Articles | Volume 23, issue 7
https://doi.org/10.5194/acp-23-4463-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-4463-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Sublimation of frozen CsCl solutions in an environmental scanning electron microscope (ESEM) – determining the number and size of salt particles relevant to sea salt aerosols
Environmental Electron Microscopy Group, Institute of Scientific
Instruments of the Czech Academy of Sciences, Brno, Czech Republic
Vilém Neděla
Environmental Electron Microscopy Group, Institute of Scientific
Instruments of the Czech Academy of Sciences, Brno, Czech Republic
Kamila Závacká
Environmental Electron Microscopy Group, Institute of Scientific
Instruments of the Czech Academy of Sciences, Brno, Czech Republic
British Antarctic Survey, Natural Environment Research Council,
Cambridge, UK
Department of Chemistry, Faculty of Science, Masaryk University, Brno,
Czech Republic
Related authors
Ľubica Vetráková, Vilém Neděla, Jiří Runštuk, Xin Yang, and Dominik Heger
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-376, https://doi.org/10.5194/tc-2021-376, 2022
Manuscript not accepted for further review
Short summary
Short summary
In polar regions, sea salt aerosols are important to polar atmospheric chemistry, yet their mechanism of formation is not well understood. We inspected the sublimation residues of salty ices in a unique electron microscope and sought for small salt particles, proxies of sea salt aerosols. Our experiments showed that aerosolizable salt particles are preferably generated from low-concentrated ices and at low temperatures. This condition favors salty snow as an efficient source of the aerosols.
Xiaochun Zhu, Le Cao, Xin Yang, Simeng Li, Jiandong Wang, and Tianliang Zhao
Atmos. Chem. Phys., 25, 12159–12176, https://doi.org/10.5194/acp-25-12159-2025, https://doi.org/10.5194/acp-25-12159-2025, 2025
Short summary
Short summary
We applied various criteria to identify springtime ozone depletion events (ODEs) at Utqiaġvik, Arctic, and investigated the influence of using different criteria on conclusions regarding the characteristics of ODEs. We found that criteria using fixed thresholds or monthly average-based thresholds were more suitable for identifying ODEs than the others. Applying a threshold that varies with the monthly average or stricter fixed thresholds also indicated a more significant reduction in ODE occurrences.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
EGUsphere, https://doi.org/10.5194/egusphere-2022-696, https://doi.org/10.5194/egusphere-2022-696, 2022
Preprint archived
Short summary
Short summary
Snow pack in high Arctic plays a key role in polar atmospheric chemistry, especially in spring when photochemistry becomes active. By sampling surface snow from a Canadian high Arctic location at Eureka, Nunavut (80° N, 86° W), we demonstrate that surface snow is a net sink rather than a source of atmospheric reactive bromine and nitrate. This finding is new and opposite to previous conclusions that snowpack is a large and direct source of reactive bromine in polar spring.
Ľubica Vetráková, Vilém Neděla, Jiří Runštuk, Xin Yang, and Dominik Heger
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-376, https://doi.org/10.5194/tc-2021-376, 2022
Manuscript not accepted for further review
Short summary
Short summary
In polar regions, sea salt aerosols are important to polar atmospheric chemistry, yet their mechanism of formation is not well understood. We inspected the sublimation residues of salty ices in a unique electron microscope and sought for small salt particles, proxies of sea salt aerosols. Our experiments showed that aerosolizable salt particles are preferably generated from low-concentrated ices and at low temperatures. This condition favors salty snow as an efficient source of the aerosols.
Xin Yang, Anne-M. Blechschmidt, Kristof Bognar, Audra McClure-Begley, Sara Morris, Irina Petropavlovskikh, Andreas Richter, Henrik Skov, Kimberly Strong, David W. Tarasick, Taneil Uttal, Mika Vestenius, and Xiaoyi Zhao
Atmos. Chem. Phys., 20, 15937–15967, https://doi.org/10.5194/acp-20-15937-2020, https://doi.org/10.5194/acp-20-15937-2020, 2020
Short summary
Short summary
This is a modelling-based study on Arctic surface ozone, with a particular focus on spring ozone depletion events (i.e. with concentrations < 10 ppbv). Model experiments show that model runs with blowing-snow-sourced sea salt aerosols implemented as a source of reactive bromine can reproduce well large-scale ozone depletion events observed in the Arctic. This study supplies modelling evidence of the proposed mechanism of reactive-bromine release from blowing snow on sea ice (Yang et al., 2008).
