Articles | Volume 23, issue 7
https://doi.org/10.5194/acp-23-4045-2023
https://doi.org/10.5194/acp-23-4045-2023
Research article
 | 
05 Apr 2023
Research article |  | 05 Apr 2023

Dependency of vertical velocity variance on meteorological conditions in the convective boundary layer

Noviana Dewani, Mirjana Sakradzija, Linda Schlemmer, Ronny Leinweber, and Juerg Schmidli

Related authors

Evaluating Turbulent and Microphysical Schemes in ICON for Deep Convection over the Alps: A Case Study of Vertical Transport and Model–Observation Comparison
Hemanth Kumar Alladi, Julian Quimbayo-Duarte, Luca Bugliaro, Johanna Mayer, and Juerg Schmidli
EGUsphere, https://doi.org/10.5194/egusphere-2025-4401,https://doi.org/10.5194/egusphere-2025-4401, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Impact of small-scale orography on deep boundary layer evolution and structure over the Tibetan Plateau
Ivan Basic, Harshwardhan Jadhav, Jaydeep Singh, and Juerg Schmidli
EGUsphere, https://doi.org/10.5194/egusphere-2025-4302,https://doi.org/10.5194/egusphere-2025-4302, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Impact of model resolution and turbulence scheme on the representation of mountain waves and turbulence
Roshny Siri Jagan and Juerg Schmidli
EGUsphere, https://doi.org/10.5194/egusphere-2025-4308,https://doi.org/10.5194/egusphere-2025-4308, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Predicting Ice Supersaturation for Contrail Avoidance: Ensemble Forecasting using ICON with Two-Moment Ice Microphysics
Maleen Hanst, Carmen G. Köhler, Axel Seifert, and Linda Schlemmer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3312,https://doi.org/10.5194/egusphere-2025-3312, 2025
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary

Cited articles

Ansmann, A., Fruntke, J., and Engelmann, R.: Updraft and downdraft characterization with Doppler lidar: cloud-free versus cumuli-topped mixed layer, Atmos. Chem. Phys., 10, 7845–7858, https://doi.org/10.5194/acp-10-7845-2010, 2010. a
Berg, L. K., Newsom, R. K., and Turner, D. D.: Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer, J. Appl. Meteorol. Clim., 56, 2441–2454, https://doi.org/10.1175/JAMC-D-16-0359.1, 2017. a, b
Bonin, T. A., Newman, J. F., Klein, P. M., Chilson, P. B., and Wharton, S.: Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations, Atmos. Meas. Tech., 9, 5833–5852, https://doi.org/10.5194/amt-9-5833-2016, 2016. a
Chandra, A. S., Kollias, P., Giangrande, S. E., and Klein, S. A.: Long-Term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility, J. Climate, 23, 5699–5714, https://doi.org/10.1175/2010JCLI3395.1, 2010. a, b, c, d
Cheliotis, I., Dieudonné, E., Delbarre, H., Sokolov, A., Dmitriev, E., Augustin, P., and Fourmentin, M.: Detecting turbulent structures on single Doppler lidar large datasets: an automated classification method for horizontal scans, Atmos. Meas. Tech., 13, 6579–6592, https://doi.org/10.5194/amt-13-6579-2020, 2020. a
Download
Short summary
A high daily variability of the normalized vertical velocity variance profiles in the convective boundary layer is observed using Doppler lidar data during the FESSTVaL campaign 2020–2021. The dependency of the normalized vertical velocity variance on several meteorological parameters explains that the moisture processes in the boundary layer contribute to the remaining variability. The finding suggests that a new vertical velocity scale that takes moist processes into account has to be defined.
Share
Altmetrics
Final-revised paper
Preprint