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1 Supplementary figures5

Fig. S1 presents the radius-dependent variation of the extinction efficiencyQext, total cross section per unite mass S, extinction
coefficients εext as well as the interpolated Ångström exponentA for sulfate aerosol (so4) at various incident bands and relative
humidity. Other inorganic aerosols, e.g., NO3 and NH4 have the very close density, hygroscopicity and refraction index.
Therefore, they share the same curves to so4.

Fig. S2 presents the profiles of the extinction efficiencyQext, total cross section per unite mass S, extinction coefficients εext10
as well as the Ångström exponentA for black carbon (bc) at various incident bands. Since the bc fails to absorb any water from
the surround atmosphere (hygroscopicity index = 0), bc aerosols have the same optical properties in dry and wet atmosphere.

Fig. S3 presents the curves of Qext, S, εext as well as A for organic carbon (oc). Though oc is capable of attracting mois-
ture from the air, the hygroscopicity is very weak. Therefore, bc aerosols have very close optical properties in dry and wet
atmosphere.15

Fig. S4 and S5 presents the curves of Qext, S, εext as well as A for sea salt (ss) and dust aerosols. In real situations, most of
the ss and dust are in coarse-mode, therefore, they usually result in very small Ångström values.
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Figure S1. Inorganic aerosol extinction vs. mean geometric dry radius rg . (a): extinction efficiency Qext; (b): total cross section per unite
dry mass S; (c): extinction coefficients εext; (d): Ångström exponent A.
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Figure S2. Black carbon extinction vs. mean geometric dry radius rg . (a): extinction efficiency Qext; (b): total cross section per unite dry
mass S; (c): extinction coefficients εext; (d): Ångström exponent A.
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Figure S3. Organic carbon (oc) extinction vs. mean geometric dry radius rg . (a): extinction efficiency Qext; (b): total cross section per unite
dry mass S; (c): extinction coefficients εext; (d): Ångström exponent A.

4



a

c

b

d

Figure S4. Sea salt extinction vs. mean geometric dry radius rg . (a): extinction efficiency Qext; (b): total cross section per unite dry mass S;
(c): extinction coefficients εext; (d): Ångström exponent A.
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Figure S5. Dust extinction vs. mean geometric dry radius rg . (a): extinction efficiency Qext; (b): total cross section per unite dry mass S;
(c): extinction coefficients εext; (d): Ångström exponent A.
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Figure S6. Snapshots of the LOTOS-EUROS simulated column concentration of the fine aerosol (a), dust (b) and sea salt (c) at 2012 July
24, 10:00 to 11:00.
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2 Ångström analysis cost function minimization

The minimization of the cost function follows the 4DEnVar processes. An ensemble of aerosol radius vector are generated
randomly using the prior rb and the assumed error covariance Br:

[ r1, ...,rN ] (1)

An ensemble of Ångström model simulations then forward with the ensemble aerosol radius vectors in parallel:5

[M(r1), ...,M(rN ) ] (2)

Denote the ensemble perturbation matrix by:

L′ =
1√
N − 1

[ r1− r̄, ..., rN − r̄ ] (3)

and mean of ensemble simulation by:

M(r) =
1

N

N∑
i=1

M(ri) (4)10

where r̄ is the mean of the ensemble aerosol radii. In the 4DEnVar assimilation algorithm, the optimal radii ra is defined as
weighted sum of the columns of the perturbation matrix L′ using weights from a control variable vector w:

ra = r̄+L′w (5)

The cost function could then be reformulated as:

J (w) =
1

2
wT w +

1

2
{ML′w+M(r)−A }T R−1A {ML′w+M(r)−A } (6)15

here M is the linearization of the LOTOS-EUROS Ångström simulation model required for cost function minimization, and is
approximated by:

ML′ ≈ 1√
N − 1

[M(r1)−M(r), ... , M(rN )−M(r) ] (7)

with the uncertainty in radii transferred into the observations space, the minimum of the cost function in Eq. 6 could then be
directly calculated, and the posterior emission ra subsequently be updated.20
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