Cited articles
Abbatt, J. P. D., Thomas, J. L., Abrahamsson, K., Boxe, C., Granfors, A.,
Jones, A. E., King, M. D., Saiz-Lopez, A., Shepson, P. B., Sodeau, J.,
Toohey, D. W., Toubin, C., Von Glasow, R., Wren, S. N., and Yang, X.: Halogen
activation via interactions with environmental ice and snow in the polar
lower troposphere and other regions, Atmos. Chem. Phys., 12, 6237–6271,
https://doi.org/10.5194/acp-12-6237-2012, 2012.
Alpert, P. A., Dou, J., Arroyo, P. C., Schneider, F., Xto, J., Luo, B.,
Peter, T., Huthwelker, T., Borca, C. N., Henzler, K. D., Schaefer, T.,
Herrmann, H., Raabe, J., Watts, B., Krieger, U. K., and Ammann, M.:
Photolytic radical persistence due to anoxia in viscous aerosol particles,
Nat. Commun., 12, 1769, https://doi.org/10.1038/s41467-021-21913-x, 2021.
Barisik, M. and Beskok, A.: Wetting characterisation of silicon (1,0,0)
surface, Mol. Simul., 39, 700–709, https://doi.org/10.1080/08927022.2012.758854,
2013.
Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J., and
Rasmussen, R. A.: Ozone destruction and photochemical reactions at polar
sunrise in the lower Arctic atmosphere, Nature, 334, 138–141,
https://doi.org/10.1038/334138a0, 1988.
Bartels-Rausch, T., Jacobi, H. W., Kahan, T. F., Thomas, J. L., Thomson, E.
S., Abbatt, J. P. D., Ammann, M., Blackford, J. R., Bluhm, H., Boxe, C.,
Domine, F., Frey, M. M., Gladich, I., Guzmán, M. I., Heger, D.,
Huthwelker, T., Klán, P., Kuhs, W. F., Kuo, M. H., Maus, S., Moussa, S.
G., McNeill, V. F., Newberg, J. T., Pettersson, J. B. C., Roeselová, M.,
and Sodeau, J. R.: A review of air–ice chemical and physical interactions
(AICI): liquids, quasi-liquids, and solids in snow, Atmos. Chem. Phys.,
14, 1587–1633, https://doi.org/10.5194/acp-14-1587-2014, 2014.
Blackford, J. R., Jeffree, C. E., Noake, D. F. J., and Marmo, B. A.:
Microstructural evolution in sintered ice particles containing NaCl observed
by low-temperature scanning electron microscope, Proc. Inst. Mech. Eng. Pt.
L, 221, 151–156, https://doi.org/10.1243/14644207jmda134,
2007.
Bononi, F. C., Chen, Z., Rocca, D., Andreussi, O., Hullar, T., Anastasio, C.,
and Donadio, D.: Bathochromic Shift in the UV-Visible Absorption Spectra of
Phenols at Ice Surfaces: Insights from First-Principles Calculations, J. Phys.
Chem. A, 124, 9288–9298, https://doi.org/10.1021/acs.jpca.0c07038, 2020.
Bottenheim, J. W., Fuentes, J. D., Tarasick, D. W., and Anlauf, K. G.: Ozone
in the Arctic lower troposphere during winter and spring 2000 (ALERT2000),
Atmos. Environ., 36, 2535–2544, https://doi.org/10.1016/S1352-2310(02)00121-8,
2002.
Butler, B. M., Papadimitriou, S., Santoro, A., and Kennedy, H.: Mirabilite
solubility in equilibrium sea ice brines, Geochim. Cosmochim. Acta, 182,
40–54, https://doi.org/10.1016/j.gca.2016.03.008, 2016a.
Butler, B. M., Papadimitriou, S., and Kennedy, H.: The effect of mirabilite
precipitation on the absolute and practical salinities of sea ice brines,
Mar. Chem., 184, 21–31, https://doi.org/10.1016/j.marchem.2016.06.003, 2016b.
Chen, N. J., Morikawa, J., Kishi, A., and Hashimoto, T.: Thermal diffusivity of eutectic of alkali chloride and ice in the freezing–thawing process by temperature wave analysis, Thermochim. Ac., 429, 73–79, https://doi.org/10.1016/J.TCA.2004.11.010, 2005.
Cohen-Adad, R. and Lorimer, J. W.: Alkali metal and ammonium chlorides in water and heavy water (binary systems), Pergamon Press,
ISBN 978-0-08-023918-7, 1991.
DeMott, P. J., Hill, T. C. J., McCluskey, C. S., Prather, K. A., Collins, D.
