S. J., and Hastings, M. G.: Isotopic evidence that
alkyl nitrates are important to aerosol nitrate formation in the equatorial
Pacific, Geophys. Res. Lett., 49, 1–10, https://doi.org/10.1029/2022GL099960, 2022.
Kaiser, J., Hastings, M. G., Houlton, B. Z., Rockmann, T., and Sigman, D.
M.: Triple Oxygen Isotope Analysis of Nitrate Using the Denitrifier Method
and Thermal Decomposition of N2O, Anal. Chem., 79, 599–607,
https://doi.org/10.1021/ac061022s, 2007.
Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., Notholt, J., Rankin, A. M., Roscoe, H. K., Hollwedel, J., Wagner, T., and Jacobi, H.-W.: Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry, Geophys. Res. Lett., 31, L16114, https://doi.org/10.1029/2004GL020655, 2004.
Kamezaki, K., Hattori, S., Iwamoto, Y., Ishino, S., Furutani, H., Miki, Y.,
Uematsu, M., Miura, K., and Yoshida, N.: Tracing the sources and formation
pathways of atmospheric particulate nitrate over the Pacific Ocean using
stable isotopes, Atmos. Environ., 209, 152–166,
https://doi.org/10.1016/j.atmosenv.2019.04.026, 2019.
Kasibhatla, P., Sherwen, T., Evans, M. J., Carpenter, L. J., Reed, C., Alexander, B., Chen, Q., Sulprizio, M. P., Lee, J. D., Read, K. A., Bloss, W., Crilley, L. R., Keene, W. C., Pszenny, A. A. P., and Hodzic, A.: Global impact of nitrate photolysis in sea-salt aerosol on NOx, OH, and O3 in the marine boundary layer, Atmos. Chem. Phys., 18, 11185–11203, https://doi.org/10.5194/acp-18-11185-2018, 2018.
Lakkala, K., Aun, M., Sanchez, R., Bernhard, G., Asmi, E., Meinander, O., Nollas, F., Hülsen, G., Karppinen, T., Aaltonen, V., Arola, A., and de Leeuw, G.: New continuous total ozone, UV, VIS and PAR measurements at Marambio, 64∘ S, Antarctica, Earth Syst. Sci. Data, 12, 947–960, https://doi.org/10.5194/essd-12-947-2020, 2020.
Lawrence, M. G., and Crutzen, P. J.: Influence of NOx emissions from ships on tropospheric photochemistry and climate, Nature, 402, 167–170,
https://doi.org/10.1038/46013, 1999.
Lee, H.-M., Henze, D. K., Alexander, B., and Murray, L. T.: Investigating
the sensitivity of surface-level nitrate seasonality in Antarctica to
primary sources using a global model, Atmos. Environ., 89, 757–767,
https://doi.org/10.1016/j.atmosenv.2014.03.003, 2014.
Legrand, M., Preunkert, S., Frey, M., Bartels-Rausch, Th., Kukui, A., King, M. D., Savarino, J., Kerbrat, M., and Jourdain, B.: Large mixing ratios of atmospheric nitrous acid (HONO) at Concordia (East Antarctic Plateau) in summer: a strong source from surface snow?, Atmos. Chem. Phys., 14, 9963–9976, https://doi.org/10.5194/acp-14-9963-2014, 2014.
Li, J., Davy, P., Harvey, M., Katzman, T., Mitchell, T., and Michalski, G.:
Nitrogen isotopes in nitrate aerosols collected in the remote marine
boundary layer: Implications for nitrogen isotopic fractionations among
atmospheric reactive nitrogen species, Atmos. Environ., 245, 1–10,
https://doi.org/10.1016/j.atmosenv.2020.118028, 2021.
Lu, Z., Liu, X., Zaveri, R. A., Easter, R. C., Tilmes, S., Emmons, L. K., Vitt, F., Singh, B., Wang, H., Zhang, R., and Rasch, P. J.: Radiative Forcing of Nitrate Aerosols From 1975 to 2010 as Simulated by MOSAIC Module in CESM2-MAM4, J. Geophys. Res.-Atmos., 126, e2021JD034809, https://doi.org/10.1029/2021JD034809, 2021.
