Articles | Volume 23, issue 2
https://doi.org/10.5194/acp-23-1641-2023
https://doi.org/10.5194/acp-23-1641-2023
Research article
 | 
27 Jan 2023
Research article |  | 27 Jan 2023

How aerosol size matters in aerosol optical depth (AOD) assimilation and the optimization using the Ångström exponent

Jianbing Jin, Bas Henzing, and Arjo Segers

Related authors

South Asia anthropogenic ammonia emission inversion through assimilating IASI observations
Ji Xia, Yi Zhou, Li Fang, Yingfei Qi, Dehao Li, Hong Liao, and Jianbing Jin
Atmos. Chem. Phys., 25, 7071–7086, https://doi.org/10.5194/acp-25-7071-2025,https://doi.org/10.5194/acp-25-7071-2025, 2025
Short summary
The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2
Mijie Pang, Jianbing Jin, Ting Yang, Xi Chen, Arjo Segers, Batjargal Buyantogtokh, Yixuan Gu, Jiandong Li, Hai Xiang Lin, Hong Liao, and Wei Han
Geosci. Model Dev., 18, 3781–3798, https://doi.org/10.5194/gmd-18-3781-2025,https://doi.org/10.5194/gmd-18-3781-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
A Transformer-based agent model of GEOS-Chem v14.2.2 for informative prediction of PM2.5 and O3 levels to future emission scenarios: TGEOS v1.0
Dehao Li, Jianbing Jin, Guoqiang Wang, Mijie Pang, and Hong Liao
EGUsphere, https://doi.org/10.5194/egusphere-2025-2186,https://doi.org/10.5194/egusphere-2025-2186, 2025
Short summary
Optimizing Ammonia Emissions for PM2.5 Mitigation: Environmental and Health Co-Benefits in Eastern China
Keqin Tang, Haoran Zhang, Ge Xu, Fengyi Chang, Yang Xu, Ji Miao, Xian Cui, Jianbin Jin, Baojie Li, Ke Li, Hong Liao, and Nan Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-1407,https://doi.org/10.5194/egusphere-2025-1407, 2025
Short summary

Cited articles

Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U.: Modal aerosol dynamics model for Europe: Development and first applications, Atmos. Environ., 32, 2981–2999, 1998. a
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989. a
Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052–1058, 1997. a
Ångström, A.: On the Atmospheric Transmission of Sun Radiation and on Dust in the Air, Geografiska Annaler, 11, 156–166, 1929. a, b
Baker, A., Kelly, S., Biswas, K., Witt, M., and Jickells, T.: Atmospheric deposition of nutrients to the Atlantic Ocean, Geophys. Res. Lett., 30, 2296, https://doi.org/10.1029/2003GL018518, 2003. a
Download
Short summary
Aerosol models and satellite retrieval algorithms rely on different aerosol size assumptions. In practice, differences between simulations and observations do not always reflect the difference in aerosol amount. To avoid inconsistencies, we designed a hybrid assimilation approach. Different from a standard aerosol optical depth (AOD) assimilation that directly assimilates AODs, the hybrid one estimates aerosol size parameters by assimilating Ängström observations before assimilating the AODs.
Share
Altmetrics
Final-revised paper
Preprint