B., Sullivan, R. C., Ruppel, M. J., Mason, R. H., Irish, V. E., Lee, T.,
Hwang, C. Y., Rhee, T. S., Snider, J. R., McMeeking, G. R., Dhaniyala, S.,
Lewis, E. R., Wentzell, J. J. B., Abbatt, J., Lee, C., Sultana, C. M., Ault,
A. P., Axson, J. L., Diaz Martinez, M., Venero, I., Santos-Figueroa, G.,
Stokes, M. D., Deane, G. B., Mayol-Bracero, O. L., Grassian, V. H., Bertram,
T. H., Bertram, A. K., Moffett, B. F., and Franc, G. D.: Sea spray aerosol as
a unique source of ice nucleating particles, P. Natl. Acad. Sci. USA,
113, 5797–5803, https://doi.org/10.1073/pnas.1514034112, 2016.
Domine, F., Sparapani, R., Ianniello, A., and Beine, H. J.: The origin of sea
salt in snow on Arctic sea ice and in coastal regions, Atmos. Chem. Phys.,
4, 2259–2271, https://doi.org/10.5194/acp-4-2259-2004, 2004.
Dominé, F., Lauzier, T., Cabanes, A., Legagneux, L., Kuhs, W. F.,
Techmer, K., and Heinrichs, T.: Snow metamorphism as revealed by scanning
electron microscopy, Microsc. Res. Tech., 62, 33–48,
https://doi.org/10.1002/jemt.10384, 2003.
Douglas, T. A., Domine, F., Barret, M., Anastasio, C., Beine, H. J.,
Bottenheim, J., Grannas, A., Houdier, S., Netcheva, S., Rowland, G.,
Staebler, R., and Steffen, A.: Frost flowers growing in the Arctic
ocean-atmosphere-sea ice-snow interface: 1. Chemical composition, J.
Geophys. Res.-Atmos., 117, 1–15, https://doi.org/10.1029/2011JD016460, 2012.
Dubois, M., Royer, J.-J., Weisbrod, A., and Shtuka, A.: Reconstruction of low-temperature binary phase diagrams using a constrained least squares method: Application to the H2O-CsCl system, Europ. J. Mineral., 5, 1145–1152, https://doi.org/10.1127/ejm/5/6/1145, 1993.
Fox-Powell, M. G. and Cousins, C. R.: Partitioning of Crystalline and
Amorphous Phases During Freezing of Simulated Enceladus Ocean Fluids, J.
Geophys. Res.-Planet., 126, 1–16, https://doi.org/10.1029/2020je006628, 2021.
Frey, M. M., Norris, S. J., Brooks, I. M., Anderson, P. S., Nishimura, K.,
Yang, X., Jones, A. E., Nerentorp Mastromonaco, M. G., Jones, D. H., and
Wolff, E. W.: First direct observation of sea salt aerosol production from
blowing snow above sea ice, Atmos. Chem. Phys., 20, 2549–2578,
https://doi.org/10.5194/acp-20-2549-2020, 2020.
De Gennes, P. G.: Wetting: statics and dynamics, Rev. Mod. Phys., 57,
827, https://doi.org/10.1103/RevModPhys.57.827, 1985.
Fujiwara, S. and Nihimoto, Y.: Nonbiological Complete Differentiation of the Enantiomeric Isomers of Amino Acids and Sugars by the Complexes of Gases with the Eutectic Compounds of Alkali Chlorides and Water, Anal. Sci., 14, 507–514, https://doi.org/10.2116/analsci.14.507, 1998.
Gao, D., Li, D., and Li, W.: Solubility of RbCl and CsCl in pure water at subzero temperatures, heat capacity of RbCl(aq) and CsCl(aq) at T=298.15 K, and thermodynamic modeling of RbCl + H2O and CsCl + H2O systems, J. Chem. Thermodynam., 104, 201–211, https://doi.org/10.1016/J.JCT.2016.09.031, 2017.
Gong, X., Zhang, J., Croft, B., Yang, X., Frey, M. M., Bergner, N., Chang,
R., Creamean, J., Kuang, C., Martin, R. V., Sedlacek, A. J., Uin, J.,
Willmes, S., Zawadowicz, M. A., Pierce, J. R., Shupe, M. D., Schmale, J., and
Wang, J.: Arctic warming by abundant fine sea salt aerosols from blowing
snow, Nat. Geosci., in review, 2023.
Hara, K., Osada, K., Nishita-Hara, C., Yabuki, M., Hayashi, M., Yamanouchi,
T., Wada, M., and Shiobara, M.: Seasonal features of ultrafine particle
volatility in the coastal Antarctic troposphere, Atmos. Chem. Phys., 11,
9803–9812, https://doi.org/10.5194/acp-11-9803-2011, 2011.