McCabe, J. R., Thiemens, M. H., and Savarino, J.: A record of ozone variability in South Pole Antarctic snow: Role of nitrate oxygen isotopes, J. Geophys. Res., 112, D12303, https://doi.org/10.1029/2006JD007822, 2007.
Michalski, G., and Bhattacharya, S. K.: The role of symmetry in the mass independent isotope effect in ozone, P. Natl. Acad. Sci. USA, 106, 5493–5496, https://doi.org/10.1073/pnas.0812755106, 2009.
Michalski, G., Scott, Z., Kabiling, M., and Thiemens, M. H.: First
measurments and modeling of Δ17O in atmospheric nitrate,
Geophys. Res. Lett., 30, 1870, https://doi.org/10.1029/2003GL017015, 2003.
Michalski, G., Bhattacharya, S. K., and Mase, D. F.: Oxygen isotope dynamics
of atmospheric nitrate and its precursor molecules, in: Handbook of
environmental isotope geochemistry. Advances in Isotope Geochemistry, edited
by: Baskaran, M., Springer, Berlin, Heidelberg, 613–635,
https://doi.org/10.1007/978-3-642-10637-8_30, 2012.
Miller, D. J., Chai, J., Guo, F., Dell, C. J., Karsten, H., and Hastings, M.
G: Isotopic Composition of In Situ Soil NOx Emissions in
Manure-Fertilized Cropland, Geophys. Res. Lett., 45, 12058–12066,
https://doi.org/10.1029/2018GL079619, 2018.
Morin, S., Savarino, J., Frey, M. M., Domine, F., Jacobi, H. W., Kaleschke,
L., and Martins, J. M.: Comprehensive isotopic composition of atmospheric
nitrate in the Atlantic Ocean boundary layer from 65∘ S to
79∘ N, J. Geophys. Res., 114, D05303, https://doi.org/10.1029/2008JD010696, 2009.
Morin, S., Sander, R., and Savarino, J.: Simulation of the diurnal variations of the oxygen isotope anomaly (Δ17O) of reactive atmospheric species, Atmos. Chem. Phys., 11, 3653–3671, https://doi.org/10.5194/acp-11-3653-2011, 2011.
Morin, S., Erbland, J., Savarino, J., Domine, F., Bock, J., Friess, U.,
Jacobi, H.-W., Sihler, H., and Martins, J. M. F.: An isotopic view on the
connection between photolytic emissions of NOx from the Arctic snowpack
and its oxidation by reactive halogens, J. Geophys. Res., 117, D00R08,
https://doi.org/10.1029/2011JD016618, 2012.
Nesbitt, S. W., Zhang, R., and Orville, R. E.: Seasonal and global NOx
production by lightning estimated from the Optical Transient Detector (OTD),
Tellus B, 52, 1206–1215, https://doi.org/10.3402/tellusb.v52i5.17098, 2000.
Obbard, R. W.: Microplastics in Polar Regions: The role of long range
transport, Curr. Opin. Environ. Sci., 1, 24–29,
https://doi.org/10.1016/j.coesh.2017.10.004, 2018.
Park, S. S. and Kim, Y. J.: Source contributions to fine particulate matter
in an urban atmosphere, Chemosphere, 59, 217–226,
https://doi.org/10.1016/j.chemosphere.2004.11.001, 2005.
Parsons, T. R., Maita, Y., and Lalli, C. M.: A Manual of Chemical and Biological Methods for Seawater Analysis Pergamon, Pergamon Press, Oxford, 7–9, https://doi.org/10.25607/OBP-1830, 1984.
Paton-Walsh, C., Emmerson, K. M., Garland, R. M., Keywood, M., Hoelzemann,
J. J., Huneeus, N., Buchholz, R. R., Humphries, R. S., Altieri, K., Schmale,
J., Wilson, S. R., Labuschagne, C., Kalisa, E., Fisher, J. A., Deutscher, N.