Hara, K., Matoba, S., Hirabayashi, M., and Yamasaki, T.: Frost flowers and
sea-salt aerosols over seasonal sea-ice areas in northwestern Greenland
during winter-spring, Atmos. Chem. Phys., 17, 8577–8598,
https://doi.org/10.5194/acp-17-8577-2017, 2017.
Heger, D. and Klán, P.: Interactions of organic molecules at grain
boundaries in ice: A solvatochromic analysis, J. Photochem. Photobiol. A, 187, 275–284, https://doi.org/10.1016/j.jphotochem.2006.10.012, 2007.
Heger, D., Jirkovský, J., and Klán, P.: Aggregation of Methylene Blue
in Frozen Aqueous Solutions Studied by Absorption Spectroscopy, J. Phys.
Chem. A, 109, 6702–6709, https://doi.org/10.1021/jp050439j, 2005.
Heger, D., Klanova, J., and Klan, P.: Enhanced protonation of cresol red in
acidic aqueous solutions caused by freezing, J. Phys. Chem. B, 110,
1277–1287, https://doi.org/10.1021/jp0553683, 2006.
Heger, D., Nachtigallová, D., Surman, F., Krausko, J., Magyarová,
B., Brumovský, M., Rubeš, M., Gladich, I., and Klán, P.:
Self-organization of 1-methylnaphthalene on the surface of artificial snow
grains: A combined experimental-computational approach, J. Phys. Chem. A,
115, 11412–11422, https://doi.org/10.1021/jp205627a, 2011.
Huang, J. and Jaeglé, L.: Wintertime enhancements of sea salt aerosol in
polar regions consistent with a sea ice source from blowing snow, Atmos.
Chem. Phys., 17, 3699–3712, https://doi.org/10.5194/acp-17-3699-2017, 2017.
Hullar, T. and Anastasio, C.: Direct visualization of solute locations in laboratory ice samples, The Cryosphere, 10, 2057–2068, https://doi.org/10.5194/tc-10-2057-2016, 2016.
Hullar, T., Magadia, D., and Anastasio, C.: Photodegradation Rate Constants
for Anthracene and Pyrene Are Similar in/on Ice and in Aqueous Solution,
Environ. Sci. Technol., 52, 12225–12234, https://doi.org/10.1021/acs.est.8b02350, 2018.
Imrichová, K., Veselý, L., Gasser, T. M., Loerting, T., Neděla,
V., and Heger, D.: Vitrification and increase of basicity in between ice Ih
crystals in rapidly frozen dilute NaCl aqueous solutions, J. Chem. Phys.,
151, 014503, https://doi.org/10.1063/1.5100852, 2019.
Jambon-Puillet, E.: Stains from Freeze-Dried Drops, Langmuir, 35, 5541–5548, https://doi.org/10.1021/acs.langmuir.9b00084, 2019.
Jourdain, B., Preunkert, S., Cerri, O., Castebrunet, H., Udisti, R., and
Legrand, M.: Year-round record of size-segregated aerosol composition in
central Antarctica (Concordia station): Implications for the degree of
fractionation of sea-salt particles, J. Geophys. Res., 113, D14308,
https://doi.org/10.1029/2007JD009584, 2008.
Kahan, T. F. and Donaldson, D. J.: Photolysis of Polycyclic Aromatic
Hydrocarbons on Water and Ice Surfaces, J. Phys. Chem. A, 111,
1277–1285, https://doi.org/10.1021/jp066660t, 2007.
Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., Notholt, J.,
Rankin, A. M., Roscoe, H. K., Hollwedel, J., Wagner, T., and Jacobi, H. W.:
Frost flowers on sea ice as a source of sea salt and their influence on
tropospheric halogen chemistry, Geophys. Res. Lett., 31, L16114,
https://doi.org/10.1029/2004GL020655, 2004.
Kang, S., Zhang, Y., Qian, Y., and Wang, H.: A review of black carbon in snow
and ice and its impact on the cryosphere, Earth-Sci. Rev.,
210, 103346, https://doi.org/10.1016/j.earscirev.2020.103346, 2020.
Kania, R., Malongwe, J. K., Nachtigallová, D., Krausko, J., Gladich, I.,
Roeselová, M., Heger, D., and Klán, P.: Spectroscopic properties of
benzene at the air-ice interface: A combined experimental-computational
approach, J. Phys. Chem. A, 118, 7535–7547, https://doi.org/10.1021/jp501094n, 2014.
Keene, W. C., Maring, H., Maben, J. R., Kieber, D. J., Pszenny, A. A. P. P.,
Dahl, E. E., Izaguirre, M. A., Davis, A. J., Long, M. S., Zhou, X.,
Smoydzin, L., and Sander, R.: Chemical and physical characteristics of
nascent aerosols produced by bursting bubbles at a model air-sea interface,
J. Geophys. Res., 112, D21202, https://doi.org/10.1029/2007JD008464, 2007.
Kirpes, R. M., Bonanno, D., May, N. W., Fraund, M., Barget, A. J., Moffet,
R. C., Ault, A. P., and Pratt, K. A.: Wintertime Arctic Sea Spray Aerosol
Composition Controlled by Sea Ice Lead Microbiology, ACS Cent. Sci., 5,
1760–1767, https://doi.org/10.1021/acscentsci.9b00541, 2019.
Klánová, J., Klán, P., Heger, D., and Holoubek, I.: Comparison of
the effects of UV, H2O2/UV and γ-irradiation processes on frozen and
liquid water solutions of monochlorophenols, Photochem. Photobiol. Sci.,
2, 1023–1031, https://doi.org/10.1039/b303483F, 2003.
Krausko, J., Runštuk, J., Neděla, V., Klán, P., and Heger, D.:
Observation of a brine layer on an ice surface with an environmental
scanning electron microscope at higher pressures and temperatures, Langmuir,
30, 5441–5447, https://doi.org/10.1021/la500334e, 2014.
Legrand, M., Preunkert, S., Wolff, E., Weller, R., Jourdain, B., and
Wagenbach, D.: Year-round records of bulk and size-segregated aerosol
composition in central Antarctica (Concordia site) – Part 1: Fractionation
of sea-salt particles, Atmos. Chem. Phys., 17, 14039–14054,
https://doi.org/10.5194/acp-17-14039-2017, 2017.
Levine, J. G., Yang, X., Jones, A. E., and Wolff, E. W.: Sea salt as an ice
core proxy for past sea ice extent: A process-based model study, J. Geophys.
Res.-Atmos., 119, 5737–5756, https://doi.org/10.1002/2013JD020925, 2014.
Light, B., Brandt, R. E., and Warren, S. G.: Hydrohalite in cold sea ice:
laboratory observations of single crystals, surface accumulations, and
migration rates under a temperature gradient, with application to “snowball
earth,” J. Geophys. Res.-Ocean., 114, 1–17, https://doi.org/10.1029/2008JC005211,
2009.
Marion, G. M., Farren, R. E., and Komrowski, A. J.: Alternative pathways for
seawater freezing, Cold Reg. Sci. Technol., 29, 259–266,
https://doi.org/10.1016/S0165-232X(99)00033-6, 1999.
Mason, B. J.: The supercooling and nucleation of water, Adv. Phys., 7,
221–234, https://doi.org/10.1080/00018735800101237, 1958.
Massom, R. A., Eicken, H., Haas, C., Jeffries, M. O., Drinkwater, M. R.,
Sturm, M., Worby, A. P., Wu, X., Lytle, V. I., Ushio, S., Morris, K., Reid,
P. A., Warren, S. G., and Allison, I.: Snow on Antarctic sea ice, Rev.
Geophys., 39, 413–445, https://doi.org/10.1029/2000RG000085, 2001.
Maus, S.: Prediction of the cellular microstructure of sea ice by
morphological stability theory, in: Physics and Chemistry of Ice, edited by:
Kuhs, W. F., Royal Society of Chemistry Publishing, ISBN-10: 0854043500, ISBN-13: 978-0854043507, 371–382, 2007.
Michaloudi, E., Papakostas, S., Stamou, G., Neděla, V.,
Tihlaříková, E., Zhang, W., and Declerck, S. A. J.: Reverse
taxonomy applied to the brachionus calyciflorus cryptic species complex:
Morphometric analysis confirms species delimitations revealed by molecular
phylogenetic analysis and allows the (re) description of four species, PLoS
One, 13, e0203168, https://doi.org/10.1371/journal.pone.0203168, 2018.
Moffat, J. R., Sefiane, K., and Shanahan, M. E. R.: Effect of TiO2
Nanoparticles on Contact Line Stick-Slip Behavior of Volatile Drops, J.
Phys. Chem. B, 113, 8860–8866, https://doi.org/10.1021/jp902062z, 2009.
Monnin, C. and Dubois, M.: Thermodynamics of the CsCl-H2O system at low temperatures, Europ. J. Mineral., 11, 477–482, https://doi.org/10.1127/ejm/11/3/0477, 1999.
Neděla, V.: Methods for additive hydration allowing observation of fully
hydrated state of wet samples in environmental SEM, Microsc. Res. Tech.,
70, 95–100, https://doi.org/10.1002/jemt.20390, 2007.