M., van Zyl, P. G., Beukes, J. P., Joubert, W., Martin, L., Mkololo, T.,
Barbosa, C., Anrade, M. de F., Schofield, R., Mallet, M. D., Harvey, M. J.,
Formenti, P., Piketh, S. J., and Olivares, G.: Key challenges for
tropospheric chemistry in the Southern Hemisphere, Elem. Sci. Anth., 10,
1–35, https://doi.org/10.1525/elementa.2021.00050, 2022.
Reed, C., Evans, M. J., Crilley, L. R., Bloss, W. J., Sherwen, T., Read, K. A., Lee, J. D., and Carpenter, L. J.: Evidence for renoxification in the tropical marine boundary layer, Atmos. Chem. Phys., 17, 4081–4092, https://doi.org/10.5194/acp-17-4081-2017, 2017.
Rolph, G., Stein, A., and Stunder, B.: Real-time environmental applications and display system: READY, Environ. Model. Softw., 95, 210–228, https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Romer, P. S., Wooldridge, P. J., Crounse, J. D., Kim, M. J., Wennberg, P.
O., Dibb, J. E., Scheuer, E., Blake, D. R., Meinardi, S., Brosius, A. L.,
Thames, A. B., Miller, D. O., Brune, W. H., Hall, S. R., Ryerson, T. B., and
Cohen, R. C.: Constraints on Aerosol Nitrate Photolysis as a Potential
Source of HONO and NOx, Environ. Sci. Technol., 52, 13738–13746,
https://doi.org/10.1021/acs.est.8b03861, 2018.
Savarino, J., Kaiser, J., Morin, S., Sigman, D. M., and Thiemens, M. H.: Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica, Atmos. Chem. Phys., 7, 1925–1945, https://doi.org/10.5194/acp-7-1925-2007, 2007.
Savarino, J., Bhattacharya, S. K., Morin, S., Baroni, M., and Doussin,
J.-F.: The NO+O3 Reaction: A Triple Oxygen Isotope Perspective on the
Reaction Dynamics and Atmospheric Implications for the Transfer of the Ozone
Isotope Anomaly, J. Chem. Phys., 128, 194303, https://doi.org/10.1063/1.2917581, 2008.
Savarino, J., Vicars, W. C., Legrand, M., Preunkert, S., Jourdain, B., Frey, M. M., Kukui, A., Caillon, N., and Gil Roca, J.: Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign, Atmos. Chem. Phys., 16, 2659–2673, https://doi.org/10.5194/acp-16-2659-2016, 2016.
Savoie, D. L., Prospero, J. M., Larsen, R. J., Haung, F., Izaguirre, M. A., Haung, T., Snowdon, T. H., Custals, L., and Sanderson, C. G.: Nitrogen and Sulphur Species in Antarctic Aerosols at Mawson, Palmer Station, and Marsh (King George Island), J. Atmos. Chem., 17, 95–122, https://doi.org/10.1007/BF00702821, 1993.
Schmale, J., Baccarini, A., Thurnherr, I., Henning, S., Efraim, A., Regayre,
L., Bolas, C., Hartmann, M., Welti, A., Lehtipalo, K., Aemisegger, F.,
Tatzelt, C., Landwehr, S., Modini, R. L., Tummon, F., Johnson, J. S.,
Harris, N., Schnaiter, M., Toffoli, A., Derkani. M., Bukowiecki, N.,
Stratmann, F., Dommen, J., Baltensperger, U., Wernli, H., Rosenfeld, D.,
Gysel-Beer, M., and Carslaw, K. S.: Overview of the Antarctic
Circumnavigation Expedition: study of preindustrial-like aerosols and their
climate effects (ACE-SPACE), B. Am. Meteorol. Soc., 100, 2260–2283, 2019.
Schumann, U. and Huntrieser, H.: The global lightning-induced nitrogen oxides source, Atmos. Chem. Phys., 7, 3823–3907, https://doi.org/10.5194/acp-7-3823-2007, 2007.
Shi, G., Buffen, A. M., Ma, H., Hu, Z., Sun, B., Li, C., Yu, J., Ma, T., An,
C., Jiang, S., Li, Y., and Hastings, M. G.: Distinguishing summertime
atmospheric production of nitrate across the East Antarctic ice sheet,
Geochim. Cosmochim. Ac., 231, 1–14, https://doi.org/10.1016/j.gca.2018.03.025, 2018.
Shi, G., Ma, H., Zhu, Z., Hu, A., Chen, Z., Jiang, Su., An, C., Yu, J., Ma,
T., Li, Y., Sun, B., and Hastings, M. G.: Using stable isotopes to
distinguish atmospheric nitrate production and its contribution to the
surface ocean across hemispheres, Earth Planet. Sc. Lett., 564,
116914, https://doi.org/10.1016/j.epsl.2021.116914, 2021.
Shi, G., Li, C., Li, Y., Chen, Z., Ging, M., Ma, H., Jiang, S., An, C., Guo,
J., Sun, B., and Hastings, M. Q.: Isotopic constraints on sources,
production, and phase partitioning for nitrate in the atmosphere and
snowfall in coastal East Antarctica, Earth Planet. Sc. Lett., 578,
1–12, https://doi.org/10.1016/j.epsl.2021.117300, 2022.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M.,
and Böhlke, J. K.: A bacterial method for the nitrogen isotopic analysis
of nitrate in seawater and freshwater, Anal. Chem., 73, 4145–4153,
https://doi.org/10.1021/ac010088e, 2001.
Sinclair, K. E., Bertler, N. A. N., Trompetter, W. J., and Baisden,
W. T.: Seasonality of airmass pathways to coastal Antarctica:
ramifications for interpreting high-resolution ice core records,
J. Climate, 26, 2065–2076, https://doi.org/10.1175/JCLI-D-12-00167.1, 2013.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res., 113, C02S03, https://doi.org/10.1029/2005JC003384, 2008.
Stein, A. F., Draxler, R. R, Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Strickland, J. D. H. and Parsons, T. R.: A practical handbook of seawater analysis, 2nd Edn., B. Fish. Res. Board Can., 167, 77–80, https://doi.org/10.25607/OBP-1791, 1972.
Theys, N., Van Roozendael, M., Hendrick, F., Yang, X., De Smedt, I., Richter, A., Begoin, M., Errera, Q., Johnston, P. V., Kreher, K., and De Mazière, M.: Global observations of tropospheric BrO columns using GOME-2 satellite data, Atmos. Chem. Phys., 11, 1791–1811, https://doi.org/10.5194/acp-11-1791-2011, 2011.
Thiemens, M. H.: History and Applications of Mass-Independent Isotope
Effects, Annu. Rev. Earth Planet. Sci., 34, 217–262,
https://doi.org/10.1146/annurev.earth.34.031405.125026, 2006.
van der A, R. J., Eskes, H. J., Boersma, K. F., van Noije, T. P., Van
Roozendael, M., De Smedt, I., Peters, D. H. M. U., and Meijer, E. W.:
Trends, seasonal variability and dominant NOx source derived from a ten
year record of NO2 measured from space, J. Geophys. Res., 113, D04302,
https://doi.org/10.1029/2007JD009021, 2008.
Vicars, W. C. and Savarino, J.: Quantitative constraints on the 17O-excess (Δ17O) signature of surface ozone: Ambient measurements from 50∘ N to 50∘ S using the nitrite-coated filter technique, Geochim. Cosmochim. Ac., 135, 270–287,
https://doi.org/10.1016/j.gca.2014.03.023, 2014.
von Savigny, C., Ulasi, E. P., Eichmann, K.-U., Bovensmann, H., and Burrows, J. P.: Detection and mapping of polar stratospheric clouds using limb scattering observations, Atmos. Chem. Phys., 5, 3071–3079, https://doi.org/10.5194/acp-5-3071-2005, 2005.
Wagenbach, D., Legrand, M., Fischer, H., Pichlmayer, F., and Wolff, E.W.:
Atmospheric near-surface nitrate at coastal Antarctic sites, J. Geophys.
Res., 103, 11007–11020, https://doi.org/10.1029/97JD03364, 1998.