Neděla, V., Tihlaříková, E., Runštuk, J., and Hudec, J.:
High-efficiency detector of secondary and backscattered electrons for
low-dose imaging in the ESEM, Ultramicroscopy, 184, 1–11,
https://doi.org/10.1016/j.ultramic.2017.08.003, 2018.
Neděla, V., Tihlaříková, E., Maxa, J., Imrichová, K.,
Bučko, M., and Gemeiner, P.: Simulation-based optimisation of
thermodynamic conditions in the ESEM for dynamical in-situ study of
spherical polyelectrolyte complex particles in their native state,
Ultramicroscopy, 211, 112954, https://doi.org/10.1016/j.ultramic.2020.112954, 2020.
Notz, D. and Worster, M. G.: Desalination processes of sea ice revisited, J.
Geophys. Res.-Ocean., 114, 1–10, https://doi.org/10.1029/2008JC004885, 2009.
O'Dowd, C. D., Lowe, J. A., Smith, M. H., and Kaye, A. D.: The relative
importance of non-sea-salt sulphate and sea-salt aerosol to the marine cloud
condensation nuclei population: An improved multi-component aerosol-cloud
droplet parametrization, Q. J. R. Meteorol. Soc., 125, 1295–1313,
https://doi.org/10.1002/qj.1999.49712555610, 1999.
Ondrušková, G., Krausko, J., Stern, J. N., Hauptmann, A., Loerting,
T., and Heger, D.: Distinct Speciation of Naphthalene Vapor Deposited on Ice
Surfaces at 253 or 77 K: Formation of Submicrometer-Sized Crystals or an
Amorphous Layer, J. Phys. Chem. C, 122, 11945–11953, https://doi.org/10.1021/acs.jpcc.8b03972,
2018.
Ondrušková, G., Veselý, L., Zezula, J., Bachler, J., Loerting,
T., and Heger, D.: Using Excimeric Fluorescence to Study How the Cooling Rate
Determines the Behavior of Naphthalenes in Freeze-Concentrated Solutions:
Vitrification and Crystallization, J. Phys. Chem. B, 124, 10556–10566,
https://doi.org/10.1021/acs.jpcb.0c07817, 2020.
Ozcelik, H. G., Ozdemir, A. C., Kim, B., and Barisik, M.: Wetting of single
crystalline and amorphous silicon surfaces: effective range of
intermolecular forces for wetting, Mol. Simul., 46, 224–234,
https://doi.org/10.1080/08927022.2019.1690145, 2020.
Peterson, P. K., Pöhler, D., Sihler, H., Zielcke, J., General, S., Frieß, U., Platt, U., Simpson, W. R., Nghiem, S. V., Shepson, P. B., Stirm, B. H., Dhaniyala, S., Wagner, T., Caulton, D. R., Fuentes, J. D., and Pratt, K. A.: Observations of bromine monoxide transport in the Arctic sustained on aerosol particles, Atmos. Chem. Phys., 17, 7567–7579, https://doi.org/10.5194/acp-17-7567-2017, 2017.
Pratt, K. A., Custard, K. D., Shepson, P. B., Douglas, T. A., Pöhler,
D., General, S., Zielcke, J., Simpson, W. R., Platt, U., Tanner, D. J.,
Gregory Huey, L., Carlsen, M., and Stirm, B. H.: Photochemical production of
molecular bromine in Arctic surface snowpacks, Nat. Geosci., 6, 351–356,
https://doi.org/10.1038/ngeo1779, 2013.
Qazi, M. J., Salim, H., Doorman, C. A. W., Jambon-Puillet, E., and
Shahidzadeh, N.: Salt creeping as a self-amplifying crystallization process,
Sci. Adv., 5, eaax1853, https://doi.org/10.1126/sciadv.aax1853, 2019.
Rankin, A. M. and Wolff, E. W.: A year-long record of size-segregated
aerosol composition at Halley, Antarctica, J. Geophys. Res. D,
108, AAC 9, https://doi.org/10.1029/2003jd003993, 2003.
Ray, D., Kurková, R., Hovorková, I., and Klán, P.: Determination
of the Specific Surface Area of Snow Using Ozonation of
1,1-Diphenylethylene, Environ. Sci. Technol., 45, 10061–10067,
https://doi.org/10.1021/es202922k, 2011.
Rhodes, R. H., Yang, X., Wolff, E. W., McConnell, J. R., and Frey, M. M.: Sea
ice as a source of sea salt aerosol to Greenland ice cores: A model-based
study, Atmos. Chem. Phys., 17, 9417–9433, https://doi.org/10.5194/acp-17-9417-2017,
2017.
Richter, A., Wittrock, F., Eisinger, M., and Burrows, J. P.: GOME
observations of tropospheric BrO in northern hemispheric spring and summer
1997, Geophys. Res. Lett., 25, 2683–2686, https://doi.org/10.1029/98GL52016, 1998.
Rodebush, W. H.: The freezing points of concentrated solutions and the free
energy of solution of salts, J. Am. Chem. Soc., 40, 1204–1213,
https://doi.org/10.1021/ja02241a008, 1918.
Rohatgi, P. K. and Adams, C. M.: Ice–Brine Dendritic Aggregate formed on
Freezing of Aqueous Solutions, J. Glaciol., 6, 663–679, https://doi.org/10.1017/s0022143000019936, 1967.
Roscoe, H. K., Brooks, B., Jackson, A. V, Smith, M. H., Walker, S. J.,
Obbard, R. W., and Wolff, E. W.: Frost flowers in the laboratory: Growth,
characteristics, aerosol, and the underlying sea ice, J. Geophys. Res.,
116, D12301, https://doi.org/10.1029/2010JD015144, 2011.
Schenkmayerová, A., Bučko, M., Gemeiner, P., Tre¾ová, D.,
Lacík, I., Chorvát, D., Ačai, P., Polakovič, M.,
Lipták, L., Rebroš, M., Rosenberg, M., Štefuca, V., Neděla,
V., and Tihlaříková, E.: Physical and Bioengineering Properties
of Polyvinyl Alcohol Lens-Shaped Particles Versus Spherical Polyelectrolyte
Complex Microcapsules as Immobilisation Matrices for a Whole-Cell
Baeyer–Villiger Monooxygenase, Appl. Biochem. Biotechnol., 174,
1834–1849, https://doi.org/10.1007/s12010-014-1174-x, 2014.
Schremb, M. and Tropea, C.: Solidification of supercooled water in the
vicinity of a solid wall, Phys. Rev. E, 94, 52804,
https://doi.org/10.1103/PhysRevE.94.052804, 2016.
Shibkov, A. A., Golovin, Y. I., Zheltov, M. A., Korolev, A. A., and Leonov,
A. A.: Morphology diagram of nonequilibrium patterns of ice crystals growing
in supercooled water, Phys. A, 319, 65–79,
https://doi.org/10.1016/S0378-4371(02)01517-0, 2003.
Simpson, W. R., Carlson, D., Hönninger, G., Douglas, T. A., Sturm, M.,
Perovich, D., and Platt, U.: First-year sea-ice contact predicts bromine
monoxide (BrO) levels at Barrow, Alaska better than potential frost flower
contact, Atmos. Chem. Phys., 7, 621–627, https://doi.org/10.5194/acp-7-621-2007,
2007.
Spiel, D. E.: On the births of jet drops from bubbles bursting on water
surfaces, J. Geophys. Res., 100, 4995, https://doi.org/10.1029/94JC03055, 1995.
Swanson, W. F., Holmes, C. D., Simpson, W. R., Confer, K., Marelle, L.,
Thomas, J. L., Jaeglé, L., Alexander, B., Zhai, S., Chen, Q., Wang, X.,
and Sherwen, T.: Comparison of model and ground observations finds snowpack
and blowing snow aerosols both contribute to Arctic tropospheric reactive
bromine, Atmos. Chem. Phys., 22, 14467–14488,
https://doi.org/10.5194/acp-22-14467-2022, 2022.
Swenne, D. A.: The eutectic crystallization of NaCl ⋅ 2H2O and ice, [Phd Thesis 1 (Research TU/e/Graduation TU/e), Chemical Engineering and Chemistry], Technische Hogeschool Eindhoven, https://doi.org/10.6100/IR50645, 1983.
Toyota, T., Massom, R., Tateyama, K., Tamura, T., and Fraser, A.: Properties
of snow overlying the sea ice off East Antarctica in late winter, 2007, Deep-Sea Res. Pt. II, 58, 1137–1148,
https://doi.org/10.1016/J.DSR2.2010.12.002, 2011.
Vancoppenolle, M., Madec, G., Thomas, M., and McDougall, T. J.:
Thermodynamics of Sea Ice Phase Composition Revisited, J. Geophys. Res.-Ocean., 124, 615–634, https://doi.org/10.1029/2018JC014611, 2019.
Vetráková, L, Vykoukal, V., and Heger, D.: Comparing the acidities
of aqueous, frozen, and freeze-dried phosphate buffers: Is there a “pH
memory” effect?, Int. J. Pharm., 530, 316–325,
https://doi.org/10.1016/j.ijpharm.2017.08.005, 2017.