Walters, W. W. and Michalski, G.: Theoretical calculation of oxygen
equilibrium isotope fractionation factors involving various NOy
molecules, OH, and H2O and its implications for isotope variations
in atmospheric nitrate, Geochim. Cosmochim. Ac., 191,
89–101, https://doi.org/10.1016/j.gca.2016.06.039, 2016.
Walters, W. W., Simonini, D. S., and Michalski, G.: Nitrogen isotope
exchange between NO and NO2 and its implications for δ15N
variations in tropospheric NOx and atmospheric nitrate, Geophys. Res.
Lett., 43, 440–448, https://doi.org/10.1002/2015GL066438, 2016.
Walters, W. W., Michalski, G., Bohlke, J. K., Alexander, B., Savarino, J.,
and Thiemens, M. H.: Assessing the seasonal dynamic of nitrate and sulfate
aerosols at the South Pole utilizing stable isotopes, J. Geophys.
Res.-Atmos., 124, 8161–8177, https://doi.org/10.1029/2019JD030517, 2019.
Wang, Z., Stephens, G., Deshler, T., Trepre, C., Parish, T., Vane, D.,
Winker, D., Liu, D., and Adhikari, L.: Association of Antarctic polar
stratospheric cloud formation on tropospheric cloud systems, Geophys. Res.
Lett., 35, L13806, https://doi.org/10.1029/2008GL034209, 2008.
Winton, V. H. L., Ming, A., Caillon, N., Hauge, L., Jones, A. E., Savarino, J., Yang, X., and Frey, M. M.: Deposition, recycling, and archival of nitrate stable isotopes between the air–snow interface: comparison between Dronning Maud Land and Dome C, Antarctica, Atmos. Chem. Phys., 20, 5861–5885, https://doi.org/10.5194/acp-20-5861-2020, 2020.
Wolff, E. W., Jones, A. E., Bauguitte, S. J.-B., and Salmon, R. A.: The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements, Atmos. Chem. Phys., 8, 5627–5634, https://doi.org/10.5194/acp-8-5627-2008, 2008.
Yang, X., Pyle, J. A., Cox, R. A., Theys, N., and Van Roozendael, M.: Snow-sourced bromine and its implications for polar tropospheric ozone, Atmos. Chem. Phys., 10, 7763–7773, https://doi.org/10.5194/acp-10-7763-2010, 2010.
Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Tsai, C.,
Cantrell, C., Mauldin III, R. L., Campos, T., Weinheimer, A., Hornbrook, R.
S., Apel, E. C., Guenther, A., Kaser, L., Yuan, B., Karl, T., Haggerty, J.,
Hall, S., Ullmann, K., Smith, J. N., Ortega, J., and Christoph, K.: Rapid
cycling of reactive nitrogen in the marine boundary layer, Nature, 532,
489–491, https://doi.org/10.1038/nature17195, 2016.
Zhou, X., Gao, H., He, Y., Huang, G., Bertman, S. B., Civerolo, K., and
Schwab, J.: Nitric acid photolysis on surfaces in low-NOx environments:
Significant atmospheric implications, Geophys. Res. Lett., 23, 2217,
https://doi.org/10.1029/2003GL018620, 2003.
Zong, Z., Wang, X., Tian, C., Chen, Y., Fang, Y., Zhang, F., Li, C., Sun,
J., Li, J., and Zhang, G.: First assessment of NOx sources at a regional
background site in North China using isotopic analysis linked with modeling,
Environ. Sci. Technol., 51, 5923–5931, https://doi.org/10.1021/acs.est.6b06316, 2017.
Short summary
A seasonal analysis of the nitrogen isotopes of atmospheric nitrate over the remote Southern Ocean reveals that similar natural NOx sources dominate in spring and summer, while winter is representative of background-level conditions. The oxygen isotopes suggest that similar oxidation pathways involving more ozone occur in spring and winter, while the hydroxyl radical is the main oxidant in summer. This work helps to constrain NOx cycling and oxidant budgets in a data-sparse remote marine region.
A seasonal analysis of the nitrogen isotopes of atmospheric nitrate over the remote Southern...
Altmetrics
Final-revised paper
Preprint