Vetráková, Ľ., Neděla, V., Runštuk, J., and Heger, D.: The morphology of ice and liquid brine in an environmental scanning electron microscope: a study of the freezing methods, The Cryosphere, 13, 2385–2405, https://doi.org/10.5194/tc-13-2385-2019, 2019.
Vetráková, L., Neděla, V., Runštuk, J.,
Tihlaříková, E., Heger, D., and Shalaev, E.: Dynamical in-situ
observation of the lyophilization and vacuum-drying processes of a model
biopharmaceutical system by an environmental scanning electron microscope,
Int. J. Pharm., 585, 119448, https://doi.org/10.1016/j.ijpharm.2020.119448, 2020.
Vetráková, L., Nedela, V.,; Závacká, K., Yang, X., Heger, D.: Technical note: Sublimation of frozen CsCl solutions in ESEM: Determining the number and size of salt particles relevant to sea-salt aerosols (Dataset), Mendeley Data [data set], V1, https://doi.org/10.17632/h2v6c4ypcs.1, 2023.
Wagenbach, D., Ducroz, F., Mulvaney, R., Keck, L., Minikin, A., Legrand, M.,
Hall, J. S., and Wolff, E. W.: Sea-salt aerosol in coastal Antarctic regions,
J. Geophys. Res.-Atmos., 103, 10961–10974, https://doi.org/10.1029/97JD01804, 1998.
Warren, S. G.: Impurities in snow: effects on albedo and snowmelt, Ann.
Glaciol., 5, 177–179, https://doi.org/10.1017/s0260305500003700, 1984.
Wettlaufer, J. S.: Directional solidification of salt water: deep and
shallow cells, Eur. Lett., 19, 337–342, https://doi.org/10.1209/0295-5075/19/4/015,
1992.
Wexler, A.: Vapor pressure formulation for ice, J. Res. Natl. Bur. Stand. A,
81, 5–20, https://doi.org/10.6028/jres.081A.003, 1977.
Wise, M. E., Baustian, K. J., Koop, T., Freedman, M. A., Jensen, E. J., and
Tolbert, M. A.: Depositional ice nucleation onto crystalline hydrated NaCl
particles: a new mechanism for ice formation in the troposphere, Atmos.
Chem. Phys., 12, 1121–1134, https://doi.org/10.5194/acp-12-1121-2012, 2012.
Wolff, E. W., Rankin, A. M., and Röthlisberger, R.: An ice core indicator
of Antarctic sea ice production?, Geophys. Res. Lett., 30, CLM 4, https://doi.org/10.1029/2003GL018454, 2003.
Yang, X., Pyle, J. A., and Cox, R. A.: Sea salt aerosol production and
bromine release: Role of snow on sea ice, Geophys. Res. Lett., 35, 1–5,
https://doi.org/10.1029/2008GL034536, 2008.
Yang, X., Neděla, V., Runštuk, J., Ondrušková, G., Krausko,
J., Vetráková, L., and Heger, D.: Evaporating brine from frost
flowers with electron microscopy and implications for atmospheric chemistry
and sea-salt aerosol formation, Atmos. Chem. Phys., 17, 6291–6303,
https://doi.org/10.5194/acp-17-6291-2017, 2017.
Yang, X., Frey, M. M., Rhodes, R. H., Norris, S. J., Brooks, I. M.,
Anderson, P. S., Nishimura, K., Jones, A. E., and Wolff, E. W.: Sea salt
aerosol production via sublimating wind-blown saline snow particles over sea
ice: parameterizations and relevant microphysical mechanisms, Atmos. Chem.
Phys., 19, 8407–8424, https://doi.org/10.5194/acp-19-8407-2019, 2019.
Závacká, K., Neděla, V., Olbert, M., Tihlaříková,
E., Vetráková, ¼., Yang, X., and Heger, D.: Temperature and
Concentration Affect Particle Size Upon Sublimation of Saline Ice:
Implications for Sea Salt Aerosol Production in Polar Regions, Geophys. Res.
Lett., 49, 1–10, https://doi.org/10.1029/2021gl097098, 2022.
Short summary
Salt aerosols are important to polar atmospheric chemistry and global climate. Therefore, we utilized a unique electron microscope to identify the most suitable conditions for formation of the small salt (CsCl) particles, proxies of the aerosols, from sublimating salty snow. Very low sublimation temperature and low salt concentration are needed for formation of such particles. These observations may help us to better understand polar spring ozone depletion and bromine explosion events.
Salt aerosols are important to polar atmospheric chemistry and global climate. Therefore, we...
Altmetrics
Final-revised paper
Preprint